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Abstract: Epidemiological studies have linked particulate matter (PM2.5) to gestational diabetes
mellitus (GDM). However, the causality of this association has not been established; Mendelian
randomization was carried out using summary data from genome-wide association studies (GWAS).
For the analysis of the causal relationship between PM2.5 and GDM, the inverse variance weighted
(IVW) method was used. The exposure data came from a GWAS dataset of IEU analysis of the
United Kingdom Biobank phenotypes consisting of 423,796 European participants. The FinnGen
consortium provided the GDM data, which included 6033 cases and 123,000 controls. We also
performed multivariate MR (MVMR), adjusting for body mass index (BMI) and smoking. As a result,
we found that each standard deviation increase in PM2.5 is associated with a 73.6% increase in the
risk of GDM (OR: 1.736; 95%CI: 1.226–2.457). Multivariable MR analysis showed that the effect of
PM2.5 on GDM remained after accounting for BMI and smoking. Our results demonstrate a causal
relationship between PM2.5 and GDM.

Keywords: air pollution; gestational diabetes mellitus; MR; causality; risk factor

1. Introduction

Gestational diabetes mellitus (GDM) is defined by glucose intolerance during preg-
nancy, resulting in different levels of hyperglycemia. Over the last few decades, the
occurrence of GDM has seen a stable increase [1–3]. As per the International Diabetes
Federation (IDF), the global pooled prevalence of GDM in pregnant women in 2021 was
14.0% [4]. GDM has developed into a significant public health problem. There are well-
known risk factors for GDM, including obesity, a high maternal age, and a family history of
diabetes [5,6]. These, however, might not fully explain the seasonal variations in the preva-
lence of GDM [7]. Therefore, we targeted our attention on lifestyle or environment-related
risk factors, such as PM2.5.

Particulate matter 2.5 (PM2.5) is a significant air contaminant that seriously threatens
human health [8]. PM2.5 has been linked to various health issues, including respiratory,
cardiovascular, and cerebrovascular disease [9]. Currently, epidemiological study regarding
PM2.5 and GDM is controversial [10]. Several studies in the past have shown a link
between PM2.5 and GDM [11,12]. However, another meta-analysis of cohort studies has
revealed an absence of association [13]. This may be related to bias due to the small sample
size, inadequate follow-up, and many unconfounded factors [14]. Therefore, the causal
relationship between PM2.5 and GDM is unclear, and we require more robust evidence to
support it.

The results of previous research have shown that PM2.5 exposure leads to adverse
health effects influenced by changes in gene expression [15]. Elderly participants with
PARP4 G-C-G and ERCC1 T-C haplotypes were susceptible to elevated fasting glucose
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levels under the influence of PM2.5 exposure [16]. The incidence of lower respiratory
tract infections was significantly increased in infants with the STP1 (rs1695) AG or GG
or Nrf2 (rs6726395) GG genotypes under prenatal indoor PM2.5 exposure [17]. However,
no studies have analyzed the effect of genetic polymorphisms and PM2.5 on gestational
diabetes. Mendelian randomization (MR) uses genetic variants closely related to exposure
as internal instrumental variables (IVs) to explore causal relationships between exposure
and outcome [18]. Because gametes follow Mendel’s laws of inheritance in their formation,
the random allocation of the alleles at conception eliminates confounding bias and adheres
to the temporality of causality [19,20]. Consequently, a two-sample MR analysis was
performed to determine the causal link between PM2.5 and GDM.

2. Materials and Methods
2.1. Study Design

We conducted a two-sample MR analysis to identify the causal associations between
PM2.5 and GDM using publicly available summary datasets from two genome-wide
association studies (GWAS) [21]. Previous observational studies have shown that BMI and
smoking are important risk factors for the development of GDM. Therefore, we further
performed multivariable Mendelian randomization (MVMR) analyses to estimate the direct
causal effect of PM2.5 on the risk of GDM.

