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Abstract: Diquat is a fast, potent, and widely used bipyridine herbicide in agriculture and it induces
oxidative stress in several animal models. However, its genotoxic effects on the male reproductive
system remain unclear. Melatonin is an effective free-radical scavenger, which has antioxidant and
anti-apoptotic properties and can protect the testes against oxidative damage. This study aimed
to investigate the therapeutic effects of melatonin on diquat-induced testicular injury in mice. The
results showed melatonin treatment alleviated diquat-induced testicular injury, including inhibited
spermatogenesis, increased sperm malformations, declined testosterone level and decreased fertility.
Specifically, melatonin therapy countered diquat-induced oxidative stress by increasing production
of the antioxidant enzymes GPX1 and SOD1. Melatonin treatment also attenuated diquat-induced
spermatogonia apoptosis in vivo and in vitro by modulating the expression of apoptosis-related
proteins, including P53, Cleaved-Caspase3, and Bax/Bcl2. Moreover, melatonin restored the blood-
testicular barrier by promoting the expression of Sertoli cell junction proteins and maintaining the
ordered distribution of ZO-1. These findings indicate that melatonin protects the testes against diquat-
induced damage by reducing oxidative stress, inhibiting apoptosis, and maintaining the integrity of
the blood–testis barrier in mice. This study provides a theoretical basis for further research to protect
male reproductive health from agricultural pesticides.
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1. Introduction

Diquat (1,1′-ethylene-2,2′-dipyridylium), a non-selective bipyridine herbicide, has
been widely used in agricultural production as a paraquat substitute. However, diquat
residues in food or accidental ingestion of diquat are extremely harmful to humans. In
addition, clinical studies have shown that approximately one-third of diquat-related acute
illnesses are work-related [1] and that diquat is toxic to various organs, including the liver,
heart, and nervous system [2]. In particular, diquat is toxic to the kidneys of both humans
and animals, causing acute kidney injury [3–5] and renal failure [6]. Research involving
adult male zebra finch (Taeniopygia guttata) showed that diquat treatment can reduce
sperm velocity and shorten the sperm midpiece [7]. In mammals, chronic exposure to
diquat decreases ovarian weight and induces oxidative stress, granulosa cell apoptosis, and
poor developmental potency of oocytes [8]. However, data on male reproductive toxicity
of diquat in mammals are limited.
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Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine synthesized primarily by
the pineal gland, modulates multiple physiological processes in mammals [9–11]. Notably,
the role of melatonin in male fertility has been long established. Melatonin modulates testic-
ular functions by regulating testosterone production in Leydig cells [12], proliferation, and
energy metabolism in Sertoli cells [13], and consequently influences spermatogenesis [14].
Specifically, melatonin and its metabolites are potent free-radical scavengers that protect
the testes against oxidative damage caused by hyperthermia [15], irradiation [16,17], and
environmental toxins [18,19]. However, whether melatonin can alleviate oxidative stress
and testicular damage induced by diquat remains to be elucidated.

In the present study, a 28 day-long treatment with diquat pathologically and mor-
phologically damaged the seminiferous tubules and inhibited the growth of mouse testes.
Moreover, melatonin significantly prevented diquat-induced dysfunction of testes by in-
hibiting reactive oxygen species (ROS) production and apoptosis, and maintaining the
integrity of the blood-testis barrier (BTB). Our study provides novel insights into the toxico-
logical effect of diquat in male reproductive biology and the role of melatonin in countering
diquat injuries in the testes. These results will help facilitate future studies on human
reproductive health against pesticides used in agricultural practices.

