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Abstract: Autophagy is an evolutionarily conserved cellular system crucial for cellular homeostasis
that protects cells from a broad range of internal and extracellular stresses. Autophagy decreases
metabolic load and toxicity by removing damaged cellular components. Environmental contami-
nants, particularly industrial substances, can influence autophagic flux by enhancing it as a protective
response, preventing it, or converting its protective function into a pro-cell death mechanism. En-
vironmental toxic materials are also notorious for their tendency to bioaccumulate and induce
pathophysiological vulnerability. Many environmental pollutants have been found to influence stress
which increases autophagy. Increasing autophagy was recently shown to improve stress resistance
and reduce genetic damage. Moreover, suppressing autophagy or depleting its resources either
increases or decreases toxicity, depending on the circumstances. The essential process of selective
autophagy is utilized by mammalian cells in order to eliminate particulate matter, nanoparticles, toxic
metals, and smoke exposure without inflicting damage on cytosolic components. Moreover, cigarette
smoke and aging are the chief causes of chronic obstructive pulmonary disease (COPD)-emphysema;
however, the disease’s molecular mechanism is poorly known. Therefore, understanding the impacts
of environmental exposure via autophagy offers new approaches for risk assessment, protection, and
preventative actions which will counter the harmful effects of environmental contaminants on human
and animal health.

Keywords: environmental exposure; autophagy; toxic materials; autophagosome; pesticides; particu-
late matter; nanoparticles

1. Introduction

It has recently been shown that the cellular autophagy process, which involves lyso-
somes fusing with undesired or accumulated defective cellular components, is crucial for
maintaining cellular function and homeostasis [1]. Autophagy is an active component
of cell defense and helps cancer cells maintain their cytostatic link during the growth
process. [2]. Phagophore assembly sites (PAS), which are structures that come before
autophagosomes, are initiated by autophagy process. [3]. The endoplasmic reticulum (ER)-
associated phosphatidylinositol 3-kinase (PI3K) is crucial for beginning the production
of PAS [4]. AMP-activated protein kinase (AMPK), the mammalian target of rapamycin
(mTOR), and unc-51-like autophagy activating kinase-1 (ULK1) facilitate phagophore for-
mation during autophagy induction [5]. Phagophore recruiters include PI3K catalytic
subunit type 3 (PIK3C3/Vps34), PI3K regulatory subunit 4 (PIK3R4/Vps15/p150), and
beclin-1 (BECN1). Then, the membrane is expanded and sealed to lengthen it in prepara-
tion for autophagosome production. When autophagosomes reach maturity, they bind to
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lysosomes to create autolysosomes [6]. After acid hydrolases break down autolysosomes
and their inner cargos, creating nutrients, additional metabolite recycling maintains cellular
equilibrium [7] (Figure 1). The mTOR-independent autophagy mechanism has several
therapeutic targets for neurodegenerative disorders [8]. mTOR-independent network regu-
lating mammalian autophagy, encompassing cAMP-Epac-PLCε-IP3 and Ca2+-calpain-Gαs
pathways, provides multiple therapeutic targets for neurological disorders. Enhancing
autophagy through this mTOR-independent route is protective in different models [9].
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Figure 1. The autophagic pathway’s molecular mechanism. The development of a pre-autophagosomal
structure triggers autophagy. The pre-autophagosomal structure is partly formed by PI3K-AMPK,
and mTOR. The BECN1 complex, ULK1, Vps34, and phagophore production are all stimulated.
Phagophore nucleation is extended, followed by autophagosome binding. Autolysosomes are created
when a mature autophagosome binds to a lysosome. Acid hydrolases finally destroy autolysosomes,
creating nutrients and recycling metabolites.

Currently, global pollution threatens human health. Modern cultures worry about air
pollution, including particulate particles and heavy metals. Due to their toxicity, endurance,
and bioaccumulation, heavy metals, including cadmium, lead, and arsenic, are widespread
contaminants [10]. Autophagy can be disrupted by various environmental pollutants,
including pesticides, particulate particles, and heavy metals [11,12]. A single drug can
have varying effects on the autophagy process depending on factors such as cell type,
exposure length, and dosage. Therefore, understanding the effects of exposure to chemicals
on autophagy has gained importance [13]. This understanding provides new avenues for
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environmental pollutant risk assessment, protection, and preventative measures that can
be taken to protect against their adverse effects on human health [14].

