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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are an important class of pollutants in China. The
land use regression (LUR) model has been used to predict the selected PAH concentrations and screen
the key influencing factors. However, most previous studies have focused on particle-associated
PAHs, and research on gaseous PAHs was limited. This study measured representative PAHs in
both gaseous phases and particle-associated during the windy, non-heating and heating seasons
from 25 sampling sites in different areas of Taiyuan City. We established separate prediction models
of 15 PAHs. Acenaphthene (Ace), Fluorene (Flo), and benzo [g,h,i] perylene (BghiP) were selected
to analyze the relationship between PAH concentration and influencing factors. The stability and
accuracy of the LUR models were quantitatively evaluated using leave-one-out cross-validation. We
found that Ace and Flo models show good performance in the gaseous phase (Ace: adj. R2 = 0.14–0.82;
Flo: adj. R2 = 0.21–0.85), and the model performance of BghiP is better in the particle phase (adj.
R2 = 0.20–0.42). Additionally, better model performance was observed in the heating season (adj
R2 = 0.68–0.83) than in the non-heating (adj R2 = 0.23–0.76) and windy seasons (adj R2 = 0.37–0.59).
Those gaseous PAHs were highly affected by traffic emissions, elevation, and latitude, whereas BghiP
was affected by point sources. This study reveals the strong seasonal and phase dependence of
PAH concentrations. Building separate LUR models in different phases and seasons improves the
prediction accuracy of PAHs.

Keywords: polycyclic aromatic hydrocarbons; land use regression; seasonal; phase dependent

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) comprise two or more benzene rings bonded
in linear, cluster, or angular arrangements [1]. They are of public concern as typical
persistent toxicants in the air because of their persistence, toxicity, bioaccumulation, and
their significant carcinogenic, teratogenic, and mutagenic effects [2]. In addition, PAHs are
strongly associated with several adverse health effects [3], and long-term exposure to low
doses of PAHs is highly likely to cause skin, lung, bladder, and gastrointestinal cancers [4].
PAHs mainly originate from the incomplete combustion of fossil and biomass fuels [5].
PAHs are a major pollutant in China but have not been included in the list of pollutants in
routine monitoring due to high monitoring costs and instrumentation requirements. The
lack of monitoring data, especially on gaseous-phase PAHs, makes it difficult to assess the
health risks associated with PAH exposure.

Land-use regression (LUR) models are typically established with the assumption of
a linear relationship between predicted variables and predictors such as traffic, land use,
topography, and meteorology [6]. This model reveals the statistical correlation between
pollutants and prediction information and analyzes the factors affecting their changes.
LUR-based empirical models have been used in many studies owing to their complete
consideration, relatively convenient data acquisition, high spatial resolution, and wide
applicability [7,8]. Considerable studies have been conducted to establish LUR models for
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the routine monitoring of pollutants, including nitrogen dioxide, PM2.5, and ozone [6,9–12]
Modeling studies of PAHs have gradually emerged in recent years. A European study
modeled particle-bound PAHs based on 10 one-year samples collected from different
areas [13]. The models for each study area were developed based on the annual average
concentrations. Four variables explained approximately 67 and 71% of the variances in
benzo[a]pyrene (BaP) and chrysene, respectively. White et al. [14] developed nationwide
PAH models in the Czech Republic using data from 29 sites, wherein the PAH model was
an annual model of the total concentrations of 14 PAHs.

Additionally, several city-scale LUR models have also been studied [13,15,16]. Most
previous research has focused on particle-bound PAHs, and less attention has been paid to
gaseous-phase PAHs [13,17,18]. Second, only a few studies have reported seasonally depen-
dent models. Finally, comparisons among different PAHs have seldom been conducted. As
typical semi-volatile organic compounds, PAHs are present in both particulate and gaseous
phases in the atmosphere. The high concentration of gaseous PAHs in the atmosphere can
also pose certain health risks to the human body. Moreover, the gas-particle partitioning
behavior was seriously affected by seasonal factors, such as temperature, humidity, precipi-
tation, and particle concentration, as well as by PAHs’ physical and chemical properties,
such as lipophilicity. Therefore, multiple influencing factors, especially the seasonal and
phase dependence of PAH concentration, should be considered in a LUR model of PAHs.