2. Materials and Methods
2.1. Chemical and Reagents

Diquat (Cat#: 6385-62-2) and melatonin (Cat#: 73-31-4) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The antibodies anti-Sod1 (Cat#: WL01846), anti-Gpx1
(Cat#: WL02497a), anti-Bax (Cat#: WL01637), anti-Bcl2 (Cat#: WL01556), anti-Cleaved
Caspase3 (Cat#: WL01992), anti-P53 (Cat#: WL01919), anti-ZO-1 (Cat#: WL03419), anti-
Occludin (Cat#: WL01996), anti-β-catenin (Cat#: WL0962a), and anti-Connexin43
(Cat#: WL02837) were purchased from Wanleibio (Shenyang, China), while anti-Tubulin
(Cat#: AF1216) was obtained from Beyotime (Shanghai, China). Unless otherwise indi-
cated, the remaining reagents and chemicals used in this study were purchased from
Sigma-Aldrich.

2.2. Animals and Animal Experiments

Kunming mice (KM) were obtained from the Animal Center Laboratory of the Xi’an
Jiaotong University, China. Male mice (8 weeks old) were housed in pathogen-free cages
and supplied with food and water ad libitum, under a 12 h light/12 h dark photoperiod at
24 ± 2 ◦C and 70% humidity. All procedures involving animals were approved by the Insti-
tutional Animal Care and Use Committee of the Northwest A&F University (DK2022071).

Melatonin was dissolved in absolute ethanol, diluted with 0.9% NaCl to obtain an
ethanol concentration of 5% and stored in the dark at 4 ◦C. Diquat solutions were prepared
using 0.9% NaCl as a solvent. Male mice were randomly divided into four groups (n = 6 per
group). The control group comprised mice only administered vehicle. In the diquat group,
mice were intraperitoneally injected with diquat at a dose of 10 mg/kg b.w./day while
melatonin group with 10 mg/kg b.w./day. Finally, in the diquat and melatonin groups,
mice were simultaneously administered diquat and melatonin. All groups were treated for
28 consecutive days prior to euthanasia. In each group of males treated with diquat or/and
melatonin, 12 males were mated with females and the number of offspring produced was
recorded and statistically analyzed.

2.3. Assessment of Sperm Parameters

Cauda epididymal sperm was collected as previously reported [1]. In brief, the left
cauda epididymides were cut into small pieces in prewarmed normal saline and gently
squeezed to allow fluid to flow out. The sperm count (sperm/mL) was measured using a
Neubauer hemocytometer. Giemsa staining was used to evaluate the sperm malformation
rate by counting the number of morphological abnormalities in the head and flagellum and
expressed as a percentage of the total sperm count.
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2.4. Hematoxylin-Eosin (H&E) Staining and Quantitative Measurements of Spermatogenesis

The left testes and epididymides were fixed in a 4% (w/v) paraformaldehyde solution,
embedded in paraffin blocks; three consecutive sections (5 µm) were then prepared and
stained with hematoxylin and eosin (HE). Stained sections were observed using a Nikon
optical microscope and images were captured for histological analyses. The germinal
epithelium height of each seminiferous tubule was measured using the software Image Pro
Plus 6.0. The germ cell including spermatogonia (Sg), preleptotene spermatocytes (PL),
pachytene spermatocytes (P), and stages 1–7 (S1–7) spermatids were counted according to
the method of a previous report [20,21]. All the crude counts of germ cells were corrected
for section thickness and the differences in the nuclear or nucleolar diameter using Aber-
crombie’s formula, that is, P = A × [M /(L + M)] (P: average count of nuclear points per
section; A: crude number of nuclei seen in the section; M: thickness (µm) of the section;
L: average length (µm) of the nuclei) [22]. The corrected count of germ cells was used in
the quantitative analysis.

2.5. Testosterone Assay

Serum testosterone levels were detected using a Testosterone Enzyme-Linked Im-
munoSorbent Assay Kit (Cat#: PT872; Beyotime) and procedures were performed accord-
ing to the manufacturer’s instructions. Briefly, the serum was incubated with the enzyme
conjugate solution for 2 h at room temperature away from light in the ELISA plate. After
washing the plate three times, the tetramethylbenzidine chromogen (TMB) was added
and incubated for 20 min at room temperature in the dark. Then the stop solution was
added and the absorbance was measured at 450 nm using a microplate reader (BioTek,
Winooski, VT, USA).

