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Abstract: Soil nutrients influence all stages (reproduction, growth, and development) of a plant
species’ life, and it is known that the deficit and/or toxicity of one or more nutrients has negative
effects on the production of crops of commercial interest. Ecuador represents one of the “mega-
diverse” countries in the world, with an agricultural sector of great importance, due to its contribution
to the country’s economy. This review provides a panoramic view of soil nutrients from different
climatic regions of Ecuador and revises the importance of knowledge about the possible influence of
nutrients from the soil on the plant metabolism able to influence the crop resistance against pathogens
or to enrich the biological characteristics of these crops.
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1. Introduction

Ecuador is located in the Northwest of South America (01◦28′ N; 05◦01′ S and 75◦11′ E
to 81◦01′ W) with borders represented by the Pacific Ocean, Colombia, and Peru. The
country is crossed by the Andes Mountains, with elevations from 0–6.300 m.a.s.l. (the
snow-capped Chimborazo), and with intense tectonic and volcanic activity [1]. With a total
area of 277 thousand km2 and about 18.2 million inhabitants, Ecuador has a privileged
location on Earth being located in the tropical belt, just above the equinoctial line. Its
territories receive luminosity and insolation with light twelve hours a day throughout
the year.

Continental Ecuador is divided into three regions (Coastal, Andean, and Amazonian
areas), clearly differentiated from each other through topography, climate, and vegeta-
tion [2]. The Coastal area is a region of the greatest agricultural expansion and economic
dynamism, with great commercial, maritime, and aquaculture activity. The Andean region,
with fertile inter-Andean valleys and slopes, constitutes the areas with the highest pop-
ulation density and the greatest pressure on natural resources, especially soil and water.
The Amazonian region is a zone with conflicting options between the productive and the
environment, being also an oil-producing region.

Despite its limited size, Ecuador has 24 bioclimatic formations or vegetation systems
and a high biodiversity, which are suitable to develop different agricultural activities
that allow products to be obtained according to market demands. In Ecuador, 29.8% are
mountains and forests, 29% are cultivated pastures, while natural pastures represent 12.84%,
the moors 4.59%, and land cover by other species 1.65%. Permanent crops are located in
11.83% of Ecuadorian soils.
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The agricultural sector is of great importance because it is one of the sectors that
contributes most to the country’s economy (overcoming social problems such as poverty)
and is a source of foreign exchange through exports [3,4].

2. The Climate in Ecuador

The Ecuadorian climate is varied, being greatly influenced by the topography, with
significant changes over short distances due to the influence of several factors such as
altitudinal gradient, the direction of the mountain ranges, distance from the Pacific Ocean,
and ocean currents, as well as winds. Of all the mentioned factors, the one with the greatest
influence on climate is altitude [5].

Due to their productive nature, volcanic soils are a significant resource for agriculture;
in Ecuador, 31% of the territory has volcanic soils associated with the Cotopaxi, Tungurahua,
Sangay, and Reventador volcanoes [5].

The Ecuadorian altitude generates a wide temperature gradient, with an annual
average of 0–26 ◦C. There is a very close relationship between elevation and temperature.
However, the Amazonian area has a higher temperature than expected from its elevation
while the opposite happens in the dry scrub of the Coast. Altitude influences the amount
of rainfall because cold air has little ability to retain moisture. Therefore, the highlands
have low rainfall, while the lowlands (up to 2000 m elevation) show wide variation in the
amount of rain received throughout the year. Generally speaking, the paramos (tundra
ecosystems) receive little rainfall (less than 1.500 mm per year) compared to Andean and
lowland forests. The regions that receive the highest levels of precipitation are the western
piedmont forest of the northern Andes and the lowland forest of Chocó [6].

Thanks to the climatic conditions, Ecuador has developed agricultural activities that
allow it to obtain products according to market demands; the most representative within
the country’s economy is the cultivation of bananas, cocoa, African Palm, coffee, and
sugarcane, among others [4,7]. According to Portilla, 2018 [2], the characteristics of climates
per Ecuadorian regions are represented by:

• Coastal Climate. This region has a tropical or equatorial climate, whose average
annual temperature varies between 22 and 26 ◦C. It is characterized by constant
rainfall unevenly in different places and throughout the year; the main rainy months
are between December and mid-May, a period considered winter. This inequality in
rainfall is due to the effect of the marine currents of Humboldt and El Niño. Mainly,
two major climatic zones of the Ecuadorian Coast are considered: hot-cool-dry and
hot-hot-humid;

• Andean Climate. The climate of the Andean region is very varied, due to the presence
of the Andes Mountain range and the winds that blow through the valleys and plains.
The following climates, known as climatic floors or steps, are located in this region:
tropical Andean, subtropical Andean, temperate, cold, and glacial;

• Amazonian Climate. In this region, the climate is the same as that of the internal
coast—hot, hot-humid. The temperature varies between 22 and 26 ◦C. This region
is the wettest region of the country being an area subject to abundant precipitation
(>3.000 mm/year). The flanks of the Andes form a densely cloudy area because large
masses of steam from the Atlantic and the Amazon jungle condense.

3. Agricultural Soils of the Ecuadorian Regions

The agricultural production of Ecuador is rich and varied thanks to the fertility pro-
vided by the soil. Some areas with different soil types are suitable for crops or other species
without agronomical interest. In some regions of the country, there are infertile soils due
to the conditions of their existence such as volcanic formations, rocky soils, and presence
of toxic elements that prevent the normal development of plant species. Moreover, there
are regions rich in nutrients suitable for flora and agricultural plantations. The climatic
conditions generated by the geographical location (on the equator), the ocean currents, and
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the influence of the Andes mountain range contribute to great developments and stability
that favor the agricultural sectors of the country [8].