Autophagy is a preprogrammed system that cells use to manage their internal home-
ostasis and reduce or eliminate the effects of foreign toxic chemicals that enter them
(Figure 2) [15,16]. Therefore, autophagy induction may be a new restorative strategy in
the toxicity field [17]. This review focuses on the autophagic pathways induced by vari-
ous environmental metal pollutants to fill the knowledge gap on autophagy’s function in
eliminating environmental toxicities.
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2. Mechanism of Autophagy Pathways

Numerous studies have been developed to reflect the different targeted subcellular
component types that could be destroyed by autophagy [18]. Several autophagy receptors
play a role in the autophagy pathways that are presented in Figure 3, including aggrephagy,
mitophagy, nanoparticulophagy, reticulophagy, xenophagy, zymophagy, lipophagy, ri-
bophagy, and pexophagy [19,20]. However, autophagy and its participation in the re-
sponses to various common environmental exposures such as metals, airborne particulate
matter, nanoparticles, and cigarette smoke as well as some common single environmental
toxins might be removed from the environment.

Autophagy selectively degrades lipids, called lipophagy, and sequestosome 1 (SQSTM1)
autophagy receptors connect with lipid droplets through autophagy [21]. Mitophagy is
the autophagic process that selectively degrades mitochondria [22]. During mitophagy, au-
tophagy adaptors and receptors, such as the neighbor of BRCA1 gene 1 (NBR1), optineurin
(OPTN), the nuclear dot protein 52 kDa (NDP52), and SQSTM1, recognize mitochon-
dria [22]. During reticulophagy, the ER recognizes autophagy adaptors autophagy-related
40 (ATG40) and the ER-anchored autophagy receptor (reticulophagy regulator 1) [23]. In
ribophagy, autophagy selectively degrades ribosomes, which bind to nuclear fragile X
mental retardation-interacting protein 1 (NUFIP1), an autophagy receptor-like protein [24].
Midbody degradation is the selective destruction of midbody rings produced during cytoki-
nesis via autophagy [25]. Midbody rings recognize autophagy receptors such as SQSTM1
and NBR1 during selective autophagy [26]. Pexophagy is the selective destruction of
peroxisomes via autophagy; peroxisomes recognize autophagy adaptors autophagy-related
36 (ATG36), ATG40, and peroxisomal biogenesis factor 3 (PEX3), and autophagy receptors
SQSTM1 and NBR1 [27]. Zymophagy selectively degrades damaged or surplus zymo-
gen granules via autophagy; zymogen particles bind to autophagy receptors, including
SQSTM1 [28]. Several proteins participate in selective autophagy, such as TAR DNA-
binding protein 43 (TDP43), glucocerebrosidase (GBA), presenilin 1 (PSEN1), ATPase cation
transporter 13A2 (ATP13A2), and superoxide dismutase-1 (SOD1) [29]. Selective autophagy
processes contain proteins and specialized autophagic receptors which identify the cargo,
generally mediated via cargo ubiquitination [30]. Through its interaction with a scaffold
protein, the receptor either binds to cargoes or may be an integral component of these
cargoes, connecting them to the autophagy machinery in the cell [31]. Protein aggregates
are associated with Alzheimer’s, Parkinson’s, and Huntington’s diseases [2,32]. In yeasts,
flies, and mammalians, cells mediate amyloid beta peptide, tau, poly-Q, alpha-synuclein,
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and mutant huntingtin protein aggregates which might be removed by aggrephagy, a
selective disposal of protein aggregates [2,33]. Therefore, understanding the impacts of
environmental pollutants on autophagy offers new ways for risk assessment, protection,
and preventive actions to offset the harmful effects of environmental contaminants on
human health.
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3. Effects of Pesticides and Other Small Molecular Weight Environmental Toxins
on Autophagy