In this study, the concentration of 15 priority-controlled PAHs in 25 sampling sites
was collected and measured in Taiyuan, a typical northern industrial city in China. Based
on land-use regression (LUR) analysis, separate prediction models for each phase and
season were established. Three PAHs, including acenaphthene (Ace), Fluorene (Flo), and
benzo [g,h,i] perylene (BghiP), were selected to study the influencing factors. The stability
and accuracy of the LUR models were quantitatively evaluated using leave-one-out cross-
validation. This research aims to validate the reliability and goodness of the season and
phase dependence LUR model on PAHs. Our study will provide information for the future
application of LUR models on the concentration of PAHs.

2. Materials and Methods
2.1. Study Area

Taiyuan (37◦ 27′–38◦25′ N, 111◦30′–113◦09′ E) is located in the interior of China and is
surrounded by mountains on three sides, with valley plains in the central and southern
parts. Taiyuan has a typical warm temperate continental monsoon climate, controlled
by the Siberian cold air mass in winter and influenced by the humid and hot air mass in
the southeast ocean during the summer. Spring is susceptible to the alternating effects
of these two air masses, which produce dusty weather. It significantly contributes to the
transport of atmospheric pollutants. Owing to the presence of resources and historical
reasons, the industrial structure of Taiyuan is dominated by traditional heavy pollution
industries, such as metallurgy, coal coke, machinery, chemical industry, and electric power,
and its energy structure is dominated by coal. A previous study found that Taiyuan emitted
approximately 332.1 tons of PAHs in 2010 [19]. The daily average concentration of BaP
in the atmosphere was 23.88 ng/m3, which is more than 9 times higher than the limit of
the Chinese standard (daily limit is 2.5 ng/m3, GB 3095-2012, phased-in 2012–2016) [20].
Additionally, the sources of PAH pollution have changed from coal soot pollution to motor
vehicle emissions and coal combustion. The study area and sampling locations are shown
in Figure 1.
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Figure 1. Location of the study area.

2.2. Sampling and Analytical Methods

Pollutant concentration data were collected during the windy season (70 days) from
April to June 2009, the non-heating season (153 days) from July to November 2009, and
the heating season (120 days) from December 2009 to March 2010. PAH samples bound
to atmospheric PM10 and in the gaseous phase were collected from three sampling sites
in each region using passive air samplers from 2009 to 2010 (Figure 1). A total of 25 sites
included 19 urban sites, 4 rural sites and 2 background sites. Two samples were collected at
the same time at each site. The blank samples were analyzed along with the other samples.
PAH samples in the gas and particulate phase were extracted, purified, and measured using
an Agilent 6890 N gas chromatograph coupled with an Agilent 5975 mass spectrometer
with an electron impact ion source. The mass spectrometer works in scan mode and selects
ion detection mode. The pretreatment method and quantification procedures have been
previously described [21–23]. The details of the sampling and instrument analysis were
provided in SI. Fifteen priority-controlled PAHs were identified, including acenaphthene
(Ace), acenaphthylene (Acy), fluorene (Flo), phenanthrene (Phe), anthracene (Ant), fluoran-
thene (Fla), pyrene (Pyr), benz(a)anthracene (BaA), chrysene (Chr), benzo(b)fluoranthene
(BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a, h) anthracene (DahA),
indeno(1,2,3-cd)pyrene (IcdP), and benzo(ghi) perylene (BghiP).

2.3. Variables for LUR

All the predictive variables are presented in Table 1. Data land cover types are divided
into 11 types: plough, forest, grassland, shrub, wetland, water, tundra, artificial surface,
bare land, glaciers, and permanent snow cover. There were six types of land use: plough,
forest, grassland, shrub, wetland, water, urban and rural and unutilized. The road length
variable was divided into motorways, primary roads, and non-motor vehicles. As for the
data on contaminated sites, we divided it into the number of contaminated sites within
5000 m and the distance to the nearest factory. Geographical factors were divided into
elevation, longitude, and latitude. The rainfall was divided into daytime rainfall and
nighttime rainfall. Other meteorological variables include pressure, relative humidity,
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temperature, and wind speed. Among them, forest, grassland, shrub, wetland, and tundra
are widely believed to be negatively correlated with pollutant concentration, while artificial
surface, urban and rural, motorways, primary roads, the number of contaminated sites
within 5000 m and the distance to the nearest factory considered to be positively correlated
with pollutants. The road is a sign of a traffic emission source, and the road length will
directly affect the traffic emission in the region. Taiyuan is an industrial city, and the
number of factories and distance also contributed.

Table 1. Potential variables with units, defined buffer sizes and priority-defined directions of the effect.

