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Abstract: In recent years, there has been growing concern about antibiotic contamination in water
bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat
to ecosystems due to their extensive use and the phenomenon of “pseudo-persistence”. This arti-
cle provides a comprehensive review of the literature on FQs in water bodies, summarizing and
analyzing contamination levels of FQs in global surface water over the past three years, as well as
the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity,
and the influencing factors. The results show that FQs contamination is widespread in surface
water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy
contaminants. Furthermore, contamination levels are generally higher in developing and developed
countries. It has been observed that compound types, species, and environmental factors influence
the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate
more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit
the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and
analyzes the current research status and shortcomings of FQs, providing guidance and theoretical
support for future research directions.
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1. Introduction

In recent years, antibiotics have played a pivotal role in controlling bacterial infec-
tions, reducing mortality rates, and extending human lifespans. Consequently, antibiotics
have gained widespread application across medical, pharmaceutical, and livestock sec-
tors [1,2]. Studies have shown that upon entering the body, antibiotics undergo incomplete
absorption, with almost 70% being excreted as either parent compounds or metabolites [3].
Consequently, these antibiotics continually infiltrate aquatic environments through wastew-
ater discharges and surface runoff, establishing a “pseudo-persistent” state [4]. As a result,
organisms inhabiting marine ecosystems may be subjected to long-term drug exposure.
Fluoroquinolones (FQs) represent a class of chemically synthesized antibacterial drugs used
for the treatment of both Gram-negative and Gram-positive bacteria. Their physicochemical
properties are shown in Table S1 [5–9]. Due to their broad spectrum of antimicrobial activity,
strong bactericidal ability, high oral absorption efficiency, and lack of cross-resistance with
other antibacterial drugs [10,11] FQs have found extensive use in medical, livestock, and
aquaculture industries [2,12]. Therefore, FQs have emerged as one of the primary residual
antibiotics in aquatic environments.

Toxics 2023, 11, 966. https://doi.org/10.3390/toxics11120966 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics11120966
https://doi.org/10.3390/toxics11120966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://doi.org/10.3390/toxics11120966
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics11120966?type=check_update&version=1


Toxics 2023, 11, 966 2 of 22

Currently, researchers have detected nearly 10 residues of FQs in surface waters of China,
Spain, Brazil, Malaysia, and Kenya, with concentrations ranging from ng/L to µg/L. Notably,
surface water near Juja in Kenya has been found to have high residue concentrations of
ciprofloxacin (CIP) (75.70 µg/L) and norfloxacin (NOR) (52.60 µg/L) [4,5,13–16]. FQs in water
can enter organisms through bioaccumulation. Significant residues of FQs have been detected
in various aquatic organisms, such as phytoplankton, zooplankton, zoobenthos shrimp, and
fish (ranging from non-detectable (ND) to 342 ng/g dry weight (dw)) [4]. Previous studies
have shown that FQs can form multiple metabolites in organisms under the catalysis of
relevant enzymes [17,18]. Both the parent compounds and metabolites of FQs may have
toxic effects on organisms [19]. Therefore, it is necessary to further investigate the occurrence,
bioaccumulation, metabolism, and toxicity of FQs in aquatic environments to determine their
ecological risks. Currently, there have been several studies that have provided a compre-
hensive review of the occurrence and biological toxicity of FQs in aquatic environments [20].
These studies have analyzed the impact of FQs on ecosystems and human health from the
perspectives of national income, environmental conditions, and synergistic effects with other
pollutants [20–23]. However, these studies mainly focus on the pollution status of FQs re-
ported before 2020, with limited discussions on the accumulation and metabolism patterns of
FQs in aquatic organisms. Therefore, it is necessary to further investigate the latest pollution
status of FQs in aquatic environments, especially in terms of accumulation, metabolism, and
toxicological impacts, in order to assess their ecological risks by monitoring their long-term
pollution status.

This study aimed to compile and analyze the concentrations of 15 frequently encoun-
tered FQs in global surface water since 2020. The FQs included CIP, ofloxacin (OFL), NOR,
enrofloxacin (ENR), lomefloxacin (LOM), danofloxacin (DAN), pefloxacin (PEF), flerox-
acin (FLE), marbofloxacin (MAR), sarafloxacin (SAR), enoxacin (ENO), difloxacin (DIF),
levofloxacin (LEV), moxifloxacin (MOX), and flumequine (FLU). At the same time, this
study explored and summarized the bioaccumulation, metabolism, biological toxicity, and
influencing factors of these antibiotics in organisms.