Understanding the impacts of pesticides, small molecular weight, and chemical expo-
sure on autophagy offers new ways for risk assessment, protection, and preventative actions
to offset the harmful effects of environmental contaminants on human health [13]. Cellular
components and protein kinases can activate several signaling pathways that result in
autophagy, apoptosis, and necrosis [34]. Nanoparticles and metals act as strong autophagy
activators in cell and animal systems [35]. When cells respond to metals/metalloids and
nanoparticles, AMPK, mitogen-activated protein kinase (MAPK), AKT serine/threonine
kinase 1 (AKT1/AKT), PI3K, death protein kinases, and mTOR are the main factors induc-
ing or inhibiting autophagy [36]. Several receptors (e.g., NBR1, p62, Tax1 binding protein 1
[TAX1BP1], and OPTN) that recognize the autophagy adaptor (lipidated microtubule-
associated proteins 1A/1B light chain 3A [MAP1LC3A/LC3; LC3II]) attract tagged mito-
chondria and facilitate autophagy vacuole engulfment [37]. Autophagy prevents chlor-
pyrifos (CPF)-induced reactive oxygen species (ROS)-mediated toxicity. CPF increases
mitochondria-mediated apoptosis-related ROS production and autophagy in human neu-
roblastoma cells [38]. ROS connect environmental (pesticides, herbicides, heavy metals)
and endogenous and genetic PD risk factors. Environmental toxins and medicines, such
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as 1-methyl-4-phenylpyridinium (MPP+), rotenone, paraquat (PQ), and metamphetamine,
have been linked to autophagy dysregulation in neurotoxin-induced dopaminergic cell
death models [39]. Epidemiological studies relate rural life, farming, well water, and agri-
chemicals to an increased risk of PD. Several agrichemicals harm dopaminergic neurons,
suggesting an environmental foundation for sporadic PD [40]. Dopaminergic neurons are
uniquely sensitive to the herbicide paraquat, with other populations of neurons unaffected,
associated with diminished motor activity and dose-dependent striatal dopaminergic nerve
fiber losses. Paraquat-treated animals showed upregulation and aggregation of -synuclein
[-Syn] in the substantia nigra [41]. Anti-apoptotic proteins interact with BECN1 and BCL2-
associated X apoptosis regulator (BAX) or BCL2 antagonist/killer 1 (BAK1/BAK) [42,43].
Interestingly, BECN1 is a PI3K component and autophagy activator that normally interacts
with anti-apoptotic proteins (e.g., B-cell lymphoma 2 [BCL2]) to suppress autophagy [44].
Stress interrupts the connection, promoting autophagy. Stress affects the connection be-
tween BCL2 and BAX/BAK, increasing apoptosis [45]. During continued stress, BECN1
is cleaved by caspase and translocates to the mitochondria, increasing apoptosis [46]. De-
pending on its length, BECN1 can induce autophagy or apoptosis [43]. In stressed cells,
calpain or caspases also degrade autophagy-related 5 (ATG5) and autophagy and beclin-1
regulator 1 (AMBRA1), shifting autophagy towards apoptosis [47]. Moreover, arsenic
inhibits p62-mediated selective autophagy, stabilizing FTO protein. FTO overexpression
can prevent autophagy, maintaining FTO accumulation in a positive feedback loop [34].
Physical, chemical, and biological processes that occur in plants, animals, and humans
exposed to environmental toxins that result in autophagy are presented in Figure 4.
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Autophagy and membrane trafficking degrade and recycle macromolecules in lyso-
somes. It has also been found that lysosomal membranes and ATP-dependent proton
pumps keep the lumen acidic for enzyme activity [47]. However, lumen pH or lyso-
somal membrane permeability variations cause lysosome dysfunction, disrupting the
autophagosome–lysosome fusion [48]. Changes in membrane permeability can produce
acidification and necrosis. Perfluorooctanoic acid, arsenic, and cadmium inhibit lysosomal
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functioning [49]. Moreover, rotenone increases ROS production, inhibiting the mitochon-
drial electron chain and causing autophagy in neuroblastoma cells [50]. Longer exposure
causes autophagosome accumulation and lysosomal pH disruption. Malathion causes au-
tophagosome accumulation in SH-SY5Y cells [51]. It inhibits acetylcholinesterase, causing
neurotoxicity, and destabilizes lysosomal membranes, impairing autophagosome–lysosome
fusion and causing autophagosome buildup.

