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Abstract: Removing a drug-like substance that can cause drug-induced liver injury from the drug 
discovery process is a significant task for medicinal chemistry. In silico models can facilitate this 
process. Semi-correlation is an approach to building in silico models representing the prediction in 
the active (1)—inactive (0) format. The so-called system of self-consistent models has been suggested 
as an approach for two tasks: (i) building up a model and (ii) estimating its predictive potential. 
However, this approach has been tested so far for regression models. Here, the approach is applied 
to building up and estimating a categorical hepatotoxicity model using the CORAL software. This 
new process yields good results: sensitivity = 0.77, specificity = 0.75, accuracy = 0.76, and Matthew 
correlation coefficient = 0.51 (all compounds) and sensitivity = 0.83, specificity = 0.81, accuracy = 0.83 
and Matthew correlation coefficient = 0.63 (validation set). 

Keywords: drug-induced liver injuries; hepatotoxicity; Monte Carlo method; index of ideality of 
correlation (IIC); CORAL software 
 

1. Introduction 
The liver is highly susceptible to drug insults: around 5–10% of adverse drug reac-

tions result in liver injuries [1]. Naturally, this stimulates the search for reliable models to 
anticipate and avoid this dangerous toxicity [2]. More than 1100 chemical substances ap-
plied daily have been identified as potentially causing liver injuries [3–5]. The clinical im-
pact may be vary, provoking oxidative stress, an increase in the level of liver enzymes 
(cytochromes P450), and a dangerous impact on metabolism [5–7]. 

In silico models can help predict adverse effects and plan safer drugs before their 
complete development. Of course, these models have limits. This is a general issue since 
experimental studies also have limits of different types, such as the time and costs needed 
and ethical concerns regarding the use of animals. 

“The idea of approximation dominates all exact science” (Bertrand Russell). Quanti-
tative structure–activity relationships (QSARs) are an example of science where approxi-
mation is relevant. QSAR should be considered a surrogate of a real experiment with some 
limits. Even though “all models are wrong” [8], “some of them are useful” [9]. Therefore, 
the point is to develop “useful models”. This refers to purpose and ambition, and how far 
we go with a model. For screening purposes, for instance, models for an initial evaluation 
are acceptable even if they have greater uncertainty. However, models for the final eval-
uation require much less uncertainty. 

We aim to develop some simple, fast models for the first evaluation of large collec-
tions of substances. This is suitable for the endpoint we are addressing in the present case: 
drug-induced liver injuries (DILI). This relates to many toxicological mechanisms involv-
ing complexity. At the basis of our model, as with QSAR models in general, there are data 
collections with experimental values. These data serve to extract the correct information, 
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but as we said, we must verify that the model is “good”, which is achieved with other data 
not used to build the model. In practice, the original collection of data is split into a train-
ing and a validation set, and avoiding the QSAR model becoming too good depends on 
the precise distribution of substances between these sets. The present paper describes a 
study on a group of random models to gain a balanced and robust model representative 
of multiple conditions. This is achieved with our system of self-consistent models applied 
to DILI. This study is pertinent from the methodological and practical points of view, as 
the results can be used both to predict DILI and to assess the reliability of the approach 
employed to build up the group of models. 

2. Materials and Methods  
The experimental data (n = 1274) on DILI in the active (denoted by 1) and inactive 

formats (denoted by 0) were taken from the literature [1]. The compounds were randomly 
distributed into active training (≈25%), passive training (≈25%), calibration (≈25%), and 
validation sets (≈25%). Each set has a defined task. The active training set is used to build 
the model: molecular features extracted from SMILES of the active training set are used in 
Monte Carlo optimization with the CORAL software (http://www.insilico.eu/coral) 
(accessed on 25 April 2023) to provide correlation weights (CW) for these features, which 
give the largest correlation coefficient between descriptors (the sum of the CW) and the 
endpoint of the active training set. The passive training set serves to check whether the 
model for the active training set is satisfactory for substances that were not involved in 
the active training set. The calibration set should detect the start of overtraining (or over-
fitting). At the beginning of the optimization, the correlation coefficients between the ex-
perimental values of the endpoint and the descriptor rise for all sets, but the correlation 
coefficient for the calibration set reaches the maximum (this is the start of the overtrain-
ing), and further optimization leads to a decrease in the correlation coefficient for the cal-
ibration set. The optimization should be stopped when overtraining starts.  