2.6. Cell Culture and Treatment

The spermatogonia GC1-spg (Cat#: CL0600; Procell, Wuhan, China) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS). The spermatogonia was treated with different concentrations of diquat (20, 40, 80
and 100 µM) for 24 h to detect cell cytotoxicity. In all experiments, the concentrations of
dimethyl sulfoxide (DMSO) were diluted to below 1% (v/v).

2.7. Flow Cytometry Assay for Cell Apoptosis

Cells were evaluated using an Annexin V-FITC Apoptosis Detection Kit (Cat#: C1062M;
Beyotime) and procedures were performed according to the manufacturer’s instructions.
Briefly, treated cells were centrifugated and collected, then suspended in 500 µL of bind-
ing buffer. Subsequently, Annexin V-FITC and Propidium Iodide (PI) were added and
incubated for 10 min at room temperature. The stained cells were detected using flow
cytometry (Beckman Co., Miami, FL, USA) and analyzed using FlowJo Software (FlowJo,
LLC., Ashland, OR, USA).

2.8. Western Blotting

Right testicular tissue was prepared for analysis using RIPA Lysis Buffer (Cat#: P0013B;
Beyotime) with 1 mM phenylmethanesulfonyl fluoride (Cat#: ST506; Beyotime). The total
amount of extracted protein was quantified using the BCA protein assay kit (Cat#: PC0020;
Solarbio, Beijing, China). For western blotting, equal protein samples (30 µg) were loaded
and separated using 8–15% SDS-PAGE gel, and then transferred onto a nitrocellulose
membrane (Cat#: YA1711; Solarbio). Subsequently, the membrane was blocked with 5%
skim milk dissolved in TBST for 2 h at room temperature and incubated overnight at 4 ◦C
with the primary antibodies listed in Table S1. After washing with TBST and incubation
for 1.5 h at room temperature with the secondary antibody (Cat#: SA00001; Proteintech,
Rosemont, IL, USA), the probes were detected using electrochemiluminescence (ECL)
reagents (Cat#: WBULS0100; Millipore, Boston, MA, USA), exposed using ChemiDoc XRS
(Bio-Rad, Hercules, CA, USA). The blot intensity was quantified using Image Pro Plus 6.0.
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2.9. Immunofluorescence Staining (IF)

The paraffin sections were permeabilized treated with 0.25% (v/v) Triton X-100 for
20 min at 37 ◦C, blocked with 5% BSA (w/v) for 30 min, and incubated overnight with ZO-1
(1:100) primary antibodies at 4 ◦C. The following day, the samples were washed with PBS
and incubated with secondary antibodies at room temperature for 2 h in the dark, and then
underwent nuclear staining using 4′,6-diamidino-2-phenylindole (DAPI). Images were
acquired with a Nikon fluorescence microscope, and densitometric analysis was performed
using Image Pro Plus 6.0.

2.10. Evaluation of ROS Levels

The paraffin sections were incubated with 10 µM carboxy-2′,7′-dichloro-dihydro-
fluorescein diacetate (DCFH-DA) (Cat#: S0033S; Beyotime) probe for 15 min at 37 ◦C.
Subsequently, each section was washed with PBS three times for 10 min and stained with
DAPI for 10 min. Images were captured using a Nikon fluorescence microscope (Nikon,
Tokyo, Japan) and analyzed using Image Pro Plus 6.0.

Testicular oxidative stress levels were determined by measuring malondialdehyde
(MDA) and using the total Superoxide Dismutase (SOD) (WST-1 method), and glutathione
peroxidase (GSH-PX) (colorimetric method) assay kits (Nanjing Jiancheng Bioengineering
Institute). All detection procedures were performed according to the manufacturer’s in-
structions. Briefly, testicular tissue was cut and homogenized using a Dounce homogenizer,
and total protein was detected using a BCA protein assay kit (Cat#: PC0020; Solarbio).
Testicular oxidative stress parameters MDA, SOD, and GSH-PX were evaluated using the
corresponding kit, and the absorbance was measured using a microplate reader (BioTek).