In Ecuador, the soils have been classified at the level of Order according to Calvache-
Ulloa, 2022 [9]. The soil orders and some characteristics are presented in Table 1.

Table 1. Ecuadorian soil types and their characteristics.

Soil Orders Characteristics

Alfisols

• very productive for agriculture due to its relatively high native fertility, moderately leached soils
typically found under hardwood forested areas or mixed vegetation areas that have average
amounts of moisture

• contain eluviation of aluminum and iron suspended in clay particles, has a “clay skin” [10]
• develop mainly in areas with steep slopes with a fairly high drainage, or flat areas with poor

drainage
• in temperate regions, tropical or subtropical zones
• formed under dense deciduous forest vegetation, grasses, meadows

Andisols

• developed on pyroclastic materials deposited by volcanic eruptions
• contain minerals with little crystalline imogolite and allophanes
• weather rapidly, forming amorphous mixtures of aluminum and silicate in sub-humid and humid

regions with a good accumulation of humus
• high natural productivity medium textures (sandy loam, loam, or silty loam)
• moderate to weak structure
• good to moderately excessive drainage
• black soils on the surface and brown with depth [11]
• unique and distinctive characteristics due to the representative materials—andic properties: a low

bulk density, a highly variable load, and a high phosphate and moisture retention capacity, a
variable cation exchange capacity [12]

Aridisols

• in arid regions with a climatic regime where evapotranspiration is higher than precipitation during
most of the year, with an aridic temperature regime. In arid zones, the physical and chemical
reactions of rock alteration occur with less intensity than in humid zones, where temperature and
precipitation favor many of these processes

• contain soluble salts that limit the growth of vegetation
• physical weathering is the main formative process
• daily variation > 30 ◦C between midday and early morning in many cases combined with the lack

of water (because it evaporates quickly) produces physical wear on the rocks favoring rocks
disintegration.

• water content is very low to nonexistent for most of the year, leading to limited leaching
• abundant calcium carbonate making them quite alkaline, and unsuitable for plants that are not

adapted to water stress and extreme drought [13]

Entisols

• appear in areas of ravines with constant alluvium that do not allow development in depth, erosion,
stoniness, excessive thick elements, susceptibility to flooding, and permanent water saturation are
its main problems for use potentially very fertile soils due to the different alluviums received that
support intensive agriculture [14]

Histosols (peats)

• 20–30% organic material
• characterized by low bulk densities (<0.3 g/cm3), low bearing capacity, and subsidence when

drained [15]
• reside in swamps, bogs, and marshes where anaerobic conditions and restricted drainage result in a

low rate of organic matter decomposition relative to production, and this is the reason for their
carbon accumulation, are commonly associated with extremely wet landscapes, extremely acidic
soils, nutrient-deficient, andic properties, and permafrost [16]
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Table 1. Cont.

Soil Orders Characteristics

Inceptisols

• young or incipient soils, slightly acid or slightly alkaline pH, high cation exchange capacity, low to
medium organic matter [15]

• in areas with environmental conditions that facilitate the continuous washing of exchangeable bases
(high rainfall, high temperature, and steep slopes) their base saturation is ~50%, with black surface
horizons and deeper horizons of yellow to reddish color, a product of oxidation [17]

Mollisols

• rich in organic matter, characterized by having a superficial horizone (mollic epipedon) and an
argillic or cambic horizon in their subsoil. pH ranges from strongly acidic to strongly alkaline [18]

• develops in a variety of climatic regimes, from dry to very humid or from warm to very cold
• located in tertiary structural and hilly reliefs of the Coast and the basin floor reliefs with

volcanic-sedimentary fillings of the inter-Andean Valley
• vegetation—grassland, forests
• develop in places with precipitation ranging between 200 and 800 mm/year
• used for the cultivation of cocoa, soft corn, hard corn, sugarcane, beans, fruit trees, and potatoes [9]

Oxisols

• yellow and reddish coloration found in tropical and subtropical regions composed of a mixture of
quartz, free iron oxides, kaolinite, and aluminum [19]

• characterized by low alterable minerals, low cation exchange capacity, low pH, and relatively high
permeability which gives them high resistance to erosion when cultivated [20]

• high mineral content of iron and aluminum oxides allows stabilizing organic compounds through
their surface area and binding sites

• high temperatures and rainfall cause high microbial decomposition resulting in low soil
productivity [21]

• fertilizers are used to compensate for nutrient deficits, phosphorus being the most restrictive
nutrient due to the ability of sesquioxide-rich clays to fix this mineral [19]

Ultisols

• strongly leached acid soils, low native fertility found in tropical and humid temperate areas [15]
• formed by high environmental temperatures, has a thin argillic horizon and a low content of organic

matter and bases (Na, K, Ca, Mg) generally below 2.5% with an accumulation of illuvium clay.
• coloration depends on the degree of Fe hydration, giving reddish brown or reddish tones in its

oxidized form and yellowish brown or yellowish in its hydrated form [22,23]