After stopping the Monte Carlo optimization procedure, the validation set is used to 
assess the predictive potential of the model. The present study applied semi-correlations 
[10–12]. The essence of this approach is the construction of a regression model for a set of 
compounds characterized by 1 (if the compound is active) or 0 (if the compound is inac-
tive). Ideally, all active and inactive ones are above the regression line. 

2.1. Optimal SMILES-Based Descriptors  
The optimal descriptor forms the basis of the model suggested here. The descriptor 

is calculated as follows: ܹܥܦሺܶ  ,ܰ  ሻ = ∑ (௞ܵ  )ܹܥ + ∑ (௞ܵܵ  )ܹܥ + ∑ (1)  (௞ܵܵܵ  )ܹܥ

T is an integer to separate SMILES attributes into rare and non-rare. The non-rare 
SMILES are applied to build up the model. The rare SMILES are not used for this. The 
selection of a value for T is empirical, according to the results of preliminary probes of 
building up the model (usually, it can be 1, 2, or 3). N is the number of epochs of the 
correlation weight (CW) optimization. Sk is a SMILES atom, i.e., one symbol of a SMILES 
line (e.g., �=�, �O�) or a group of symbols that cannot be examined separately (e.g., �Cu�, 
�%11�). CW(Sk) are the correlation weights of the SMILES attributes. SSk and SSSk are com-
positions of, respectively, two and three SMILES atoms. CW(SSk) and CW(SSSk) are the 
correlation weights of the SMILES fragments. The CW are obtained through the Monte 
Carlo method [10–12]. 

The optimal SMILES-based descriptor DCW(T,N) is applied for a model to predict 
DILI using the equation: ݕ = ଴ܥ  + ଵܥ × (2) (ܰ,ܶ)ܹܥܦ

y defines the category of a compound: 
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(ܵܧܮܫܯܵ)ݕݎ݋݃݁ݐܽܥ = ൜ ݕ,݂݅ (݁ݒ݅ݐܿܽ) 1 ≥ (݁ݒ݅ݐܿܽ݊݅) 0    0.5 ݕ,݂݅ < 0.5 (3)

2.2. Monte Carlo Optimization 
Equation (1) needs the numerical data on the CW, and the Monte Carlo optimization 

is used to calculate these. Here, two target functions (TF0 and TF1) for the Monte Carlo 
optimization are examined:  ܶܨ଴ = ஺்ݎ + ௉்ݎ − ஺்ݎ| − |௉்ݎ × ଵܨܶ(4)  0.1 = ଴ܨܶ + ஼ܥܫܫ × -௉்  are correlation coefficients between the observed and predicted endݎ ஺்  andݎ(5)  0.5
points for the active and passive training sets. IICC is the index of ideality of correlation 
[13]. Recent computational experiments have shown [13] that considering the IICc-value 
in the Monte Carlo optimization may be useful. IICC is calculated with data on the calibra-
tion set as follows: ܥܫܫ஼ = ஼ݎ ୫୧୬ ( ெ஺ா಴, ெ஺ா಴) శ   ష୫ୟ୶ ( ெ஺ா಴, ெ஺ா಴) శ   ష   (6)

min(ݕ,ݔ) = ൜ ,ݔ ݔ ݂݅ < ,ݕݕ (7)  ݁ݏ݅ݓݎℎ݁ݐ݋

max(ݕ,ݔ) = ൜ ,ݔ ݔ ݂݅ > ,ݕݕ (8)  ݁ݏ݅ݓݎℎ݁ݐ݋

ି ஼ܧܣܯ = ଵே ష ∑|∆௞| , ି ௞∆ ݂݋ ݎܾ݁݉ݑ݊ ℎ݁ݐ ݏ݅ ܰ < 0  (9)

஼ ାܧܣܯ = ଵே శ ∑|∆௞| , ௞ ା∆ ݂݋ ݎܾ݁݉ݑ݊ ℎ݁ݐ ݏ݅ ܰ ≥ 0  (10)

௞߂ = ௞݀݁ݒݎ݁ݏܾ݋ − ௞ (11)݀݁ݐ݈ܽݑ݈ܿܽܿ

The corresponding formulae accompany all values; rc is the correlation coefficient 
between the observed and calculated values of the endpoint in the calibration set and �c� 
indicates that it belongs to the calibration set. Observed and calculated are the correspond-
ing values of y.  