2.11. TUNEL Assays

A Colorimetric TUNEL Apoptosis Assay Kit (Cat#: C1098; Beyotime) was used for
terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. According
to the manufacturer’s instructions, the paraffin sections were rehydrated, washed with dis-
tilled water, and incubated with proteinase K for 20 min at 37 ◦C. Sections were submerged
in a 3% hydrogen peroxide solution for 10 min to block endogenous peroxidase activity.
After washing thrice with PBS, the sections were balanced for 10 min and treated with the
TUNEL reaction mixture at 37 ◦C for 1 h in a wet box.

Subsequently, the sections were incubated for 30 min at 37 ◦C for staining with
streptavidin-HRP and visualized with a freshly prepared 3,3′-diaminobenzidine (DAB)
solution. Finally, nuclei counter-staining was conducted with hematoxylin e resulting
nuclei were blue, TUNEL-positive cells were brown, and the ratio of TUNEL-positive cells
to the total number of cells was analyzed to assess cell apoptosis.

2.12. Statistical Analysis

Data were presented as mean ± standard error of mean (SEM). Statistical significance
was assessed using two-tailed Student’s t-test or one-way analysis of variance (ANOVA),
followed by Duncan’s multiple range test with the statistical software SPSS V22.0 (IBM,
Armonk, NY, USA). Results were considered statistically significant at p values < 0.05. At
least three independent experiments were performed and quantified.

3. Results
3.1. Melatonin Ameliorates Spermatogenic Failure Induced by Diquat in Mice

To investigate testicular injuries and the role of melatonin in response to diquat treat-
ment in mice, testicular and semen parameters were measured. During the 28 day-long
treatment, we found that the weight of testes (Figure 1A,B) and epididymides (Figure 1E)
were significantly lower than that of the control group. Similarly, both the testes/body
(Figure 1C) and epididymides/body weight ratios (Figure 1F) were significantly decreased.
According to the method of a previous report [21], histopathological analysis revealed that
the diquat treatment shortened the germinal epithelium height (Figure 1D, Table 1) and
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reduced the number of spermatogonia (Sg), preleptotene spermatocytes (PL), pachytene
spermatocytes (P), and stages 1–7 (S1–7) spermatids (Table 1) as compared with the control
testis. Notably, diquat-treated cauda epididymides, i.e., the primary storage site for mature
sperm, had a reduced density of mature sperm compared with that of the control group
(Figure 1D). Meanwhile, the serum testosterone concentration reduced significantly induced
by diquat (Figure 1H). As expected, exposure to diquat resulted in a highly significant
decrease in sperm count (Figure 1G) and abnormal sperm morphology (Figure I) compared
with control mice, suggesting that the spermatogenic function of the testes was compro-
mised. Daily melatonin administration protected the mice from testicular damage caused
by diquat. As shown in Figure 1, melatonin alleviated testis weight loss (Figure 1A,B) in
mice and testicular injury, including inhibited spermatogenesis (Figure 1D, Table 1), in-
creased sperm malformations (Figure 1I), and declined testosterone level (Figure 1H) when
applied with diquat, whereas melatonin treatment alone had no effect on spermatogenesis.

Table 1. Melatonin ameliorates thinness of seminiferous epithelium and loss of germ cells induced
by diquat in mice.