3.1. Soil Characteristics of the Coastal Region

The soils of the coastal zone contain humic nutrients that provide the growth of
crops. Due to the influence of the tropical climates, the Coastal region is beneficial for the
development of agricultural products. These soils assure a high agricultural production,
which is linked to the economic income of the country and with the commercialization
of products (bananas, cocoa, African Palm, coffee, etc). The Coastal region assures the
food security of the regions of Ecuador as well as to countries where several products
are exported [8]. The physical characteristics of the soil of the entire coastal region allow
its structure to be known and depending on this, which type of crops should be planted.
The characteristic soils of this region are: vertisols, alfisols, entisols, aridisols, mollisols
andisols, and inceptisols (Figure 1). Soil structure is characterized by its texture and organic
matter content. Depending on their structure, the soils from this region are represented by
sand, silt, and clay. This land has the facility for root penetration, aeration, drainage, and
water storage capacity and also has large amounts of nutrients. It is characterized by the
transport of oxygen and carbon dioxide, giving way to a healthy and quality land operation.
The study of the characteristics of the land leads to knowledge of its mineralization and
favorable nutrients for agricultural development, and knowing which land is suitable for
the various products, whether permanent or transitory. Consequently, the differences in
mineral stability will be an important factor in determining the change in mineralogical
composition with particle size. These changes are particularly marked as we approach the
size of the clay fraction [24]. The entisols (in which cocoa and banana crops are found in
the Balao and Naranjal cantons of the Guayas province) occupy an area of 1.324.302 ha,
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which represents 6% of the mapped national territory, with a large part of them located on
steep slopes (>40 to 70%) of the mountainous reliefs. It is worth mentioning that 520.573 ha
has an agricultural purpose [14].
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3.2. Soil Characteristics of the Andean Region

The Andean region includes the areas located over 1300 m.a.s.l. to the peak of the
mountains (the snow limit), of both the eastern and western cordillera of the Andes. The
lower altitudinal limit of the Sierra lowers gradually towards the south of Ecuador, up to
approximately 1000 m.a.s.l. in the province of Loja. It has two mountain chains that run
parallel from north to south and enclose intermediate depressions, approximately 40 km.
wide, in which valleys are separated by transverse chains called knots. It includes different
types of soil: Andisols (potato, cereals), Entisols, (Inceptisols), and Mollisols (legumes,
maize, herbs) (Figure 1) [9].

According to Moreno et al., 2022 [25], the characteristics of the Andean region can be
synthesized in the following geosystems:

(a) Cold peaks of the Andean Mountain ranges, with inherited landscapes and paramo
landscapes with cold or very cold climates and daily night frosts, with volcanic cones
of different ages and little evolved black soils with high contents of organic matter.
The climate does not favor agricultural activity, but these areas are used for extensive
and localized sheep grazing;

(b) External slopes of the Andes, with vigorous and highly dissected modeling on various
ancient rocks. The climate is humid to very humid with the presence of heavy cloud
cover, conditions that have favored the formation of perennial arboreal zones. The
soils are ferralitic with a partial cover of recent volcanic ash and are rejuvenated
by erosion;

(c) Inter-Andean basins in the north of the Sierra with volcano-sedimentary fills, where
the volcanic morphogenesis promoted by the presence of large recent and active stra-
tovolcanoes is evident. The soils in this area have developed widespread pyroclastic
coatings and are subject to intense agricultural activity;

(d) Inter-Andean basins in the center of the Sierra with ancient, volcanic, and metamor-
phic basements, where there are no volcanoes or recent pyroclastic coatings. The
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area is fragmented into two sets of parallel sedimentary basins whose coverage is
distributed in a topo-climo sequence where the soils of the upper part are ferralitic,
often humiferous, those of the middle zone are moderately evolved with mollic or
vertic characteristics, and those of the lower zone are little evolved;

(e) Indentations and inter-Andean River valleys with relatively rich alluvial soils in the
valleys and on which there is diversified agricultural activity;

(f) Reliefs of the Sierra Austral of ferralitic-fersialitic soils, located in a paleo-topo-climo-
edaphological sequence of large valleys and orthogonal depressions where the climatic
stratification from humid to arid is clear.

The soil-forming factors are mainly the following: parent material, relief, climates,
organisms (flora and fauna), and time. Volcanic ashes constitute, for the most part, the
source material of soils, determining certain special characteristics due to the existence of
a wide climatic variation. These pyroclastic materials come from the active volcanism of
the Quaternary; however, the ashes do not have the same characteristics, since there are
layers from different volcanoes and eruption times, determining the existence of differences
in the soils. In the Interandean Alley, rainfall is generally related to altitude. Thus, they
become drier in the lower part of the basins, and more humid as one ascends the flanks of
the mountain range. In the Inter-Andean Alley, the types of reported are Entisols, Vertisols,
Inceptisols, Mollisols, Histosols, alfisols, and Andisols [11].

3.3. Soil Characteristics of the Amazonian Region

The Ecuadorian Amazon Region represents the largest natural region of Ecuador with
approximately 45% of the National territory. Due to its natural forests and extraordinary
biodiversity, it constitutes an ecosystem of great local and global interest. From the per-
spective of sustainable and agroecological management, any future production system
which will be developed in the Amazon must be based on uses compatible with the forest,
since more than half of the territory (52.7%) has the potential for such use. Extremely rainy
weather conditions, with poorly fertile soils that are susceptible to nutrient leaching and
erosion, would explain the region’s poor suitability for traditional agricultural activities, but
its suitability for productive systems analogous to the forest for conservation systems [26].

The most representative soil orders present in the Amazon region are Inceptisols,
Entisols, Histosols, and Mollisols (Figure 1). There are large areas with a pH lower than 5.5,
which denotes a limitation for the proper development of crops in this area [27].

4. Main Crops of Commercial Interest Cultivated in Ecuador

Since its foundation, Ecuador has based its production on primary resources: cocoa,
bananas, coffee, tuna, flowers, shrimp, and others that are obtained directly from nature
and whose commercialization does not involve further transformation or added value.

The agricultural sector is of great importance since it is one of the activities that gener-
ates the most income, contributing to the generation of employment, and is a fundamental
pillar of the national economy [28]. According to the survey of surface and continuous
agricultural production (ESPAC) of the year 2021, Ecuador has 12.32 million hectares of
land used for permanent crops, of which 47.91% corresponds to forests and woodlands. Of
the cultivated area, cocoa employs 41.83%, followed by African palm and banana. Banana
and African palm are appreciated as fresh fruit, while cocoa is appreciated as a dried
almond [29].