Type Potential Variables Group Code Buffer Size Unit Coefficient Sign
Setting

Land cover (the total area
in the buffer)

Plough lc_10 500–5000 m2 /
Forest lc_20 500–5000 m2 -
Grassland lc_30 500–5000 m2 -
Shrub lc_40 500–5000 m2 -
Wetland lc_50 500–5000 m2 -
Water lc_60 500–5000 m2 -
Tundra lc_70 500–5000 m2 -
Artificial surface lc_80 500–5000 m2 /
Bare land lc_90 500–5000 m2 /
Glaciers and permanent
snow cover lc_100 500–5000 m2 /

Land use (the total area in
the buffer)

Plough lu_1 500–5000 m2 /
Forest lu_2 500–5000 m2 -
Grassland lu_3 500–5000 m2 -
Water lu_4 500–5000 m2 -
Urban and rural lu_5 500–5000 m2 -
Unutilized lu_6 500–5000 m2 /

Water Water w 500–5000 m2 -

Road length (total length
in buffer)

Motorway r_51 500–5000 m +
Primary roads r_52 500–5000 m +
Non-motor vehicle r_53 500–5000 m

Point feature
Number of factories
within 5000 m point N/A N/A +

Distance to the nearest
factory dis N/A m +

Geographic
information

Elevation dem N/A m /
Longitude long N/A N/A /
Latitude lat N/A N/A /

Precipitation Daytime average rain_8 N/A mm /
Nighttime rain_20 N/A mm /

Pressure average pre N/A hPa /
Relative humidity Daytime average hum N/A % /
Temperature Daytime average tem N/A N/A /
Wind speed Daytime average wind N/A N/A /

Note: (1) “/” means the sign is uncertain.

Road data was derived from OpenStreetMap (2009–2010). According to the data
description, road variables were divided into highways, main roads, and non-motorized
lanes. Circular buffer zones were established to collect variables; the monitoring points
were set at the center of the circle, and circular buffer zones of 500–5000 m were estab-
lished. The total lengths of highways, main roads, and all roads in the buffer zones were
calculated using ESRI ArcGIS 10.6 (ESRI, Inc., Redlands, CA, USA). The predictive vari-
ables representing traffic conditions were obtained. Meteorological data were derived
from the daily dataset of surface climatic data from the China Meteorological Science
Data Sharing Service Network (http://data.cma.cn/, accessed on 12 March 2021). From

http://data.cma.cn/
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April 2009 to June 2010, the daily observation data of 36 basic meteorological stations in
the study area were obtained, including 5 items such as atmospheric pressure, precipita-
tion, temperature, wind speed and relative humidity. Averaged meteorological data in
three sampling seasons were obtained by calculating the arithmetic mean value of daily
meteorological data. Statistical data were imported into ArcGIS10.6, the grid data of meteo-
rological elements in the study area were obtained by the Kriging interpolation method,
and grid values at air quality monitoring points were extracted as meteorological factors.
Land-use data were obtained from the global land-use dataset of Tsinghua University in
2017 (http://data.ess.tsinghua.edu.cn/, accessed on 24 December 2020). Demographic
data from the World Pop project (https://www.worldpop.org/, accessed on 24 December
2020) data sets, including the data since 2000 on the World’s population. With a spatial
resolution of 100 m, the value of each grid represented one hectare within the scope of the
population. The time period selected in this study was 2010, and the population density
data of the study area were obtained by using the clipping of the vector boundary of the
Taiyuan administrative region. Finally, according to different buffer sizes, the population
number of the corresponding buffer was obtained. Data on industrial pollution sources
were obtained from the official website of the Shanxi Provincial Department of Ecology
and Environment (https://sthjt.shanxi.gov.cn/, accessed on 4 April 2021). Geographic
data, including elevation, latitude, and longitude, were provided by the Geospatial Data
Cloud site of the Computer Network Information Center, Chinese Academy of Sciences.
(http://www.gscloud.cn, accessed on 12 March 2021).

2.4. Land Use Regression Model Development

Based on ArcGIS 10.6, the average seasonal concentration of PAHs and 30 predictive
variables of 25 monitoring sites in the Taiyuan administrative region were selected to
establish the LUR model for three periods: the windy, non-heating, and heating seasons.
To reduce the possibility of collinearity between variables belonging to the same category
and ensure the interpretability of model parameters, we followed the method used in
the European Study of Cohorts for Air Pollution Effects (ESCAPE) study. First, all the
prediction variables were provided separately, and the variable with the highest R2 and
the slope in the specified direction was selected. Second, if the adjustment R2 of the model
was increased by at least 1% and the influence direction was the same as the prior decision,
variables were individually added to the model based on the highest adjustment R2. R
version 4.0.4 was used for the data statistics, selection and validation of predictors, and
estimation of pollutant concentrations. We examined the following aspects during the
fitting process: (1) significance tests for individual variables (p < 0.05); (2) collinearity test
for the variance inflation factor (VIF < 5); and (3) Cook’s distance (D value < 1) and model
residual space autocorrelation (Moran’s I).