Treatment Groups Germinal Epithelium
Height (µm) Spermatogonia Preleptotene

Spermatocyte
Pachytene

Spermatocyte
Stages 1–7

Spermatids

Control 76.92 ± 2.91 b 19.30 ± 0.71 b 8.33 ± 0.34 b 9.86 ± 0.20 b 66.80 ± 4.77 b

Mel 69.23 ± 5.81 b 18.19 ± 0.52 b 9.58 ± 1.04 b 9.58 ± 0.90 b 64.44 ± 5.21 b

Diquat 39.74 ± 6.05 a 9.02 ± 1.19 a 5.69 ± 0.52 a 7.22 ± 0.52 a 45.28 ± 2.39 a

Diquat + Mel 67.95 ± 4.44 b 17.80 ± 0.55 b 7.78 ± 0.71 b 9.30 ± 0.85 b 66.53 ± 3.41 b

Note: Data are represented as the mean percentage ± SEM. Values within a row with different letters.
(a, b) indicate significant differences (p < 0.05).

Furthermore, the fertility of diquat-and/or melatonin-treated male mice was evaluated
by mating them with untreated female mice. Melatonin increased the number of diquat-
induced offspring, indicating that melatonin plays an important role in restoring the fertility
of male mice exposed to diquat (Figure 1J).

3.2. Melatonin Protects Testis against Oxidative Stress Induced by Diquat

To evaluate diquat-induced oxidative stress in the testes, ROS levels and antioxidative
indicators of testicular tissue were measured. As shown in Figure 2A, the fluorescence of the
DCFH probe (a ROS indicator) significantly increased in diquat-treated testes (Figure 2B),
as did the malonaldehyde (MDA) levels (Figure 2C). Treatment with melatonin markedly
attenuated ROS and MDA levels (Figure 2A–C).

Furthermore, the activities of the antioxidant enzymes SOD and GSH-Px in the testis
were significantly reduced in the diquat-treated group, which were ameliorated by mela-
tonin treatment (Figure 2D,E). Melatonin treatment also significantly restored the decreased
expression of GPX1 and SOD1 caused by diquat (Figure 2F). Hence, melatonin protected
testicles from the diquat-induced oxygen stress response by increasing the abundance of
the antioxidant enzymes, GPX1 and SOD1.