2. The Pollution Status of FQs in Surface Water

In this study, a search was conducted in the Web of Science database (http://www.
webofknowledge.com/, accessed on 31 August 2023) using the keywords “fluoroquinolones
occurrence surface water” to retrieve relevant literature. Publications from 2020 to 2023
were collected. The concentrations of 15 common FQs (CIP, OFL, NOR, ENR, LOM, DAN,
PEF, FLE, MAR, SAR, ENO, DIF, LEV, MOX, and FLU) mentioned in the literature were
compiled in Table S2. Based on these data, the average and maximum concentrations of
the FQs were plotted in Figures 1 and 2, respectively. When multiple values were reported
in the literature, the mean value was given priority, followed by the median value. If the
mean or median value was not provided in the publication, it was calculated using the
raw data to ensure equal weight for each study in the graph. For values below the limit of
quantification (LOQ), half of the LOQ value reported in the corresponding literature was
used for calculation [24].

This study documented the concentration distribution of 15 FQs in surface water from
32 countries (Tables 1 and S2). According to the “Human Development Report” published
by the United Nations in 2020, this study classifies the countries mentioned in the literature
into two categories developing countries and developed countries to facilitate research
analysis [25]. Significant variations in antibiotic concentrations were observed between
different countries and regions, with generally higher FQs levels found in surface water
from developing countries compared to developed ones. Notably, surface water in India
displayed high concentrations of CIP at 542.45 µg/L [26] and Kenya at 75.70 µg/L [16].
The Mediterranean waters of Tunisia exhibited elevated levels of ENR (20.70 µg/L) and
NOR (40.20 µg/L) [27]. Additionally, FQs were detected in surface water from developing
countries such as Turkey [28], Bangladesh [29], Brazil [30], and China [31–38], with average
concentrations in the tens of µg/L. In contrast, lower FQs concentrations were detected in

http://www.webofknowledge.com/
http://www.webofknowledge.com/


Toxics 2023, 11, 966 3 of 22

surface water from developed countries, peaking at only a few µg/L. For instance, in the
Charmoise River in France, the maximum concentrations of CIP and OFL were 1.52 µg/L
and 2.89 µg/L, respectively [39]. Moving to North Carolina, USA, the highest concentration
of DAN was found to be 1.23 µg/L [40]. Shifting focus to the five most frequently mentioned
FQs in the literature (CIP, OFL, NOR, ENR, and LOM), an examination was conducted on
the number of countries reporting maximum antibiotic concentrations in surface water
reaching µg/L levels. The findings revealed that the proportion of developing countries
exceeded that of developed countries, with percentages of 63.16% (CIP), 62.50% (OFL),
91.67% (NOR), 100% (ENR), and 100% (LOM). Furthermore, the presence of CIP has only
been reported in surface water in countries such as Bangladesh [29], Australia [41], and
Pakistan [42], while in Switzerland [42], only the presence of NOR has been reported.
Meanwhile, China has reported the presence of all types of antibiotics in surface water.
This study provides a comprehensive overview of the primary sources of FQs in different
regions and water bodies. FQs contamination in water bodies can be attributed to three
main factors. Firstly, medical wastewater, which includes the discharge of wastewater
containing FQs residues from medical institutions and patients. Secondly, agriculture and
aquaculture, where FQs are extensively used for preventing and treating animal infections,
potentially leading to their entry into the environment through aqua-culture wastewater
and agricultural irrigation water. Thirdly, discharge from wastewater treatment plants,
responsible for handling the treatment of wastewater from urban and industrial areas.
However, it is worth noting that complete FQs removal during the treatment process
may not always be achieved, resulting in the presence of drug residues in the effluent
that can enter the water environment [26,35,37]. Gao et al. [8] found that in the Liaohe
River Basin in China, the main sources of FQs contamination were wastewater discharge
from wastewater treatment plants and agricultural aquaculture. Another study identified
wastewater discharge from the pharmaceutical industry in India as the main factor causing
FQs pollution in surface water [43]. It is worth noting that regional differences observed
are likely due to variations in locality used antibiotics, and the data may also vary due
to regional preferences in detecting certain antibiotics. Therefore, the absence of reported
antibiotics in surface water does not necessarily imply their absence in a particular region.
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Figure 2. Box–and–whisker plot illustrating the maximum concentrations of detected antibiotics
globally in surface waters. This plot shows the maximum concentrations of 15 FQs listed in Table S2.

Table 1. Minimum, maximum, mean, and median concentrations of representative FQs detected in
different types of surface water a.