2.5. Model Validation and Mapping

Owing to the limited number of monitoring sites, leave-one-out cross-validation was
used to evaluate the model’s accuracy. The 25 sites were randomly divided into two parts:
24 experimental sets and one validation set. The model estimates of the remaining samples
were calculated and compared to the actual PAH concentrations at the sample site. This
process was repeated 25 times to obtain the simulation accuracy, and root mean square
error (RMSE) of the LUR model for the study area. After developing the final LUR model,
the pollutant concentrations at non-monitoring sites were estimated using a regression
equation, which can better simulate the spatial variation of pollutants mechanistically than
spatial interpolation. To predict the spatial distribution of PAH concentrations in Taiyuan,
a regular grid of 500 × 500 m (1815 in total) was established in this study. The values of
each predictor variable in the regression equation were calculated for each grid point and
substituted into the regression equation to obtain the concentration value of PAHs at each
grid point. The spatial distribution of the mass concentration of PAHs in Taiyuan was
obtained by pan-Kriging interpolation based on the data of each centroid.

http://data.ess.tsinghua.edu.cn/
https://www.worldpop.org/
https://sthjt.shanxi.gov.cn/
http://www.gscloud.cn
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3. Results and Discussion
3.1. Descriptive Statistics

The monitoring data from 25 sampling sites showed that 15 PAHs were detected in
gaseous and particulate samples. 81LUR models of 15 PAHs in three sampling seasons
were established (Table S1). The PAHs with the least (Ace) and greatest molecular weight
(BghiP) were selected to analyze the influencing variables due to their difference in physio-
chemical properties. Flo was also selected because it contains the most variables and has
the best goodness of fit, which means higher model accuracy and reliability. The gaseous
Ace and Flo detection rates were 100% in all three seasons. In contrast, the detection
rate for the particulate phase was approximately 91%. Gaseous BghiP was not detected
in any of these samples. The concentrations of Ace, Flo, and BghiP obtained from the
mobile monitoring survey are shown in Figure 2. In the gaseous phase, the mean Ace
concentration was 16.42 ng/m3 (median: 16.96 ng/m3) in the windy season, which was
slightly higher than those in the heating (15.24 ng/m3; median: 15.49 ng/m3) and non-
heating seasons (15.65 ng/m3; median: 14.73 ng/m3). The mean Flo concentration showed
different seasonal trends, with mean concentrations of 20.22 ng/m3 (median: 20.12 ng/m3),
19.18 ng/m3 (median: 18.31 ng/m3), and 18.03 ng/m3 (median: 118.13 ng/m3) during
the heating, non-heating, and windy seasons, respectively. In the particulate phase, the
Ace concentration was relatively low. The Flo and BghiP concentrations showed similar
seasonal trends. Higher concentrations were observed during the heating season, and
lower concentrations were observed in the non-heating and windy seasons. PAHs may
have a higher concentration in the heating season than in the non-heating season due to
the combustion of coal and biomass. Kruskal-Wallis test was used to detect the difference
between light PAHs (Ace and Flo) in heating and non-heating seasons. As a result, no
significant difference was observed with both p > 0.05. the result is consistent with data re-
ported in Guangzhou [24]. A potential reason may be gaseous PAH concentrations increase
with temperature, suggesting evaporation of these light PAHs from the contaminated
ground surface under higher ambient temperatures [25]. Other studies have shown that
low molecular weight PAHs may be originated from non-seasonal sources, such as vehicle
exhaust, and industrial sources may also cause higher Ace and Flo concentrations in the
non-heating season than in heating seasons [26].
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Figure 2. Statistical comparison of PAHs concentration (ng/m3) between gas and particle phases in
the atmosphere. The squares represent means, and the solid lines represent median values. Boxes
enclose the interquartile range, and whiskers show the full range.