4.1. Banana (Musa sp.)

Species belonging to the Musaceae family are perennial crops characterized by a rapid
growth rate and are the main staple food in tropical and subtropical countries [30]. With
respect to the total value of production in more than 120 developing countries and with
>106 million t/year, banana is considered the fourth most important food in the world after
rice, wheat, and milk [31]. The main producers are China, India, the Philippines, Indonesia,
and Ecuador [32].
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In Ecuador, banana (Musa AAB variation) is considered a crop of growing socioeco-
nomic importance as the fourth largest producer of this fruit in the world (7.931.000 t/year),
besides being the second most exported product after petroleum [33]. Banana represents
one of the most important non-oil exports in Ecuador, recognized worldwide for its flavor
and excellent quality, making Ecuador a world competitor in the export of this tropical
fruit [34]. Bananas are produced on the Coastal region, mainly in the provinces of El Oro
(41%), Guayas (34%), and Los Ríos (16%) [7].

Banana is a vital crop susceptible to pathogenic factors and several environmental
stresses that negatively affect its growth and yield, such as increases in global temperatures,
drought, salinity, pests, and diseases [30].

4.2. Cocoa (Theobroma cacao)

Theobroma cacao (Malvaceae family) is a perennial plant native to Central and South
America. It grows in tropical zones at temperatures between 24 and 26 ◦C, where the soils
are loamy and deep.

Temperature, relative humidity, and rainfall are determining factors in cocoa produc-
tivity. The ideal environmental conditions for cocoa cultivation are represented by 15–32 ◦C,
and 1500–3000 mm water. A rainfall below 1500 mm demands additional supplemental irri-
gation with water, while rainfall above 3000 mm leads to susceptibility to infections caused
by microorganisms such as Phytophthora palmivora [35]. According to Minimol et al. [36]
extremes of hot or cold temperatures influence cocoa flowering, which is consequently
reflected in production yields, rainfall promotes flowering, and in the summer season
pollen fertility, stigma receptivity, and flowering are lower than in the raining season. The
ideal relative humidity (RH) for cocoa is in a range between 70 and 80%, with a higher
RHs, susceptibility to pathogens has been seen, and with lower values plant defoliation
is induced due to the leaves becoming soft and falling. Another factor is shade, which
modifies the microclimate of crops; however, it has been seen that cocoa yields are favored
in areas with little shade, where exposure to sunlight is allowed [37].

In Ecuador, cocoa is mainly grown in the coastal region in the provinces of Manabí,
Los Ríos, Guayas, and Esmeraldas. In the Sierra, cocoa is also grown in the provinces of
Cotopaxi, Bolivar, and Cañar, but with less participation than the coast. The Amazon region
also grows this fruit in the provinces of Orellana, Sucumbíos, and Napo; however Zamora
Chinchipe has also made its way onto the map of fine aroma cocoa producers [38].

As a raw material, cocoa is classified into two types: Cacao Fino de Aroma, Cacao Nacional
or High flavor and Cacao CCN51, “bulk” or “common”. A total of 87% of its production is
destined for exports as beans with the United States, Holland, Mexico, Indonesia, Germany,
and Belgium as destination countries [38].

4.3. African Palm (Elaeis guneensis Jacq.)

The African Palm is a crop that takes 2 to 3 years to bear fruit and is able to produce for
25 years. It is one of the 17 main oils and fats produced worldwide thanks to its profitability,
especially when produced in lowlands of tropical regions. In Ecuador, the palm-producing
areas are located in the provinces of Esmeraldas, Santo Domingo, Los Ríos, Sucumbíos,
and Pichincha, generating two types of oils as products: African palm oil and African palm
kernel oil [39]. Palm production is developed in different areas by small producers (in San
Lorenzo and Shushufindi) or by large producers (in Esmeraldas and Sucumbíos). In 2021,
African palm generates USD 139.3 million and the province of Esmeraldas has the highest
production (37.81%) [40].

5. Soil Characteristics Necessary for the Optimum Cultivation of Crops

Ecuador is an eminently agricultural country with large amounts of fertile and produc-
tive land. Agricultural production can generate a transformation in the quality of the soil
that existed before the processes of obtaining food, either due to inadequate management
of the systems, lack of technology, or the ecosystem itself.
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5.1. Banana

Bananas are grown on various types of soils that can be fertile, such as inceptisols with
a high potassium storage capacity and andisols with moderate potassium release, and can
even be grown in soils with low fertility such as ferrasols and acrisols.

The conditions for the good development of banana crops are shallow soils, free of
loams or clays (>60% clay) and the avoidance of extreme waterlogging (bananas do not
tolerate). The best pH range for good banana growth is 5.5–8.0 (Figure 2). A low pH (4.5)
reduces the yield by up to 50% due to the low availability of important nutrients such as
phosphorus, especially in old tropical soils that fix phosphorus. Nutrient requirements
for banana are in the following order: potassium > nitrogen > phosphorus. In addition, it
requires significant amounts of calcium and magnesium [41].
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5.2. Cacao

Cocoa is a crop whose yield is particularly dependent on the level of light (low light,
low yields). The environmental conditions that favor cocoa plantations are temperatures
between 23 and 25 ◦C, rainfall between 1200 and 1300 mm/year, and humidity between
70 and 85% (Figure 2). Regarding crop altitude, cocoa is produced in a range from 0 to
1400 m.a.s.l. in areas closer to the equator, requiring soils with a deep and loamy loam to
clay loam soils with good water retention, fertile, a percentage of organic matter of at least
3%, and a pH between 6 and 7. Soils that should be avoided for cocoa production are those
located on steep slopes or those that are stony, shallow, sandy, near the sea, or very clayey
soils. Marshy soils are also not suitable for this type of crop [42].