Antibiotics Country Place Min (ng/L) Max (ng/L) Mean (ng/L) Med (ng/L) Frequency References

CIP USA Columbia River 0.021 [9]
Sacramento River 0.14 [9]
Surface water 116 [28]

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
Uganda Victoria Lake 2 41 15 91% [44]

Surface Water 29 88 [45]
Vietnam Hanoi ND 990 ND 13% [46]

OFL USA Surface Water 182 [28]
Argentine Surface Water 34.14 [47]
China Beibu Gulf ND 0.46 0.07 0.02 58% [48]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
Spain Valencia Region 1547 4778 [27]
Sweden Surface Water LOQ 37.5 2.75 [49]
Vietnam Hanoi ND 630 ND 38% [46]

NOR USA Chesapeake Bay 59.2 94.1 [27]
Brazil Surface Water 285 42% [14]
China Beibu Gulf 0.43 6.17 2.1 1.83 100% [48]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
Switzerland Karst System 2 [42]
Tunisia Mediterranean Sea ND 20,700 [27]
Uganda Victoria Lake 1.9 26 14 99% [44]

ENR USA Chesapeake Bay 8 17 [27]
Asia ND 30,000 14.6 [36]
Brazil Doce River 73.2 566 351.27 [30]
Croatia Sava 4.64 80.14 21.04 6.50 100% [50]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

Surface Water 69.4 69.4 69.4 [51]
Surface Water 11.8 970 89% [52]

Tunisia Mediterranean Sea 4800 40,200 [27]

LOM China Beijing 1.1 10.9 5.2 100% [53]
Bohai Region 0.21 0.44 0.26 0.25 14.29% [54]
Dongting Lake ND 3075 388 26.5% [32]

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

China Yellow River
(Mainstream) LOQ 181 91.4 51.5% [37]

Yellow River
(Tributaries) LOQ 212 71.8 47.6% [37]

France Charmoise River 3.6 6.7 5.5 [39]
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Table 1. Cont.

Antibiotics Country Place Min (ng/L) Max (ng/L) Mean (ng/L) Med (ng/L) Frequency References

DAN USA Alamance County 8.31 299.62 122.83 [55]
North Carolina ND 1227 5.1 67% [40]

Brazilian Surface Water 272 33% [14]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

China Xinjinag Uygur
Autonomous 0.92 4.82 2.39 2 100% [5]

Xiong’an New
Area ND 2.91 41% [7]

Yellow River
(Tributaries) LOQ 496 61.3 41.3% [37]

PEF China Guangdong 2.04 3.53 2.66 88.9% [56]
Hong Kong River 1.51 0.56 0.52 100% [57]
Surface Water 323 22.56 [31]

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

China Yangtze River
(Nanjing) ND 5.42 0.27 [58]

Yellow River
(Mainstream) 171 3144 563 63.6% [37]

Yellow River
(Tributaries) 5.8 4467 633 66.7% [37]

FLE China Dongting Lake ND 8.88 4.79 46.5% [32]
Guangdong 0.89 1.43 0.94 100% [56]
Hong Kong River 1.07 0.51 0.52 100% [57]

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

China Surface Water in
Basins ND 16.7 3.5 ND [35]

Xinjiang Uygur
Autonomous 1.1 17.15 3.77 2.2 100% [5]

Xiong’an New
Area ND 1.55 36% [7]

MAR China Dongting Lake ND 1.01 0.91 30% [32]
Guangdong 0.18 5.31 0.25 100% [56]
Hong Kong River 0.59 0.24 0.25 92.31% [57]
Liaohe River
Basins ND 40.49 5.07 24.14% [8]

Surface Water 16.7 0.9 [31]
Xinjiang Uygur
Autonomous 0.85 14.85 2.92 1.53 100% [5]

Croatia Sava 0.54 24.53 5.75 1.16 100% [50]

SAR China Dongting Lake ND 7.94 5.51 23.5% [32]
Estuary 0.11 [59]
Guangdong ND 18.2 2.7 33.3% [56]

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

China Yellow River
(Mainstream) LOQ 1899 17.7 72.7% [37]

Yellow River
(Tributaries) LOQ 1528 20.3 73% [37]

Croatia Sava 0.49 2.79 1.05 0.70 100% [50]
Peru Titicaca Lake 72.7 76.5 74.2 100% [60]

ENO Brazilian Surface Water ND 386 5% [14]
China Beibu Gulf ND 2.95 1.24 0.85 94% [48]

Bohai Sea ND 508 116 [39]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
France Charmoise River ND 1310 134 [39]
Malaysia Larut River LOQ 2.55 0.14 11.11% [41]
Uganda Victoria Lake 2.9 51 25 88% [44]

DIF China Beijing ND 6.3 1.6 50% [53]
Changzhou 5.9 7.9 7.7 100% [53]
Dongting Lake ND 4.75 2.38 45% [32]
Guangdong 0.84 1.24 0.85 100% [56]
Liaohe River
Basins ND 4.54 0.2 6.9% [8]

Surface Water 218.4 0.74 [31]
France Charmoise River 3.6 6.7 5.5 [39]
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Table 1. Cont.