2.2. Data Sources

For the PM2.5 exposure dataset, the summary genetic data on PM2.5 were obtained
from the UK Biobank GWAS, which included 423,796 European participants. The study
was based on the ESCAPE project (European Study of Cohorts for Air Pollution Effects),
which used the LUR model to estimate PM2.5 pollution concentrations at the home ad-
dresses of study participants [22]. The mean (±standard deviation) PM2.5 level was 9.99
(±1.06) µg/m3 in the GWAS. The dataset was publicly available from the MRC IEU OpenG-
WAS data and MR-Base with the GWAS-ID ukb-b-10817. It was the output of the GWAS
pipeline using the Phesant-derived variables from the UK Biobank.

Data on genetic variants associated with GDM were obtained from the FinnGen con-
sortium, and an ongoing Finnish national study started in 2017. The dataset of GDM with
the GWAS-ID of finn-b-O15_PREG_DM was downloaded from FinnGen, which included
6,033 GDM cases in 123,000 women, and the dataset consisted entirely of Europeans [23].

In addition, we obtained summary data on BMI and smoking from the GWAS. The
summary data for BMI came from the GIANT consortium. These data were obtained
from a meta-analysis of up to 339,224 European individuals from 125 studies [24]. As
for the smoking GWAS, there were 88,601 cases and 201,126 controls from the Neale
Lab consortium. Both GWAS data were from populations of European origin, and their
summary information is presented in Supplementary Table S1.

2.3. Genetic Variants

In the MR analysis, the single nucleotide polymorphisms (SNPs) were screened from
the exposure dataset as the IVs [25]. It is necessary that IVs meet three assumptions: (1) IVs
must be related to PM2.5; (2) IVs should be independent of confounding factors; and (3)
IVs are not directly associated with GDM [26].

To fulfill the three assumptions of the MR analysis, we applied the following method
to select the IVs. It should be noted that we chose p < 5 × 10−8 as the general genome-wide
significance threshold. However, if p < 5 × 10−8 is used as a screening criterion, only
eight SNPs in this database meet it. It has been shown that after the linear regression of
each genetic variant on risk factors at p < 1 × 10−5 as a screening criterion, the results
showed the low possibility of weak instrumental variable bias in MR analysis. Therefore,
we chose SNPs as IVs associated at this significance level since there were not enough SNPs
associated at the genome-wide significant threshold of 5 × 10−8 [27,28]. Secondly, we used
the PhenoScanner tool to ensure whether the IVs were significantly correlated with the
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risk factors for GDM [29,30]. In addition, we used the ”clump_data” function on MR-Base
to select independent SNPs (linkage disequilibrium (LD) R2 = 0.001, >10,000 kb) [31]. If
no SNP associated with PM2.5 was found in the GDM database, then proxy SNPs were
searched for with a minimum LD R2 = 0.8 [32]. Palindrome SNPs were retained based on
the criterion that the MAF < 0.3 [33].

We obtained relevant data from two datasets, including SNP sites, the effect allele
(EA), the non-effect allele (non-EA), the minor allele frequency (MAF), the beta coefficient
(BETA), the standard error (SE), and the p-value.

2.4. Statistical Analysis

For the evaluation of the causal link between PM2.5 and GDM, the inverse variance
weighted (IVW) method was used. We supplemented our verification using MR–Egger
regression, weighted median, weighted mode, and simple mode to enhance accuracy
and stability [34]. We used MR–Egger regression to test whether pleiotropy in IVs was
present and whether it impacted the results. It was judged that there was no effect of
pleiotropy in IVs if the MR–Egger intercept was close to 0 or p > 0.05 [35]. For the IVW
method, Cochran’s Q test was applied to examine heterogeneity between IVs [36]. The
result of p > 0.05 indicated that there was no heterogeneity. To remove random errors from
screening IVs, we used a leave-one-out sensitivity test, eliminating each SNP individually,
to determine whether our results were influenced by a particular SNP [37]. Finally, the F
statistic was calculated to determine whether the screened IVs had a weak instrumental
variable bias. If F was >10, there was no weak instrumental bias [38].