5.3. African Palm

The cultivation of African palm contributes to the generation of jobs and favors the
national economy; therefore, the determination of its agroecological conditions is very
important for the efficient development of the plant. Oil palm crops are grown on flat
land with slight undulations or on gentle slopes, where the soil type is loam, silt loam,
clay loam (<35% clay), silty clay loam, sandy clay loam, sandy clay loam, or silty clay
loam, without stones or with few rocks. Palm crops are established in an altitudinal range
from 0–600 m.a.s.l. at a temperature that can range from 24 to 26 ◦C, in soils with a
slightly acidic (5.6–6.5) or neutral (6.5–7.5) pH, with salinity less than 2 dS/m, in areas with
2400–3000 mm/year, and a medium to high fertility level [42] (Figure 2) [43].



Toxics 2023, 11, 123 9 of 21

6. Nutritional Composition of Agricultural Soils

The soil characteristics are very important to avoid diseases and are essential for the
reproduction, growth, and development of the plant species. The characterization of the
soil shows the overexploitation of the activities that involve agricultural and livestock
activities [9]. Soil fertility depends on the interaction between physical properties (flow of
water, air, and nutrients through the pores), chemical properties (pH, cation exchange), and
biological properties that directly affect the availability of nutrients to plants [44].

Plants require micro- and macronutrients that are obtained from the soil or through
fertilizers and manure. The main processes involved in the release and fixation of nu-
tritional elements in soils include dissolution, precipitation, and adsorption–desorption.
Macronutrients required by plants in large quantities are nitrogen (N), phosphorus (P), and
potassium (K). Elements such as iron (Fe), manganese (Mn), and zinc (Zn) are required
in smaller amounts and are called micronutrients [44]. The plant requires 17 elements to
complete its cycle successfully through air and water to obtain essential nutrients such as
carbon (C), nitrogen (N), and oxygen (O).

The amount of minerals and nutrients can be influenced by their taxonomy and by
the organic matter that will contribute to the fertility status [45]. Human activities with
extractive and intensive agricultural practices have generated soil degradation, negatively
affecting fertility and productivity; consequently, there are nutrient deficiencies in harvested
crops. Nutrient availability may also be limited by natural deficiencies, as nutrients are
highly immobilized in the solid phase or soil weathering processes [44].

Knowledge of the agroecological requirements of plants serves as a basis for the
proper management and development of food crops. In turn, environmental conditions
have a determining effect on crop productivity. Factors such as light, temperature, soil, and
nutrients are important aspects of crop management [46]. All factors are correlated, and
this relationship can influence the biological traits of the plant. Precipitation can contribute
to plant height, while soil nutrients influence leaf size, leaf area, seed size, and respiration
rate, among others.

In Table 2 the edaphic characteristics and climatic factors necessary for the main crop
development in Ecuador are shown.

Table 2. Characteristics of the edaphic and climatic factors for the ideal development of the crops of
commercial interest.

Crops Edaphic Characteristics Climatic Factors

Banana

• soils with good drainage, relative heterogeneity,
with a good water requirement, a high available
K content [47]

• warm zones, the average annual temperature of
28 ◦C, with extremes of 18 and 35 ◦C.

• water requirement: 150 mm/month average
• supplementary irrigation is sometimes necessary
• about 1500 h of light/year
• below 300 m.a.s.l. [47]

Cocoa

• loam to sandy loam texture at a depth of 0.6 m
• deep, fertile, and drained, rich in organic matter
• pH should be close to neutral
• abundant organic matter [42]

• the humid tropics
• 1250 mm annual rainfall average
• optimum temperature 24–26 ◦C
• altitudes below 1300 m.a.s.l. [42]

African palm

• clay loam to silty clay loam soils, flat or slightly
sloping with a depth of 0.60 m

• pH between slightly acidic (5.6–6.5) and
practically neutral (6.5–7.5)

• well drained with a salinity of less than
2 dS/m2 [48]

• not less than 200 mm rainfall/month on average
• average annual temperature 25–28 ◦C; can grow

at 22–33 ◦C.
• approximately 1400 h of light/year
• altitude not higher than 600 m.a.s.l. [48]
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7. Importance of Nutrients in the Plant Metabolome

The plant metabolome represents the primary (sugars, amino acids, fatty acids, etc.)
and secondary metabolites (terpenes, flavonoids, phenolic compounds, etc.), which are
direct implicated in the different growth and development processes of the plants. Ade-
quate plant growth requires nutrients, energy, and a good biosynthetic capacity, factors
that are influenced by different environmental factors. Minerals are directly involved in
plant defense by forming a structural part of different types of molecules. A deficiency
or excess of any of the nutrients required by plants for proper development can induce
changes in the architecture of these organisms as a strategy to capture as much nutrients as
needed [49]. The minerals in the plants’ metabolome is summarized in the Table 3.

Table 3. Critical information on nutrients in relation to plants after Karthika et al. [50].

Nutrient Plant-Usable Form Average Concentration in
Plant Tissue Biochemical Functions

Nutrients that are part of carbon compounds

N NO−3 , NH+
4 1.50% Constituent of amino acids, amides, proteins, nucleic acids,

nucleotides, coenzymes, hexoamines, etc.