3.3. Melatonin Attenuates Diquat-Induced Apoptosis in the Mouse Testes

It is well known that elevated ROS levels induce apoptosis. Figure 3A,B shows an
increase in the number of TUNEL-positive cells in the seminiferous tubules of the diquat-
treated group, which was alleviated by melatonin treatment (Figure 3A,B). Furthermore,
we investigated the expression of apoptosis-related markers, P53, Cleaved-Caspase3, Bax,
and Bcl2 by Western blotting and found that melatonin reversed the upregulation of the
pro-apoptotic protein BAX and downregulation of the anti-apoptotic BCL2, induced by
diquat (Figure 3C). Furthermore, the expression of Cleaved-Caspase 3, an effector of the
mitochondria-mediated apoptosis pathway, as well as the apoptotic activating protein P53,
were inhibited by melatonin treatment (Figure 3C). These findings suggest that melatonin
inhibits diquat-induced testicular apoptosis.
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Figure 1. Melatonin ameliorates spermatogenic failure induced by diquat in mice. Male mice were
intraperitoneally injected with ethanol (control), melatonin (10 mg/kg/d), diquat (10 mg/kg/d), or
diquat combined with melatonin for 28 consecutive days: (A) image of testes; (B) weights of testes
and (E) epididymides; (C) organ coefficients of testes; and (F) epididymides in respective treatment
groups; (D) morphology of testes and epididymides in the different groups. The squares represent
the enlarged position in the following figure. Sp: spermatogonium; PL: preleptotene spermatocyte;
P: pachytene spermatocyte; Rs: round spermatids; Es: elongated spermatids; LC: Leydig cells.
Scale bars = 50 µm; (G) sperm concentration in the cauda epididymides of mice under different
treatments; (H) serum testosterone concentration in different treated groups; (I) sperm morphology
and the percentage of normal sperm per epididymis. Red arrowheads denote abnormal sperm. Scale
bars = 50 µm; and (J) the graph and number of offspring in different treatments males. Data are
presented as the mean ± SEM of at least three independent experiments. * p < 0.05, ** p < 0.01.
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Figure 2. Melatonin protects testis against oxidative stress caused by diquat: (A) representative im-
ages of ROS levels in the control and diquat treatment with or without melatonin; (B) relative fluo-
rescence density of DCFH analyzed using Image J. Scale bars = 10 μm; (C–E) analysis of the param-
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Figure 2. Melatonin protects testis against oxidative stress caused by diquat: (A) representative
images of ROS levels in the control and diquat treatment with or without melatonin; (B) relative
fluorescence density of DCFH analyzed using Image J. Scale bars = 10 µm; (C–E) analysis of the
parameters for oxidative stress in the differently treated testes; and (F) representative Western
blotting of the related antioxidant enzymes SOD1 and GPX1 of the control, melatonin (10 mg/kg/d),
diquat (10 mg/kg/d), and diquat combined with melatonin-treated groups. Data are presented as the
mean ± SEM of at least three independent experiments. * p < 0.05, ** p < 0.01. MDA, malondialdehyde;
GSH-PX, glutathione peroxidase; SOD, superoxide dismutase.
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Figure 3. Melatonin attenuates diquat-induced apoptosis in mouse testes: (A) representative TUNEL
staining photographs of testes in the control and diquat treatment groups with or without melatonin.
TUNEL-positive cells denoted by arrowheads are presented in brown while the nucleus is stained blue.
The squares represent the enlarged position in the following figure. Scale bars = 5 µm; (B) quantitative
analysis of the number of apoptotic cells; and (C) representative Western blotting and quantitative
analysis of apoptosis-related markers, Bax/Bcl2, Cleaved-Caspase3, and P53 in the control, melatonin
(10 mg/kg/d), diquat (10 mg/kg/d) or diquat combined with melatonin treatment groups. Data are
presented as the mean ± SEM of at least three independent experiments. * p < 0.05, ** p < 0.01.

As shown in Figure 3A, more TUNEL-positive spermatogonial stem cells were ob-
served in the diquat treated group than in the other two groups, indicating that spermato-
gonial damage was most pronounced in the testicular tissue. As a result, we then detected
the apoptosis rate of the GC1-spg cell, a type of spermatogonia, exposed to diquat via
the flow cytometry assay. The results showed that diquat significantly induced spermato-
gonia cell apoptosis (Figure S1A). Furthermore, the expression of Cleaved-Caspase3 and
Bax/Bcl2 of the spermatogonia cells was markedly increased in those treated with diquat
compared with the control group (Figure S1B,C). These findings confirm diquat-induced
spermatogonial cytotoxicity through the apoptotic pathway.

3.4. Melatonin Restores the Diquat-Disrupted Integrity of the Blood-Testis Barrier

Sertoli cells orchestrate spermatogenesis by maintaining the spermatogonial stem
cell niche and spermatogonial populations [13,23,24]. Therefore, we hypothesized that
melatonin could prevent diquat-induced testicular damage by maintaining the integrity of
Sertoli cell junctions, which forms the BTB. As expected, immunofluorescence of ZO-1 ex-
hibited a severely fractured and disordered staining pattern in the seminiferous epithelium,
indicating that diquat damaged the Sertoli cell development and function. Meanwhile,
melatonin treatment sustained the normal expression of ZO-1 (Figure 4A,B). We also
measured the levels of several major adhesion junction, gap junction, and tight junction
proteins and found that expression levels of β-catenin, a major component of adhesion
junctions, as well as occludin, another major component of tight junctions, such as ZO-1,
were reduced by diquat treatment and were restored by melatonin treatment (Figure 4C).
Expression of the main gap junction protein Connexin43 did not significantly change follow-
ing diquat and/or melatonin treatment (Figure 4C). These results indicate that melatonin
restored the diquat-disrupted integrity of BTB, thereby protecting mouse testes against
diquat-induced damage.
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Figure 4. Melatonin restores the diquat-disrupted integrity of Sertoli cells: (A) representative im-
munofluorescence images showing the expression and localization of ZO-1 protein (The squares
represent the enlarged position in the following figure); (B) relative expression of ZO1 using Western
blotting in the control and diquat treatment with or without melatonin groups. Scale bars = 10
µm; and (C) representative Western blotting and quantitative analysis of β-catenin, Occludin and
Connexin43 in the different treatment groups. ST: seminiferous tubule. Asterisks indicate Sertoli cells.
Data are presented as the mean ± SEM of at least three independent experiments. ns: not significant
(p ≥ 0.05), * p < 0.05, ** p < 0.01.