The upper and lower limits of the box plots represent the divergence of the sites,
and the inter-site concentration varied over time. Overall, the differences in gas-phase
concentrations were smaller than in particle-phase concentrations, indicating a larger
spatial variation.
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3.2. Models and Validation

In the 15 models of the three target PAHs, the adjusted R2 varied from 0.14 to 0.85.
The models and their parameters are listed in Table 2. All six Ace models of the gaseous
phase in the heating and non-heating seasons had better fitting results. Six variables were
entered into the gas phase model in the non-heating season, including road variables,
latitude, and elevation. The high-speed variables and artificial surfaces showed a positive
correlation, and latitude, elevation, non-motorized road length, and water reservoirs
showed a negative correlation with the Ace concentration. The main variables that entered
the gas model during the heating season were grass, altitude, and the length of the non-
motorized driveway. Notably, in the corrected model in the windy season, the only variable
that entered the model was the artificial surface within the 2000 m range (lc2000_80). This
variable showed a positive correlation with the Ace concentration. Compared to that of the
gaseous phase, the simulation of the particulate phase was poor. The variable that entered
the particulate phase model during the non-heating season was the distance to the pollution
source. In the windy season, point sources had a positive influence on Ace emissions,
whereas, in the heating season, latitude had a negative influence on Ace emissions.

The corrected R2 of gaseous Flo varied from 0.70 to 0.88. The R2 of gaseous Flo was
considerably better than the particulate phase models. This is similar to the simulation
of Ace; however, Flo has a higher molecular weight than Ace. In the windy season, three
variables entered the gaseous phase model of Flo, including the length of the non-motorized
road within 2000 m, latitude, and forest within 5000 m. All three variables were negatively
correlated with the Flo concentration, and only the number of pollution point sources
within 5000 m entered the particulate phase mode. In the non-heating season, six variables
were entered into the gas-phase model, including road variables, altitude, and grass. The
number of point sources was positively correlated with the Flo concentration.

Meanwhile, the distance to the pollution source had a positive effect on the particulate
Flo concentration. During the heating season, the latitude, elevation, and length of non-
motorized vehicles within 500 m and artificial surfaces within 1500 m were entered into the
gas-phase model. However, only the latitude was entered into the particle-phase model
and showed a negative correlation with the Flo concentration.

Owing to the low detection rate of gaseous BghiP, only particle-phase models were
developed. Residential land in the 2500 m range appeared to be the most important
variable influencing the concentration of BghiP. This variable existed in all three models
of particulate BghiP and was the only factor influencing BghiP concentrations in the
heating and non-heating seasons. BghiP has long been considered a typical marker for
diesel vehicles [27,28]. With increasing residential land use, traffic changes associated with
anthropogenic activities are significantly correlated with residential land use. They could,
therefore, also explain the use of only one variable in the model. Moreover, non-motorized
roadways in the 500 m range were another factor influencing the model in the windy season
but showed a negative effect on BghiP emissions.

The average fit accuracy R2 value of the relevant LUR model studies published world-
wide until 2018 was approximately 0.6 [29]. The significance levels of the regression
equation F test variance analysis were less than 0.01, indicating that the equation was
highly significant. The linear relationship between the predictive variables that entered the
equation and pollutant concentration was very close. The adjusted R2 of the gas-phase Ace
model ranged from 0.76 to 0.87. Ace was widely available in the gas phase form; therefore,
the fit of the particle phase model was low, and the explanatory power of the model was
relatively weak. The low R2 value of the windy season model can be attributed to the wind
and sand caused by air mass interactions. The adjusted R2 value of the Flo gas-phase model
was 0.66–0.85, and that of the particle-phase model was 0.21–0.39, which was higher than
that of Ace. The adjusted R2 of the BghiP model was in the range of 0.20–0.42. The poor
explanatory power of the particle-phase model may be due to the complex factors affecting
PAHs in the particle phase, especially in winter.
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Table 2. LUR models for Ace, Flo, and BghiP in Taiyuan.