S SO2−
4 0.10%

Component of cysteine, cystine, methionine, proteins, lipoic
acid, biotin, coenzyme A, adenosine-5′-phosphosulphate,
glutathione

Nutrients that are important in energy storage or structural integrity

P H2PO−4 , HPO−4 0.20%
Component of sugar phosphates, nucleic acids, nucleotides,
coenzymes, phospholipids, phytic acid, etc. Has a key role
in reactions that involve ATP

B H3BO3
−, H2BO3,

HBO2−
3 , BO3−

3
20 mg/Kg

Complexes with mannitol, mannan, polymannuronic acid;
constituents of cell walls; involved in cell elongation,
nucleic acid metabolism

Si Deposited as amorphous silica in cell walls; contributes to
cell wall mechanical properties (rigidity and elasticity)

Nutrients that remain in ionic form

K K+ 1.00% Required as a cofactor for more than 40 enzymes, cation
used in establishing cell turgor

Ca Ca2+ 0.50%
Constituent of the middle lamella of cell walls; second
messenger in metabolic regulation; cofactor by some
enzymes involved in ATP hydrolysis and phospholipids

Mg Mg2+ 0.20% Required by many enzymes involved in phosphate transfer.
Constituent of the chlorophyll molecule

Cl Cl− 100 mg/Kg Required for the photosynthetic reactions involved in O2
evolution

Mn Mn2+ 20 mg/Kg

Required for activity of some dehydrogenases,
decarboxylases, kinases, oxidases, and peroxidases.
Involved with other cation-activated enzymes and
photosynthetic O2 evolution

Na
Involved with the regeneration of phosphoenolpyruvate in
C4 and CAM plants.Substitutes for potassium in some
functions
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Table 3. Cont.

Nutrient Plant-Usable Form Average Concentration in
Plant Tissue Biochemical Functions

Nutrients that are involved in redox reactions

Fe Fe2+ 100 mg/Kg Constituent of cytochromes and non-haem iron proteins
involved in photosynthesis, N2 fixation, and respiration

Zn Zn2+ 20 mg/Kg Constituent of alcohol dehydrogenase, glutamic
dehydrogenase, carbonic anhydrase, etc.

Cu Cu2+ 5 mg/Kg
Component of ascorbic acid oxidase, tyrosinase,
monoamine oxidase, uricase, cytochrome oxidase,
phenolase, laccase, and plastocyanin

Mo MoO2−
4 0.1 mg/Kg Constituent of nitrogenase, nitrate reductase, and xanthine

dehydrogenase

Ni Ni2+ 0.1 mg/Kg Constituent of urease. In N2-fixing bacteria, constituent of
hydrogenases

H H2O 6%

O H2O, O2 45%

C CO2 45%

Nutrients are considered as the first line of defense against pests by activating enzymes
or producing metabolites such as lignin, phytoalexins, and phenols. N, P, and K are the
most studied minerals because they are usually not available in crop soils and because
they represent several benefits to plants. Minerals such as Mn, Fe, Cu, and Zn, called
micronutrients present different functions that support plant defense. Manganese is part
of the structure of some secondary metabolites such as phenolic compounds. Nickel
is involved in the activity of the antioxidant system and zinc like iron is involved in
mechanisms against pathogens. When there is an imbalance with zinc deficiency, plants
generate reactive oxygen species (ROS) as a defense against pathogen attack; however, ROS
are known to be the reason why growth is inhibited in plants [50,51].

7.1. Antioxidants as Plant Defense Systems

Processes such as photosynthesis and respiration, as well as the regulation of ROS
production for defense purposes, have been described as essential mechanisms for the
adaptation of plants to terrestrial ecosystems, due to the release of oxygen, impacting the
evolution of the processes of life on the planet. ROS molecules are highly toxic when they
accumulate in cells and may damage DNA, proteins, and lipids. However, ROS have been
shown to be essential in growth and development processes, stomatal movement, and
plant–microorganism interactions [52].

Plants are extremely rich in compounds with antioxidative activity, and their presence
is ubiquitous. Antioxidants are molecules capable of inhibiting or quenching free radical
reactions and delaying or preventing cell damage, and, in lower concentrations than the po-
tential substrate which might be oxidized, significantly delay or hinder its oxidation. It has
been reported that antioxidants can be classified as water-soluble (ascorbate, glutathione,
and phenols), and liposoluble (tocopherols, tocotrienols, and carotenoids) which act as the
foremost prominent low relative molecular mass antioxidants [53].

The synthesis and accumulation of phytochemicals in plants depend on several factors,
including genetics, environmental factors (microclimate, location, growing season, soil
type, and nutrients), post-harvest storage, and processing conditions. Mineral composition,
soil type, temperature, light, and water content are among the frequently reported factors
that affect the total phytochemical content in plants [54].
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7.2. Plant Diseases Caused by a Deficit or Excess of Nutrients in Soil

Plants require sunlight, water, and nutrients for the correct development of their
metabolism. Nutrients are required to supply the needs of the plant, play a fundamental
role in the life cycle, and are involved in plant nutrition. Mineral nutrients are struc-
tural/functional constituents of enzymes or can act as activators and regulators [55]. Nutri-
ent deficiency or toxicity in plants is a consequence of their availability and demand and are
influenced by their relative mobility. The movement of the necessary elements to the root
for plant development depends on the concentration gradient formed by the absorption
and utilization of elements, root interception, and mass flow. In addition, the distribution of
necessary inorganic elements in the plant is carried out by the xylem and phloem; transport
which varies with plant species [56]. Macronutrient deficiency affects plant metabolism
and photosynthesis by reducing electron carriers, decreasing CO2 capture, and decreasing
the efficiency of metabolic pathways. Macronutrient deficiency is related to the production
of reactive oxygen species which can affect normal plant development [57].

Nutrient availability is influenced by the decomposition processes of organic matter,
fertilizers, soil chemistry, contaminants, leaching, erosion, and weathering of rocks. Soil–
plant interactions are influenced by ionic activity in the soil solution [58]. Nutrient toxicity
occurs when the level of soluble nutrients in the soil exceeds its tolerance threshold. The
osmotic effect due to Na+ in soil causes stomatal closure, reduces transpiration, disturbs
plant water status, and inhibits leaf expansion, while the specific ion effect reduces the
plant’s ability to uptake other ions such as Ca2+, K+, and Mg2+, affecting the distribution of
essential nutrients in plants resulting in the premature senescence of leaves, yield reduction,
and plant death [59].