Agriculture uses the neurotoxic pesticide fipronil [52]. Pre-treating SH-SY5Y cells
with rapamycin enhanced cell viability after fipronil treatments and reduced apoptosis [13].
N-acetylcysteine, a ROS scavenger, reduced fipronil-induced autophagy and apoptosis,
showing that oxidative stress is required for toxicity and autophagy [13]. Polybrominated
diphenyl ethers BDE-153 and BDE-100 induced autophagy in human liver HepG2 cells
through oxidative stress and mitochondrial dysfunction (mitophagy) [53]. Recent research
suggests that direct oxidation of catalytic thiol-groups on autophagy-related 3 (ATG3)
and 7 (ATG7) might block LC3’s conjugation with phosphatidylethanolamine, which is
essential for effective autophagy [54]. ER stress promotes ROS production and can affect
redox equilibrium in the cell. Particularly, cadmium, perfluorooctanoic acid (PFOA),
paraquat (PQ), cigarette smoke, and chloropicrin trigger ER stress and autophagy. ER
stress is caused by inadequate protein folding or diminished ER folding capacity [55].
In particular, PQ is a non-selective herbicide that induces ER stress and autophagy in
SH-SY5Y cells [56]. However, inhibiting autophagy increased apoptosis, suggesting it
protects against PQ-induced toxicity. PFOA disrupts lipid metabolism, increases ROS
levels, and causes ER stress. It induced autophagic vacuole accumulation and disrupted
autophagosome–lysosome fusion in the mouse liver in vivo and in a human hepatocyte
culture in vitro [57].

4. Targeting Autophagy Modulation to Eliminate Environmental Substances

Mammalian cells use selective autophagy, a critical process, to destroy environmental
toxins and damaged organelles without damaging cytosolic elements. Depending on the
autophagy receptors and cargo targeted, selective autophagy can be categorized as either
inducing or inhibiting.

4.1. Elimination of Particulate Matter by Autophagy

Air pollution has emerged as a significant problem in the environment, particularly
due to the presence of extremely minute pollutant particles and pathogenic microbes,
which can cause significant harm to the human body. Filtration of the air is one method of
cleaning the air that has proven to be both popular and successful [58]. Particulate matter
(PM) comprises tiny particles or liquid droplets that are so tiny that they can be inhaled
and cause significant harm to an individual’s health [59]. PM, metals, black carbon, nitrate,
organic aerosols, polycyclic aromatic hydrocarbons, automotive exhaust, and sulfates
comprise microscopic particles and liquid droplets floating in the air [60]. PM has been
associated with various health conditions, especially respiratory illnesses. Several studies
have associated PM exposure with autophagy and airway dysfunction [61,62]. PM activated
the nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κβ) pathway,
airway inflammation, and mucus hyper-production in human bronchial epithelial (HBE)
cells [63]. Fine PM triggered cytotoxicity and enhanced autophagy, oxidative stress, and the
tumor necrosis factor (TNF/TNFα) pathway in human lung epithelial cells [64]. It has been
reported to activate autophagy and inflammation in HBE cells in vitro and in vivo [65].
An autophagy inhibitor (3-methyladenine) suppressed PM-activated pro-inflammatory
cytokine expression in vitro and in vivo in PM-treated mice [66]. Additionally, diesel
exhaust particle exposure triggered autophagy and citrullination in normal HBE (NHBE)
cells. Both Euro 4 and Euro 5 carbon particles could severely alter cell viability, inducing
autophagy, apoptosis, and necrosis and stimulating pro-inflammatory cytokine interleukin
(IL)-18 production, protein citrullination, and protein arginine deiminase activity in NHBE
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cells [67]. Therefore, PM has been associated with several health problems in humans,
notably respiratory conditions, which can be reduced via the autophagy pathway.

4.2. Elimination of Nanoparticles by Autophagy

A nanoparticle, a type of ultrafine particle, is often described as a particle of matter
with a diameter of 1-100 nm. Nanoparticles exist naturally and are studied in chemistry,
physics, geology, and biology [68]. One of the mechanisms of intrinsic toxicity that are
exhibited by NPs is the disruption of autophagy. The disruption of autophagy that NPs
cause must be understood in order to ensure the safety of nanotechnology [10]. Autophagy
induced by nanoparticles via endocytosis or other routes may have therapeutic effects,
indicating biological applications, although their processing and destruction via selective
autophagy remains unknown. Nanoparticles are foreign entities that are destroyed by
cells [69]. Nanoparticles enter cells via endocytosis or other uptake routes. Nanoparticles
colocalize with autophagy receptors or markers to produce nanoparticle-containing au-
tophagosomes called nanoparticulosomes [70]. These ubiquitinated nanoparticles engage
with autophagy receptor proteins, SQSTM1 bound to LC3, forming an autophagosome
(Figure 5) [70]. Nanoparticles affect autophagy by increasing autophagosome production
and flux or causing autophagic malfunction [71]. Nanoparticles enhance LC3 levels in
various categories [35]. In autophagy malfunction, SQSTM1 levels increase because it is no
longer degraded. Carbon nanotubes, poly(amidoamine) dendrimers, iron oxide nanoparti-
cles, and graphene oxide caused autophagosome accumulation by blocking autophagic
flow [72]. Silver and iron oxide nanoparticles induce autophagy by producing ROS [73].
Alumina, fullerenes, cationic dendrimers, carbon nanotubes, quantum dots, gold, zinc
oxides, and silica were found to activate autophagy by blocking mTOR or promoting the
expression and phosphorylation of autophagy-related proteins [74]. Lanthanum oxide,
cerium dioxide, europium oxide, and manganese also triggered autophagy [75]. Caveolin 1
(CAV1) is an important membrane protein for cell membrane trafficking and autophagy [76].
Additionally, biodegradable ferric phosphate nanosheets are coated with doxorubicin for
targeted tumor eradication via an autophagy inhibition-enhanced apoptosis/ferroptosis
pathway [77]. Therefore, nanoparticulophagy shows intracellular trafficking mechanisms
other than degradation routes for digesting nanoparticles and nanodrugs with therapeutic
and pathophysiological consequences.
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4.3. Elimination of Toxic Metals by Autophagy