PAH Season Phase LUR Model R2 adj. R2 RMSE

Ace

Windy season Gaseous phase 6.71 × 10−7 lc2000_80 + 13.11 0.180 0.140 5.124
Particle phase 2.49 point−0.22 0.374 0.347 1.822

Non-heating season Gaseous phase 5.63 × 10−5 r3000_51-10.32 lat − 0.01 dem − 10−4 r3000_53 + 8.63 × 10−7 lc1500_80 − 3.60
× 10−6 lc3000_60 + 420.82

0.863 0.818 1.287

Particle phase 0.518−1.73 × 10−5dis 0.346 0.219 0.332

Heating season Gaseous phase −1.44 × 10−6 lu2000_3 − 8.22 × 10−3 dem − 1.4 × 10−4 r2000_53 + 1.84 dis 0.800 0.760 1.803
Particle phase −1.29 lat + 49.4 0.262 0.230 15.215

Flo

Windy season Gaseous phase −3.36 × 10−7 lc5000_20 − 1.55 lat − 1.71 × 10−4 r2000_53 + 609.65 0.7 0.657 2.101
Particle phase 2.51 point−0.61 0.363 0.336 1.883

Nonheating season Gaseous phase −8.82 × 10−3 dem − 4.12 × 10−7 lu3500_3 − 1.52 × 10−4 r2500_53 + 1.92 point + 8.5 ×
10−5 r1500_52 − 2.23 × 10−6 lc3000_60 + 31.81

0.884 0.846 1.210

Particle phase 2.71–8.09 × 10−5 dis 0.245 0.212 1.580

Heating season Gaseous phase −6.8 × 10−3 dem − 13.66 lat + 6.86 × 10−6 lc1500_80 − 8.06 × 10−4 r500_53 + 5.42 × 102 0.835 0.802 1.638
Particle phase −8.21 × lat + 3.13 × 102 0.412 0.387 1.468

BghiP

Windy season Gaseous phase
Particle phase 9.02 × 10−7 lu2500_5 − 1.57 × 10−3 r500_53 + 2.12 0.471 0.423 6.091

Nonheating season Gaseous phase
Particle phase 4.42 lu2500_5 + 4.42 0.295 0.265 9.256

Heating season Gaseous phase
Particle phase 1.72 × 10−6 lu2500_5 + 8.85 0.235 0.202 21.385
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The RMSE of the final results obtained by the leave-one-out cross-validation method is
also presented in Table 2. There is no specific criterion to define the RMSE value range, and
the smaller the value, the higher the model’s accuracy. In similar tests of previous studies,
the value range was stipulated to be within 15 for better accuracy [30,31]. The verification
showed that most of the resulting models had good accuracy.

3.3. Model Performance in Different Phases and Seasons

Figures 3 and 4 represent the model performance in different phases. As a low-
molecular-weight PAH, Ace mainly existed in the atmosphere in the gas phase, and the
particle phase model was poorly fitted owing to the limited detection rate. Therefore,
the models of particle-bounded Ace were not discussed. In contrast, Bghip was mainly
associated with particles. Obvious differences in performance were observed in the different
phases of Flo.

Toxics 2023, 11, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 3. Results of leave-one-out cross-validation for gaseous PAHs LUR models: predicting 
concentrations (x-axis) against measured concentrations (y-axis) for LUR models. 

 
Figure 4. Results of leave-one-out cross-validation for particulate PAHs LUR models: predicting 
concentrations (x-axis) against measured concentrations (y-axis) for LUR models. 

Generally, the LUR models of Flo showed better performance under gaseous 
conditions, wherein the correlation coefficients (r) varied from 0.37 to 0.80. In contrast, 
relatively lower accuracy was observed in the particulate phase of Flo, wherein the r 
values varied from 0.23 to 0.68. Notably, in the equations, more variables were selected 
for the gaseous phase models than for the particulate phase models. In the gas-phase Flo 
model, the non-motor lane entered each model, followed by the latitude and elevation, 

Figure 3. Results of leave-one-out cross-validation for gaseous PAHs LUR models: predicting
concentrations (x-axis) against measured concentrations (y-axis) for LUR models.