There is a dynamic equilibrium between nutrient reserves and the soil solution, which
is influenced by the rate of ion replenishment (capacity factor) of the soil and by its ionic
activity (intensity). The interaction between capacity and intensity depends on pH and
soil structure. The pH affects the availability of micronutrients and can lead to nutrient
toxicity. In very acidic soils, the pH generates manganese toxicity, aluminum toxicity, and
molybdenum deficiency. In alkaline soils, boron toxicity and deficiency of iron, zinc, and
manganese occur [58].

The production of phenolic compounds in Theobroma cacao varies depending on the
area and variety of cocoa grown as reported by Alvarez et al. [60] who indicated that
depending on the cocoa genotype, soluble phenolic compounds and total phenols are
higher in humid tropical areas and dry forests compared to semi-humid areas. This
variation is associated with the plasticity of cocoa to adapt to the areas where it is are grown.
In addition, it is also known that the production of phenols is a response of the plant to
water stress [61]. However, more studies are needed to differentiate the type of phenols
produced in each case.

Recent studies have reported that nutrient imbalance due to excess fertilizer causes
variation in the production of secondary metabolites. In the case of nitrogen, an excess of
this nutrient reduces the production of phenolic compounds and flavonoids [62]. However,
soil enrichment with nutrients (N, P, and K) as well as an attack by pathogens induces an in-
crease in the activity of glucanase, peroxidase, and chitinase enzymes, leading to an increase
in the amount of alkaloids, terpenes, and phenolic compounds, especially phytoalexins
that help in the defense of palm plants against pathogen attack or preventing insects from
taking it as food [63]. Deficiencies of P, S, and Mg increase phenol concentrations [64].

Zn phytotoxicity becomes visible from a foliar concentration above 300 mg/kg, mani-
festing in yield reduction, growth retardation, reduced export of photo-assimilates from
leaves to roots, and chlorosis caused by Fe deficiency due to reduced chlorophyll synthesis
and chloroplast degradation (Figure 3) [51].
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Nitrogen excess or deficiency can negatively influence the plant metabolism (Figure 4).
An excess of nitrogen produces a darker green coloration on leaves, promoting a heady
growth in length, and can also induce succulent growth (in thickness), making plants
prone to insect, pest, and disease attacks [50]. Nitrogen-deficient growth media results
in decreased contents of photosynthetic pigments (chlorophyll and carotenoids), thereby
reducing the photosynthetic performance (particularly CO2 assimilation). Nitrogen defi-
ciency or excess increases the production of reactive oxygen species (ROS) in plants, which
results in the lipid peroxidation of cell membranes [65].
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Nitrogen and phosphorus deficiencies directly affect phenylpropanoid accumulation
and lignification [64].

Potassium has a vital role in nitrogen metabolism (Figure 5), ensuring the optimal
plant growth [66], playing a role such as the activator of enzymes, is very important for cell
growth, stimulates and controls ATPase in the plasma membrane, regulates cell osmotic
pressure, and regulates the stomatal opening and closing [67]. A pH 6.5–7.5 assures the
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most K availability to plants. While an excess of K has no effects on plants, the K deficiency
may be observed in the yellowing of the older leaf continuing with necrosis [68].
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Sulfur toxicity problems are unusual but can occur in saline soils with excess sulfate
salts. As a result of industrial activities and coal burning, atmospheric sulfur can increase
in concentration to over 50 ug/m3, concentrations that produce foliar necrosis (Figure 6),
leading to plant death [50].
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Iron toxicity (Figure 7) is considered severe when leaf coloration turns purple–brown.
It causes growth retardation, affects the root system by reducing its quantity, and rough
and damaged roots of dark brown or black color can be observed [50]. Although Fe is
present in sufficient amounts in the soil, under alkaline conditions its bioavailability is
limited. When there is a depletion of Fe, chlorophyll and other photosynthetic pigments,
such as anthocyanins and carotenoids, decrease as Fe is essential for their biosynthesis [69].
Iron deficiency induces the plants’ ability to down-regulate the gene expression of nitrate
reductase and glutamate synthase, accompanied by a greater accumulation of organic acids
and flavonoids. In cases of Fe excess, a positive regulation of the genes related to peroxidase
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against the toxicity of this micronutrient has been reported [70]. The common levels of iron
in banana plantations are variable with averages of 404, 367, and 284 ppm at the foliar level
in banana farms with intensive production. In the dry season, Fe comes into contact with
the air and oxidizes, making nutritional imbalance possible by precipitating in cultivated
soils. The iron availability for the banana plant depends on the pH of the soil; in acidic soils
it is easily available, while in alkaline or neutral soils Fe is insoluble, causing its deficiency
in the plants. Iron excess toxicity in bananas (consisting of the marginal necrosis of old
leaves) is rare and can happen in the clayey soils with little oxygen and rainy seasons [71].
Low soil levels of Fe can increase the release of phenolic acids from roots [64].
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The synergism or antagonism of elements such as Ca, K, Mg, and Fe are affected by
the pH and how it influences the absorption of water and nutrients from the soil. The pH
is affected by organic matter and how organic matter increases the Fe content in complex
ways. The deficiency of the iron element is observed in calcareous-type soils, with a high
Mn content and poor drainage. The rapid oxidation of Fe allows oxides and hydroxides
to form in soils with different compositions, degrees of oxidation, and therefore different
solubilities that affect assimilation by the plant. The high concentration of iron causes
phosphorus retention and consequently a nutritional imbalance in the plant species [71].