4. Discussion

Diquat is a non-selective bipyridyl herbicide widely used in agriculture in various
regions of the world [25]. A survey study showed that in addition to intentional or uninten-
tional ingestion, 29% of acute illnesses associated with diquat are work-related, and caused
by inadequate use of personal protective equipment and herbicide spraying/splashing in
agricultural applications [1]. Moreover, exposure to diquat corrodes the skin and gastroin-
testinal tract [26] and damages the kidneys, liver, heart, and central nervous system [25].
Meanwhile, paraquat, another dipyridyl herbicide, can induce deleterious changes in
mammalian testis [27–30]. However, diquat is reportedly less potent in male reproductive
impairment. In this work, 28 days of exposure to diquat resulted in testicular damage in
mice, including damaged seminiferous epithelium with less germ cells, decreased sperm
count, and increased sperm deformity. Moreover, the serum testosterone level declined
significantly, which was induced by diquat.

Melatonin, an indoleamine synthesized primarily by the pineal gland, reproductive
organs, testes, and ovaries, modulates multiple physiological functions in mammals [9–11].
For example, melatonin preserves sperm quality by regulating testosterone production in
Leydig cells [12,31], modulates proliferation and energy metabolism in Sertoli cells [13],
and protects sperm from free radical damage during their passage through the reproductive
tract [32]. In addition, as a powerful free-radical scavenger, melatonin relieves testicular
damage through their antioxidant and anti-apoptotic properties [14,33]. Our findings are
consistent with these reports, suggesting that melatonin rescues testicular dysfunction and
ameliorates spermatogenic failure induced by diquat.

The current study also revealed that diquat induced the upregulation of ROS and the
downregulation of antioxidants. Similarly, previous animal models have demonstrated that
diquat induces oxidative stress [34–36] due to its powerful capacity to produce superoxide
anion free radicals [37]. Meanwhile, melatonin is essential for maintaining redox balance in
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the testes [38,39]. An imbalance between ROS and the antioxidant response system can lead
to serious oxidative stress. Thus, our study confirms that melatonin effectively inhibited
ROS generation. Furthermore, the diquat-induced reduction in GPX1 and SOD1 protein
abundance, was reversed following treatment of mice with melatonin, a result that is in
accordance with previous studies [40–43].

Studies have demonstrated that diquat is involved in mitochondrial dysfunction
and apoptosis [44–46], although Nisar [47] found that diquat damages neural tissue by
programmed necrosis rather than by apoptosis. Thus, we hypothesized that diquat-induced
ROS production can cause apoptosis in testicular cells of mice. This was confirmed by
TUNEL staining, which showed an increased number of apoptotic cells. Particularly,
spermatogonia was most damaged by diquat in an apoptotic manner in vivo and in vitro. In
contrast, melatonin treatment reduced TUNEL-positive cells, which agrees with the report
that melatonin can protect the testes from external harm via a synergistic interaction of its
antioxidant, anti-inflammatory, and anti-apoptotic properties [17]. This was also confirmed
by changes in Cleaved-Caspase3 and Bax/Bcl2 levels induced by melatonin treatment.
Furthermore, we found that P53, a key effector gene that induces apoptosis [48], was
upregulated following diquat treatment, causing apoptosis, whereas melatonin treatment
attenuated this effect. These findings are consistent with those of similar studies [45,46].