2.3. The System of Self-Consistent Models 
The system of self-consistent models [14] for five random splits into the training (vis-

ible) and validation (invisible) sets confirms the high quality (predictive potential) of the 
models. The training set here is divided into active, passive training, and calibration sets. 
Thus, the difference between models reflects the difference in training sets. However, the 
key attribute of the system of self-consistent models is the unified method for validating 
these models; each ith model has an ith validation set. The validation sets are far from 
identical (Table S1, Supplementary Materials). This supports the statistical fact that we 
explore multiple conditions, and the results are representative of a set of cases, each ob-
tained by chance, and their overall results should be evaluated jointly. 

The measure of self-consistency is based on the average and dispersion of the Mat-
thews correlation coefficient (MCC) in different validation sets. The corresponding com-
putational experiments are represented by the following matrix: 

൥ )ଵܯ) ଵܸ): ଵܸ → ( ଵଵݒܥܥܯ ⋯ )ହܯ) ହܸ):ܸ′ଵ → ⋮( ହଵݒܥܥܯ )ଵܯ)⋮  ଵܸ):ܸ′ହ → ( ଵହݒܥܥܯ ⋯ )ହܯ) ହܸ): ହܸ → ( ହହݒܥܥܯ ൩ (12) 
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 ௜ is an ith model, ܸ′௝ is the list of compounds employed as the validation set in theܯ
case of the jth split, and ݒܥܥܯ௜௝  is the Matthews correlation coefficient for the jth valida-
tion set if applied to the ith model. Figure S1, in the Supplementary Materials, shows the 
general scheme of validation of model 1 with validation set 3.  

3. Results  
We applied different methods using the CORAL software. Some models were devel-

oped with the classical approach, as in Equation (4), while others used a more recent ap-
proach, using Equation (5). Figure 1 shows the pattern of the Monte Carlo optimization of 
the correlation coefficient between the experimental and calculated y-values for the active 
training, passive training, calibration, and validation sets in the case of the Monte Carlo 
optimization without IIC (Figure 1a) or optimized with IIC (Figure 1b). 

The determination coefficients of the training set increase slowly and continuously. 
Nevertheless, the patterns for the values of the other two sets, calibration and validation, 
are different, in particular for the validation. In Figure 1a, they peak earlier. As a conse-
quence, depending on the epoch number, the results vary. The values for the two training 
sets (passive and active) are not a good indicator of the results when new substances are 
predicted. On increasing the number of epochs, overfitting starts (Figure 1a). It is also clear 
that in our conditions, the training set values often differ from those of the other sets, and 
depending on the epoch, the highest or lowest values of the training sets appear. 

Figure 1b shows the Matthews correlation coefficients for the active training, passive 
training, calibration, and validation sets in the case of the optimization with IIC (Equation 
(5)). In this case, the training set provides general features that are useful for the model, 
and the calibration set optimizes these features. The overall process is successful since the 
results for the validation set in Figure 1b are better than those in Figure 1a. 

 
Figure 1. The evolution histories of the Matthews correlation coefficients during the Monte Carlo 
optimization for the active training set, the passive training set, the calibration set, and the validation 
set: (a) the optimization without IIC and (b) the optimization with IIC. 

Table 1 illustrates the acceptable statistical quality of the approach, with the repro-
ducibility of the predictive potential for all variations, expressed as  ܯ௜( ௜ܸ):ܸ′௝ → ௜௝ , i ≠ j (11)ݒܥܥܯ

since the average ܥܥܯതതതതതതݒ௜௝  = 0.7634 ± 0.0528.  
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Table 1. The statistical characteristics of the DILI model observed for split 1. 

Set 
Observed Classification 
Quality Statistical Characteristics  

 TP TN FP FN N Sensitivity Specificity Accuracy MCC 
Active training 119 99 49 47 314 0.7169 0.6689 0.6983 0.3861 
Passive training 123 101 32 63 319 0.6613 0.7594 0.7022 0.4150 
Calibration 160 100 28 31 319 0.8377 0.7813 0.8150 0.6167 
Validation  181 86 20 35 322 0.8380 0.8113 0.8292 0.6300 
Total  583 386 129 176 1274 0.7681 0.7495 0.7606 0.5116 

The comparison of the models described here with the statistical quality of DILI mod-
els from the literature (Table 2) confirms the practical and heuristic potential of the devel-
oped approach.  

Table 2. The statistical quality of the DILI models reported in the literature. 