Boron mediates the change in the concentration and metabolism of phenolic com-
pounds in vascular plants; its deficiency causes an increase in the concentration of phenols
due to the stimulation of the enzyme phenylalanine-ammonium lyase (PAL). On the other
hand, it also produces qualitative changes in its phenolic compounds [72]. Boron deficiency
in plants causes a series of difficulties in their development due to the role it plays. This ele-
ment is responsible for stimulating, inhibiting, or stabilizing enzymes, being relevant in the
transport of sugars across the membrane, the metabolism of auxins, nitrogen compounds
and phenols, as well as the synthesis of lignin and flavonoids. It has been observed that its
insufficiency causes a deficit of the pyrimidine base, hindering DNA synthesis, translation,
and transcription, as well as the growth and differentiation of plant tissues. Photosynthetic
capacity and transport of photosynthetic products is also affected [73]. Boron toxicity occurs
in areas with arid and semi-arid soils with 5 ppm of boron, a concentration considered
toxic for several types of crops. When there is boron intoxication, plants show yellowing
from the tips of the leaves that progresses to premature necrosis and when they die the
leaves fall. Another symptom is the appearance of black spots on old leaves [50].

Phytotoxicity caused by boron affects growth parameters with more pronounced
effects on shoots than on roots [70]. In banana plants, excess boron is immobilized to a
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greater extent by the phloem in the leaf margins than in the roots or stems, in order to keep
it away from metabolic sites. In addition, some toxicity tests with boron have reported that
K, Mn, and Cl concentrations are lower, while Ca and Mg concentrations are higher in the
leaves of control plants compared to those treated with B excess [50]. In banana plants,
boron in excess is immobilized to a greater extent by the phloem in the leaf margins than in
the roots or stems, in order to keep it away from metabolic sites.

Magnesium is an essential micronutrient involved in the structure of proteins and
photosynthetic enzymes. Mg can cause toxicity in flooded soils, which have a reduced
character and also in acid soils with pH < 3. The effects of Mg toxicity on plants are initially
observed in older leaves where brown spots occur (Figure 8). In cocoa, Mg toxicity is
manifested by yellowish or pale green irregular spots that in this particular case initially
affect the young leaves [50]. Its deficiency is observed in dry, calcareous, and sandy soils,
reducing crop yields [70].
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Plants have calcium in an average concentration of 125 µmol/gram of dry weight.
Ca2+ is generally found in soil but it is relatively insoluble (e.g., CaCO3) in its prevalent
form. There are some species (e.g., Trichoderma) which have the capacity to acidify the sur-
rounding environment by secreting organic acids, in this way solubilizing the phosphates,
micronutrients, and mineral cations. From the other side, the simultaneous addition of cal-
cium cations together with biocontrol agents improves the activity of biocontrol agents, that
is, through a synergistic act [74]. Calcium enters the plant cells through Ca2+—permeable
ion channels in their plasma membranes [75]. Calcium is necessary as a component of the
cell wall and to neutralize anions. Calcium deficiency can cause a light green color on the
uneven chlorosis of young leaves, brown scorching of new leaf tips, poor root growth, and
short and thickened roots [76]. The direct role of Ca2+ in the synthesis of polyphenolic
compounds has been demonstrated and Ca2+ supplementation has been shown to increase
antioxidant activity in plants [74] (Figure 9).
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Copper is one of the essential minerals for plant development. It is related to regula-
tory proteins, acts as a structural element, and participates in numerous processes of the
plants such as photosynthetic electron transport, oxidative stress responses, mitochondrial
respiration, and hormonal signaling [77]. Chlorosis is the main manifestation of copper tox-
icity, being superficially similar to iron deficiency, in addition to inhibiting root growth [50].
Although it is a relevant micronutrient in growth media and important in several bio-
chemical and physiological pathways, its presence in high concentrations makes it toxic
to plants. Cu ions have a stimulating effect on the production of secondary metabolites
in plants. Normally, copper in soil has been found to induce the synthesis of alkaloids,
shikonin synthesis, and betalain and digitalin production. At higher concentrations, Cu2+

may indirectly act as a prooxidant [74].
Nickel is higher in excessively humid soils with low humus content and in soils of light

granulometry. When soils have a low pH, Ni becomes more accessible to plants. An excess
of nickel hinders plant transpiration and decreases moisture content, stomatal conductance,
chlorophyll synthesis, and the rate of photosynthesis. Enzymes involved in the Calvin cycle
are negatively affected and plant growth is inhibited. Among the symptoms manifested by
the plant are chlorosis, yellowish streaks on leaves or white leaves, and necrosis from the
edges of the leaves [50].

Chlorine toxicity is usually observed in saline soils, manifested by leaf damage, with
burns from the tips or margins, bronzing, leaf abscission, and premature yellowing leading
to a low yield and quality of later growth stages [50].

The aspects highlighted by us are consistent with those found by Meya et al., 2020 [78],
Mihai et al., 2022 [79], Behera et al., 2021 [80], etc. In the case of banana, Meya et al., 2020 [78]
proved that there were significant differences between banana growth from three different
altitudinal gradients in volcanic soils; also, fertilization with N in different concentrations
showed differences in the studied aspects. In the case of cocoa, Mihai et al., 2022 [79]
underlined that there were differences concerning the phytochemical composition and
antioxidant and sensory properties of the Arriba variety of cocoa beans originating from
different geographical regions of Ecuador depending on nutritional soil status. Behera et al.,
2021 [80] indicated the importance of the optimum nutrient concentrations (K, Ca, and Mg)
in soils to ensure proper vegetative growth [81].
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8. Conclusions

Ecuador, due to its edaphic and climatic characteristics, is characterized by a high
biodiversity and also is an important source of crops of commercial interest (banana, cocoa,
and African palm) highly exported to the rest of the world.

There are many studies which have confirmed that an excess and deficiency of nutri-
ents leads to major problems regarding the culture of the crops.

For better growth and development but also protection (against pathogens) in relation
to plant species of economic interest, extensive research on the interaction of nutrients from
the soil and plant is needed.
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