Metals and metalloids are human and environmental toxicants. Recently, autophagy
has been studied for eliminating physicochemical metal factors that exacerbate toxicity [78].
Autophagy begins when the flat membrane wraps around cytosol or organelles, forming the
double-membrane autophagosome vesicle. During autophagosome formation, membranes
expand and form a cup-like phagophore [79]. Generally, phagophores are formed by isolat-
ing the original membrane and assimilating lipids or repurposing existing compartments.
Vesicles sequester cytosolic material and transport it to the lysosomal lumen, forming single
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membrane autophagolysosomes that digest their contents [80]. The lysosomal membrane-
associated protein (LAMP) maintains cellular homeostasis through ubiquitination during
maturation. Light chain 3B (LC3B) is ubiquitinated to form an integral membrane protein
complex in a nascent autophagosome [8]. Autophagy’s molecular basis could be a technique
for removing toxic, hazardous metals from the environment (Figure 6). Arsenic causes DNA
damage, apoptosis, and oxidative stress [15]. Arsenic’s short-term activation of autophagy
protects against apoptosis [81]. Prolonged exposure to environmental dosages impairs au-
tophagy. Cadmium promotes DNA strand breaks, ER stress, ROS production, and calcium
homeostasis [82]. Prolonged contact with these metals reduces the rate at which the p62
protein is degraded by autophagy, resulting in its accumulation [83]. BCL2 interacting
protein 3 (BNIP3) is essential for arsenic trioxide (As2O3)-induced autophagy in malignant
glioma cells [84]. As2O3-induced autophagic cell death involves LC3 and mitochondrial
membrane rupture but not caspase activation [85]. As2O3 is a powerful autophagy inducer
that appears to need MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK)
pathway activation but not MAPK8/JNK or AKT/mTOR [86]. However, arsenic induces
autophagy, modifies autolysosomal gene expression, and inhibits cellular growth in human
lymphoblastoid cell lines [87]. Additionally, the Ca2+-mitochondrial-caspase and Ca2+-
ERK-LC3 signaling pathways increase cytosolic cadmium levels to promote autophagy
and cell death in MES-13 cells [88]. Cadmium accumulated in rat kidney proximal con-
voluted tubule lysosomes, stimulating cell growth and autophagy [89]. However, further
investigations on the roles of arsenic and cadmium in triggering autophagic cell death
are needed.

In addition, mercury (Hg) toxicity causes DNA damage, suppresses DNA and RNA
synthesis, and induces protein structural changes in vivo and in vitro [90]. Hg poisoning
triggers autophagy in rat hepatocytes by modulating the ATG5-autophagy-related 12
(ATG12)-LC3B covalent-conjugation pathway via ubiquitination [11]. In response to Hg,
autophagy monitors cell fate by recruiting caspase-8 (CASP8) to autophagosomes via its
Fas-associated death domain [91]. High chromium (Cr[III]) damaged DNA [92]. Hexava-
lent Cr can trigger autophagy in stem/progenitor cells. Stem/progenitor cells subjected
to subtoxic and toxic Cr concentrations had preserved tissue regeneration potential [93].
Autophagy indicates Cr toxicity in cord blood hematopoietic stem cells [94]. However,
the hematopoietic lineage responds to Cr(VI)-mediated toxic stress via apoptosis and
autophagy. Molecular switching between these two pathways may be mediated by
stem/progenitor cell differentiation [95]. Iron (Fe) excess causes brain necrosis and
apoptosis. DNA damage and oxidative stress exacerbate Fe2+-mediated toxicity [96].
Fe2+-mediated cell death is not necessarily via apoptosis. Recent studies showed that
upregulating the ferritin stress protein complex is a quick adaptation mechanism, with
ferritin autophagy influencing cellular susceptibility to the oxidative stress response [97].
Nuclear receptor coactivator 4 (NCOA4) acts with GABA type A receptor-associated
protein-like 2 (GABARAPL2/ATG8) to recruit a specific cargo-receptor complex into au-
tophagosomes, called ferritinophagy, which is crucial for Fe homeostasis [98]. Therefore,
it has been suggested that mammalian cells use autophagy as a cytoprotective defense
against several types of metabolic toxicity or organelle damage.
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4.4. Elimination of Smoke by Autophagy