All analyses were conducted with the TwoSampleMR package and R Foundation
version 4.2.0. The statistical significance was set at p < 0.05.

3. Results

We used p < 1 × 10−5 as a screening criterion for SNPs with large P values in mul-
tiple chain imbalances (r2 > 0.001) and obtained 99 IVs with LD (r2 < 0.001) based on
the PM2.5 dataset. In this case, we removed one SNP (rs7093269), a palindromic SNP
with an intermediate allele frequency. The PhenoScanner tool was used to verify that,
in the instrumental variables we identified, 13 SNPs were associated with the possible
mechanistic pathways (including BMI, smoking, a family history of diabetes, etc.) of GDM
(Supplementary Table S2). In the end, 85 SNPs were identified for further MR analysis
(Supplementary Table S3).

The IVW method was used as the primary analysis to evaluate the association be-
tween PM2.5 and GDM risk. The results of Cochran’s Q test indicated no heterogeneity
(p = 0.859). The IVW method showed an association between PM2.5 and GDM risk (odds
ratio (OR) = 1.736, 95% confidence interval (95%CI) = (1.226–2.457), p = 0.002) (Figure 1).

Such associations were consistent, although non-significant, in MR–Egger, weighted
median, weighted model, and simple model (Table 1 and Figure 2). MR–Egger demon-
strated no evidence of horizontal pleiotropy (p = 0.395). The funnel plot (Figure 3) was
symmetrical, indicating that our analysis did not influence pleiotropy. A leave-one-out
analysis was used to analyze the IVW results (Figure 4). We deleted each SNP individually
and obtained p < 0.05, which was consistent with the results of the IVW method in the
analysis of the causal effects, indicating that no non-specific SNPs could have influenced the
causal estimation results. Finally, the F statistic showed a range of 19.56–69.92 for each SNP,
excluding the weak instrumental variable bias. Using the mRnd method, we calculated
the phenotypic variance explained to be 5.85%. The OR was 1.736 when the estimated
statistical power was 100% with the current sample size. We used IVW as the primary
criterion for causality because of the absence of horizontal pleiotropy in the analysis. We
considered PM2.5 as a risk factor for the incidence of GDM.

Multivariate results showed that the association between PM2.5 and GDM risk re-
mained statistically significant after adjusting for BMI, smokng, and all other factors
(Supplementary Table S4).
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Table 1. Two-sample Mendelian randomization for PM2.5 on GDM risk.

Method N SNPs Beta Coefficient SE OR (95%CI) p

IVW 85 0.551 0.177 1.736 (1.226–2.457) 0.002
MR–Egger 85 0.350 0.295 1.418 (0.795–2.530) 0.240

Weighted median 85 0.339 0.298 1.404 (0.782–2.519 0.256
Weighted mode 85 0.351 0.292 1.421 (0.802–2.519) 0.232

Simple mode 85 0.598 0.594 1.818 (0.567–5.829) 0.317

The number of single nucleotide polymorphisms, SNPs; SE, standard error; OR, odds ratio; CI, confidence interval.

4. Discussion

We performed an MR analysis to test the causality of PM2.5 on GDM. Our results
showed that the risk of GDM increased by 73.6% (OR: 1.736; 95%CI: 1.226–2.457) for each
standard deviation increase in PM2.5 by using a cutoff value of p < 1 × 10−5 to select
the instrumental variable. In addition, the results of the MR–Egger, weighted median,
weighted model, and simple model tests were not significant. This result may be caused
by residual pleiotropy. Further MVMR analysis showed that the effect of PM2.5 on GDM
remained after taking into account risk factors such as smoking, BMI, and a family history
of diabetes.