The BTB, comprising the junctions between Sertoli cells, can provide a relatively
enclosed microenvironment favoring germ cell survival and spermatogenesis. Hence,
maintained BTB integrity is crucial for male reproduction [13,49]. Previous studies have
reported that heat stress damages the integrity of Sertoli cells and causes spermatogenesis
failure [15,50]. Meanwhile, another herbicide, flurochloridone, influences testicular func-
tion via inducing mitochondrial damage and apoptosis of testicular Sertoli cells [51]. We,
therefore, evaluated the localization of ZO-1 by immunofluorescence. Moreover, consid-
ering that tight junctions and adhesion junctions are required for the junctions between
Sertoli cells, and between Sertoli cells and germ cells, respectively [52,53], we also assessed
the levels of several major adhesion junction, gap junction, and tight junction proteins.
Interestingly, the abundance of tight junction proteins, occludin and ZO-1, was reduced.
Similarly, β-catenin, a major component of adhesion junctions, was inhibited by diquat.
Hence, given that the WNT/β-catenin signaling pathway contributes to the stimulation of
other processes, such as cell proliferation and differentiation [54,55], further investigation
into the diquat-induced effects on β-catenin is warranted. The observed diquat-induced
destruction of Sertoli cell tight junctions is consistent with the findings of a study reporting
that diquat inhibits the expression of occludin and ZO-1, resulting in intestinal barrier
function damage in piglets [35]. Melatonin treatment rescued the tight junction expression
and improved their order of localization. Similarly, melatonin has been show to impact
spermatogenesis by modulating Sertoli cell metabolism [13], and specifically maintains the
integrity of the BTB preventing injury [15].

Herein, we preliminarily explored the protective effect of melatonin on the reproduc-
tive toxicity of diquat, as well as the associated molecular mechanisms; however, further
investigation into the associated mechanisms within the testicular cells are warranted.
Moreover, although it is clear that melatonin exhibits potent receptor-dependent and
-independent actions, including antioxidant, anticancer, antitumor, anti-inflammatory, anti-
aging, anti-diabetic, antiviral, and neuroprotective activities [56,57], and we posit that its
direct free-radical scavenging actions are receptor-independent; however, it still remains to
be determined whether diquat affects testis injury in a melatonin receptor-dependent man-
ner. Indeed, previous studies have shown that melatonin treatment induces the expression
of SIRT1, thereby reducing ROS levels and thus ameliorating oocyte aging and palmitic
acid-induced testis lipotoxicity [58,59]. Furthermore, several melatonin-related effects can
be abolished via SIRT1 inhibition, indicating potential mediation by SIRT1 in non-tumor
cells [60]. Hence, it is necessary to also verify whether melatonin protects the testes from
diquat-induced oxidative stress by regulating SIRT1. Meanwhile, other studies suggest
that diquat induces lipid peroxidation [61], in which hepatocytes and intestinal mucosa
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ferroptosis were caused following the treatment of piglets for seven days, via regulating
the expression of ferroptosis mediators (transferrin receptor protein 1, heat shock protein
beta 1, solute carrier family 7 member 11, and glutathione peroxidase 4) [62–64]. It would,
therefore, be of interest to determine whether melatonin reverses testis injury following
diquat exposure in a ferroptosis-associated manner.

5. Conclusions

Taken together, the findings of this study demonstrate that melatonin protects testes
from diquat-induced oxidative stress and apoptosis, ensuring the integrity of the BTB
in mice. Hence, this study provides a theoretical basis for the potential application of
melatonin as a preventive or therapeutic drug for the treatment of male sub- or infertility
in populations with high exposure risk to diquat.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11020160/s1, Table S1: The primary antibodies information
for western blot assay. Figure S1: Diquat induced spermatogonia GC-1 spg apoptosis in vitro.
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