In the indoor environment, one of the most significant contributors of particulate
matter and chemical pollutants is the act of smoking. A combination of the main stream
of smoke that is expelled from the lungs of smokers and the side stream of smoke that is
generated straight from the burning cigarette, pipe, or cigar is what makes up second-hand
smoke [99]. Epoxide hydrolase 2 (Ephx2)-deficient animals were found to have less lung
inflammation and autophagy due to cigarette smoke exposure than normal mice [100]. The
autophagy signaling pathway is enhanced by nicotine exposure, causing the heart to adopt
an ischemic-sensitive phenotype. It offers an autophagy suppression therapeutic approach
that may be innovative for treating ischemic heart disease [101]. The immunological
response is commonly associated with autophagy activation caused by cigarette smoke. In
cigarette-exposed mice, the rise in pulmonary p62 is highly linked with increased expression
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of bicaudal D1 (BICD1), an adapter protein that binds to the dynein motor apparatus linking
microtubule transport to lysosomes [102]. Recently, cigarette smoke was found to induce
autophagy and trigger immune- and oxidation-related responses that damage the airway
and alveolar epithelium [103]. The development of smoke aggregates, generally cleared
by autophagy, is under the control of the multifunctional protein p62 [104]. However,
in vitro exposure of bronchial epithelial cell line BEAS-2B to cigarette smoke extract causes
ubiquitinated protein aggregates that colocalize with LC3B and p62 [105]. Carbamazepine
reduces these aggregates. In mice exposed to cigarette smoke, aggresomes, LC3B, and
p62 increase in peripheral lung tissue, correlating with cellular senescence [106]. Recently,
cigarette smoke was shown to be responsible for the accretion of an additional autophagy-
related protein called the transcription factor EB (TFEB) in the mouse lung in vivio and
HBE cells in vitro [107]. In airway epithelial cells, mTOR was found to regulate cigarette
smoke-activated apoptosis, autophagy, inflammation, and necroptosis [108,109]. In stable
chronic obstructive pulmonary disease (COPD), the majority of studies have demonstrated
an impairment in autophagy, with reduced autophagic flux and accumulation of abnormal
mitochondria (defective mitophagy), and are linked to cellular senescence [110]. Acute
exposure to cigarette smoke may activate autophagy, resulting in ciliary dysfunction and
death of airway epithelial cells [111]. It is challenging to target autophagy therapeutically
since the level of autophagy might vary from cell type to cell type and from one environment
to another inside a cell [112]. However, these medications are not specific, and researchers
are currently working on developing drugs that are more selective. These drugs have the
potential to be beneficial as innovative agents in the treatment of asthma and COPD in
the future.

5. Conclusions

Several recent studies have found that distinct signaling pathways ultimately resulting
in autophagy are activated in cells by cellular proteins or kinases as a protective response to
environmental toxins and are associated with increased cell survival. Many studies indicate
that autophagy plays a key role in cellular reactions to environmental toxins. However, its
significance in environmental toxicant exposures remains unknown. Therefore, environ-
mental chemical exposures must be further studied to determine autophagy’s molecular
pathways. However, unknown relationships exist between autophagy, immunological
responses, and other cellular activities induced by chemical stress. Additionally, novel
technologies and animal models will be needed to identify the complicated autophagic
routes in metal-induced cytotoxicity. Therefore, further studies are urgently needed to
explore how chemicals affect autophagy. These findings will be important for undertak-
ing risk assessments, protective measures, and prevention activities for environmental
contaminants with health impacts. Therefore, determining how to apply autophagy in envi-
ronmental areas related to human health and establishing associations between autophagy
and environmental exposure are appealing subjects for further research.
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