N Sensitivity Specificity Accuracy  Sensitivity 
(Validation Set) 

Specificity 
(Validation Set) References  

- 0.73 0.73 - - - [2] 
6853 0.91 0.53  0.79 - - [3] 
1550 0.76  0.71–0.92 - - - [4] 
1148 - - - 0.68–0.76 0.83–0.99 [4] 
1254 0.82 0.75 0.78 - - [5] 
83 - - - 0.818 0.748 [5] 
1036 0.82–0.90 0.55–0.64 0.71–0.75 - - [6] 

1274 0.77 0.75 0.76 - - This work 
(split 1) 

322 - - - 0.838 0.8113 This work 
(split 1) 

4. Discussion 
The approach considered here is based on the use of semi-correlations. The latter are 

specific kinds of correlations where one variable takes only two values (for example, 0 and 
1), expressing the presence (1) or the absence (0) of some modeled activity. The concept of 
categorical (binary classification) simulation has been successfully tested for several types 
of biological activity [15–21]. The convenience of the practical application of the concept 
of semi-correlation lies in the possibility of using SMILES to represent the molecular struc-
ture without requiring additional descriptors. The hidden analogy of semi-correlations 
with the usual linear regression helps the perception and interpretation of the resulting 
models. The necessary CORAL software is available on the internet (http://www.insil-
ico.eu/coral) (accessed on 25 April 2023). The models considered here are comparable in 
their predictive potential with models obtained through more complex calculations using 
random forest procedures, support vector machines, gradient methods, and others [2–6]. 

Of particular note are actually new principles for testing the predictive potential of 
models that can be used for any similar models aimed at developing categorical binary 
models of biological activity. Criticism of cross-validation has a long history. The essence 
of claims of Q2 is its weak relationship with the predictive ability of models [22]. The �na-
ïve� Q2 [22] is present as a characteristic of the model; however, this criterion has lost con-
fidence. The first attempt to achieve a plausible test of the predictive potential of the model 
was to use an external set of test substances unknown at the time of model development 
called the validation set [23]. However, if we assume that the model can be built on an 
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arbitrary distribution of data in the training and testing sets, then any model being con-
structed based on a random split should be considered as some random event described 
by statistical criteria (most significant ones, are related to the validation set) [24]. 

In view of what has been said, the system of self-consistent models looks very attrac-
tive from the point of view of justifying the use of an appropriate approach to constructing 
the models. A test of this scheme for the case of ordinary regression models showed the 
convenience of using the approach for linear regression models [14,25–29]. Since the sys-
tem of self-consistent models implies the consideration of groups of models with the allo-
cation of average values of statistical parameters, this approach provides more objective 
information about the statistical significance of the approach used. 

The index of ideality of correlations is an important component of the considered 
scheme for constructing self-consistent models. This criterion for the predictive potential 
of linear regression models has found a number of applications for the development of 
various endpoints related to organic substances [30–34], polymers [26], and nanomaterials 
[35–40]. The universality and attractiveness of IIC applications are probably due to the fact 
that this index contains information on correlation and average absolute error. It should 
be noted that the self-consistency methodology of models and the use of IIC are two inno-
vations in modeling that harmoniously complement each other. 

Thus, the predictive potential of corresponding models is similar for all random 
splits. However, the model applying the IIC, i.e., the Monte Carlo optimization using the 
target function calculated with Equation (5), is better. Table 2 compares models for the 
DILI reported in the literature. 

The advantage of our model is that it is simple: it does not require the calculation of 
molecular descriptors since only the SMILES are used. The results are optimized towards 
the prediction of new substances, remaining far from overfitting. Even if this may reduce 
the results of the training set, it is a good approach for predicting other substances. The 
detection of outliers for models based on semi-correlations is carried out using the values 
of statistical defects described in the literature [10]. 

5. Conclusions 
We have introduced some new models for DILI using the CORAL software. The sta-

tistical quality of models developed here confirms (i) the suitability of the index of ideality 
of correlation as the criterion for the predictive potential and (ii) the expediency of the 
system of self-consistent models as the rational method for the validation of QSAR models 
for DILI.  

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/toxics11050419/s1, Table S1 contains MCC values for valida-
tion set after removing compounds present in the training set; and Table S2 contains technical details 
on split 1. Figure S1 demonstrated the general scheme of checking up of model-1 with validation 
set-3. 
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