Generally, the LUR models of Flo showed better performance under gaseous condi-
tions, wherein the correlation coefficients (r) varied from 0.37 to 0.80. In contrast, relatively
lower accuracy was observed in the particulate phase of Flo, wherein the r values varied
from 0.23 to 0.68. Notably, in the equations, more variables were selected for the gaseous
phase models than for the particulate phase models. In the gas-phase Flo model, the
non-motor lane entered each model, followed by the latitude and elevation, which entered
the three models. We proved that traffic variables, latitude, and elevation greatly influenced
the Flo concentrations. The forest variable only existed in the windy season model, which
might be attributed to seasonality [32]. For the particle phase models, Flo concentration
in the windy season was highly related to the polluted sites. However, in the non-heating
season, the only predicted variable for the heating season was latitude. This result was
probably due to the unique terrain of Taiyuan. The terrain of Taiyuan is generally low in
the south and high in the north, and the latitude has the same interpretation significance as
altitude to a certain extent. It is blocked by the surrounding mountains, and the pollutant
concentration is mainly affected by vertical diffusion. A comparison of the observed and
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simulated concentrations revealed that the point concentration in Qingxu was the highest,
which has also been demonstrated in previous studies [19].
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According to the seasonal variation, the windy season showed a large deviation,
which may have led to an obvious change in the air mass. Therefore, the selected variables
could not satisfactorily identify the pollution source. The other two seasons showed a
good fit, wherein the heating season showed the best fit. The fit of the particle phase was
significantly better during the heating season than during the other two seasons. The
highest Flo concentration in the heating season gas-phase model was 26.76 ng/m3. Qingxu
is located in the southernmost part of the Taiyuan administrative region, with flat terrain
and the lowest altitude among the administrative regions, thus resulting in a trend of
pollutant transport from north to south. It caused serious pollution controlled by local
circulation, explaining the variables selected in the model. The three pollutant contributing
sources in the heating and non-heating seasons were point sources, artificial surfaces, and
major lane lengths, which confirmed that Flo originated from anthropogenic heating and
traffic emissions.

The Ace model showed significantly different seasonal variations. It is most likely due
to the low precipitation in Shanxi in spring and the windy weather caused by the combined
effect of cold air and Mongolian cyclones, resulting in higher Ace concentrations in the
air during the windy season than during the heating season. An artificial surface within
2000 m was selected to provide a positive contribution to the windy season gas-phase
model. However, in the full model of the windy season, the relative humidity and the
water area within 3500 m were introduced, and the sandstorm was negatively correlated
with the relative humidity [33]. Relative humidity could reduce PAH concentrations by
accumulating atmospheric particulate matter [34]. The octanol-water partition coefficient
(Kow) is an important indicator determining the gas-particle partition. Generally, the Kow
of PAHs increases with the number of rings. This implies that high-molecular-weight
PAHs are more inclined to be adsorbed on the particles; thus, their proportion in the gas
phase would gradually decrease. Comparing the gas-phase models for the heating and
non-heating seasons revealed two important positive contributions in the gas-phase model
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for the non-heating period: the length of high-speed roads within 3000 m and the artificial
surface within 1500 m. The length of the highway represents the traffic variable [13]. In
contrast, the area of the artificial surface was used to represent the degree of urbanization,
including sidewalks, roads, buildings, factories, and airports. These structures are made
of impenetrable materials, such as roofs, asphalt, brick, and stone [35]. The number of
key monitoring enterprises in the gas-phase model for the heating period was introduced
into the model, providing a positive contribution. However, the temperature decreased in
winter, and some heating enterprises produced more exhaust gases than in other seasons,
increasing pollutant concentrations. It can be seen that good simulation results were
achieved for gaseous Ace and Flo in the heating season and particulate BghiP in three
seasons. The performance of the LUR model and the results of validation confirm the
reliability and accuracy of the phase and season dependence strategy.

3.4. Comparison among PAHs

In addition to the prediction of phase and seasonal variation, the prediction of LUR
models can also be affected by the physiochemical properties of different PAHs. Similarities
can be found between Ace and Flo by comparison between gaseous-phase LUR models.
The particle and phase models were associated with variables such as contaminated sites,
highways, elevation, and water body variables in the meteorological model of the non-
heating period. Among them, highway and major lanes displayed positive contributions,
whereas non-motorized lanes, elevation, grass, and water bodies contributed to some
extent to the degradation of PAH concentrations. All n gas-phase models in the heating
season were related to non-motorized lanes and elevation. The elevation factor showed
a strong negative correlation with the gas-phase PAH concentrations, which was absent
in the meteorological model during the windy season, indicating that the elevation of
the monitoring station had a great influence as a point source of pollution, especially in
summer when it had the greatest influence on the regional PAH concentration. Highways
and main roads showed positive correlations, representing tailpipe emissions from motor
vehicle operation and dust from traffic emissions, which was similar to a study conducted
in the United States [13]. These variables correspond to the industrial uses of Ace and Flo.
Ace is a component of crude oil and a by-product of coking production, and Flo is mainly
derived from automobile exhaust emissions, straw burning, and industrial production [36].