GDM and PM2.5 have been linked in previous observational studies, but their results
have been controversial [39,40]. A Florida study found an increased risk of GDM among
pregnant women exposed to PM2.5 (OR: 1.20, 95%CI, 1.13–12.26) [12]. Similarly, a Rhode
Island study found higher PM2.5 levels were associated with higher chances of developing
GDM during the second trimester (OR: 1.08, 95%CI: 1.00–1.15) [41]. In a study from New
York City, the odds of GDM were higher among those exposed to PM2.5 in the second
trimester (OR: 1.06, 95%CI: 1.02–1.10) [42]. However, one cohort study in Massachusetts
found no association between PM2.5 and GDM [43]. Even in a case–control study in
California, PM2.5 has shown a negative association with GDM [10]. These controversies
may be related to small patient samples, confounding factors, and different study designs.

Currently, it is not clear through which biological mechanisms PM2.5 increases the
risk of GDM. Because of its small size, PM2.5 can reach various organs through the blood
circulation, including the pancreas, leading to adverse health effects. The study found that
PM2.5 exposure increased reactive oxygen species (ROS) levels [44], and that the accumula-
tion of ROS increases oxidative stress, leading to β-cell dysfunction [45]. PM2.5 exposure
also induces insulin resistance through inflammation, disrupting the insulin receptor sig-
naling pathway [11]. In addition, an animal study showed that pancreatic glutathione
peroxidase (GSH-Px) was significantly decreased, methane dicarboxylic aldehyde (MDA)
was increased, and inflammation was observed around the pancreas; additionally, pan-
creatic GLUT2 expression was decreased in rats after PM2.5 exposure [46]. This provides
evidence that PM2.5 exposure leads to pancreatic damage and glycemic consequences
through oxidative responses and inflammation.

Our study has the following crucial strengths: to our knowledge, this is the first time
PM2.5 and GDM have been analyzed causally using two-sample MR. Previous epidemio-
logic studies have suggested a controversial relationship between PM2.5 and GDM, which
may be influenced by confounding factors and reverse causality. Based on MR analysis,
Mendel’s law of independent assignment chose genetic variation as the exposure factor,
making the findings more reliable. Secondly, the genes appear before the disease is present,
which excludes the effect of reverse causality. In addition, MR analysis was conducted
in conjunction with data from published GWAS pooled studies, and the large sample
size could improve the efficacy of the test. Our results provide a new theoretical and
experimental basis for preventing population health risks from air pollutants.

There were several limitations to our study. To begin with, the GWAS datasets included
in the MR analysis were from Europe, and further studies are needed to be conducted on
populations of other countries to improve the generalizability of the results. Additionally,
we used the PhenoScanner tool to meet the assumptions of the MR analysis: IVs are not
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directly associated with GDM. However, certain unpublished SNPs may be linked to GDM
and thus affect our findings. Our results were obtained based on a significance level
of 1 × 10−5. Although there were not enough SNPs associated with the genome-wide
significance threshold of 5 × 10−8, we also performed a two-sample MR analysis. The trend
of increased PM2.5 concentrations with an elevated risk of GDM was consistent with our
results, although it was not statistically significant. We will seek further evidence through
more extensive studies.

5. Conclusions

In conclusion, our results imply a possible causal relationship between PM2.5 and
GDM. Additional experimental and mechanistic studies are required to verify the validity
of the findings presented in this study.
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//www.mdpi.com/article/10.3390/toxics11020171/s1, Table S1: A brief description of the genome-
wide association study data used in this study; Table S2: Removed SNPs were associated with the
possible mechanistic pathways of GDM; Table S3: Characteristics of SNPs used in the MR analysis
in the summary statistics reported in the GWAS on PM2.5 and GDM; Table S4: Causal estimates of
PM2.5 on GDM in multivariable MR; STROBE-MR checklist: STROBE-MR checklist of Mendelian
randomization studies. References [47,48] are cited in the supplementary materials.
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