The comparison among the LUR models of Ace, Flo, and BghiP revealed that the
goodness of the particulate phase models increased, whereas that of the gaseous models
decreased with an increase in the molecular weight of PAHs. To a large extent, this can be
attributed to the gas-particle partition of PAHs. High-molecular-weight PAHs with high
octanol-water partition coefficients prefer to be bound in particles. In this case, predicting
the gaseous phase content through the model is not valuable. In contrast, it is the same for
gaseous prediction models of PAHs with low Kow values. In addition, contaminated sites
were included in the particle-phase model of Flo for all seasons, whereas all three seasonal
models of BghiP included sites generating BghiP by anthropogenic activities, and only the
BghiP model for the windy season included non-motorized roads within 500 m.

To some extent, this explains the emission sources of these two substances. Flo has a
closer relationship with burning and emissions from contaminated sites, whereas BghiP
was related to mobile emissions from anthropogenic activities. With increasing residential
sites, the changes in traffic from anthropogenic activities were significantly correlated with
residential sites and could be explained as only one variable in the model. From the location
distribution of the sampling points, we observed that the denser the sampling points, such
as the urbanized central area, the more accurate the predicted value.

3.5. Mapping of PAHs in Taiyuan and Key Influencing Factors

The distribution of PAHs is shown in Figure 5. The PAH concentration showed
significant spatial heterogeneity. The high-concentration enrichment areas of Ace, Flo,
and BghiP were concentrated in the urban area and the surrounding suburbs, especially



Toxics 2023, 11, 316 12 of 15

in the south, where the concentration was even higher than that in the urban area. The
reasons for this phenomenon may be related to the topography, meteorological factors,
regional transport of pollutants, and the different vegetation cover and land-use types in
the substrate. The operation of motor vehicles, construction of bare ground, and dust could
increase the PAH concentrations [37].
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LUR models were used to evaluate the data for different seasons. The elevation
parameter is a strong determinant of predicted pollutant concentrations [18]. The results
indicated the necessity of calculating the elevation of the predicted points in most of the gas-
phase models because in Taiyuan, the terrain had a distinct characteristic variation, and the
pollutant concentrations were higher at low elevations and low latitudes. In addition, PAHs
have short atmospheric lifetimes due to the deposition and photochemical degradation of
particulate matter [38]. Therefore, they are strongly influenced by the emission altitude,
exacerbated by topographic factors in the study area [39]. The R2 value indicates that the
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LUR prediction was better in the heating season than in the non-heating season, probably
because of the relative stability of emission sources during the heating season.

Meteorological conditions were also considered in previous studies. Both temperature
inversion and wind speed magnitude are significant factors influencing the spatial con-
centration distribution of air pollutants, but these processes show short-term variations.
Our study was modeled with seasonally averaged concentrations; therefore, no air-phase
factors entered our model, which is perhaps one of the reasons for the poor fit of our model.

The results of the LUR model in the study area showed that the predicted values were
closer to the measured values in places with a dense number of monitoring points, such
as the urban center of Taiyuan, whereas fewer points were observed in mountainous and
rural areas. Therefore, traffic variables were selected as important influencing factors in
our model. In addition, due to the lack of traffic flow data, our model used road length as a
variable, consistent with previous studies [40,41].

3.6. Limitations

PAH data in this research were collected during 2009–2010. PAH concentration may
be different from the previous PAH level in Taiyuan. However, we believe our innovative
study will provide the necessary information for further research of LUR application on
PAHs. The aim of this paper is not limited to regression model development for predicting
atmospheric PAH concentrations ten years ago but also focuses on the validation of the
availability and goodness of the LUR model on PAHs. Modeling the centent of PAHs
can be difficult due to the influence of the environment on PAH properties. Therefore,
it is necessary to make more detailed and specific models. Excluding the influence of
physical and chemical factors, LUR for individual PAH is more accurate in results and more
reasonable in the method. This research is the first attempt at the application of season
and phase-dependent strategies for PAHs. Based on the data obtained, We will carry out
a new data collection plan, and our future research will focus on the PAH concentration
prediction Taiyuan.

4. Conclusions

Taiyuan, an important industrial city in China, has been widely affected by PAH pol-
lution. In this study, we established seasonal- and phase-dependent LUR models. Gaseous
PAHs Ace and Flo were mainly affected by traffic, altitude, and latitude. BghiP, a typical
member of PM-associated PAHs, was mainly affected by human activities. Considering
seasonal differences, the goodness of fit was better in the heating season than in the non-
heating and windy seasons. Our study revealed the seasonal and phase dependence of the
studied PAH concentrations. According to the LUR models of three PAHs developed in
this study, it is necessary to continue establishing other separate LUR models in different
phases and seasons to improve the prediction efficiency and obtain optimal results.
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