Antibiotics Country Place Min (ng/L) Max (ng/L) Mean (ng/L) Med (ng/L) Frequency References

LEV USA Columbia River 1 [9]
Sacramento River 2 [9]

China Chaohu Lake 89.86 <25 [61]
Surface Water 23.4 6 [31]

South Africa Apies River 2.4 [62]
Uganda Victoria Lake 1.8 29 12 96% [44]

MOX USA Sacramento River 0.012 [9]

China Liaohe River
Basins ND 41.1 13.79% [8]

China 300 [31]
Spain 1.4 9.8 7% [52]

FLU China Estuary 0.43 [59]
Liaohe River
Basins ND 3.82 0.17 6.9% [8]

North South China 22.6 [42]
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
France Surface Water 16 [63]

Korea Chungcheong
Province 1.58 [42]

Spain NE Catalonia 8.9 [42]

a: The comprehensive contamination status of FQs in surface water can be found in Table S2 [5–9,13–16,26–104].

A statistical analysis was conducted on the average and maximum concentrations of
the selected 15 FQs in global surface water. The study found that the 50th percentile of the
average concentration of these FQs ranged from 0.91 to 50.60 ng/L (Figure 1), while the
50th percentile of the maximum concentration ranged from 5.53 to 323.00 ng/L (Figure 2).
Notably, PEF and MAR were the only FQs differing by one order of magnitude between
their average and maximum concentrations. Additionally, NOR exhibited the highest
mean average concentration (795.00 ng/L), closely followed by CIP (669.10 ng/L). In
terms of maximum concentrations, CIP took the lead at 542.45 µg/L, followed by NOR
at 251.14 µg/L. These findings underscore a significant level of contamination in global
surface water due to FQs, especially CIP and NOR. Therefore, addressing FQ pollution in
water environments warrants extensive attention.

3. Bioaccumulation of FQs in Aquatic Organisms

In recent years, with the extensive use of FQs, substantial amounts of these compounds
have been detected not only in surface waters worldwide but also in the tissues of aquatic
organisms, such as fish, crabs, oysters, shrimp, and phytoplankton (Table 2). The main
FQs detected included CIP, OFL, NOR, ENR, ENO, LOM, PEF, MAR, and SAR. The results
revealed that CIP had the highest detection frequency in the tissues of organisms, while
LOM exhibited the highest enrichment content. For instance, in China’s Taihu Lake, the
residual amount of CIP in bivalves (12.00 to 80.00 ng/g dw) was significantly higher than
in phytoplankton (ND to 30.00 ng/g dw) [4]. Similarly, in the Beibu Gulf of China, the
average concentration of NOR in crab tissues exceeded that of ENR by 10.80 times [1].
Consequently, researchers conducted extensive studies on the bioaccumulation patterns
and influencing factors of FQs in aquatic organisms.

Table 2. The bioaccumulation of FQs in aquatic organisms from surface waters.

Antibiotics Range (ng/g) Mean (ng/g) Median (ng/g) Species Place References

CIP 28.51–96.22 62.37 Halobatrachus
didactulus Portugal (Tejo estuary) [105]

12.00–80.00 30.00 Bivalve China (Taihu Lake) [4]
ND–30.00 9.50 Phytoplankton China (Taihu Lake) [4]
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Table 2. Cont.

Antibiotics Range (ng/g) Mean (ng/g) Median (ng/g) Species Place References

176.00 Fish Canada [106]

ND–112.00 37.33 Lemna gibba Argentine (Luján and
Moreno cities) [47]

3.80–4.80 4.15 Oncorhynchus
mykiss Peru (Lake Titicaca) [60]

NOR 1.40–3.14 2.16 Crab China (Beibu Gulf) [1]
8.70–134.00 17.00 Snail China (Taihu Lake) [4]
ND–1.37 Sea cucumber China (Dongying) [107]

OFL ND–0.46 0.14 Oyster China (Beibu Gulf) [1]

10.63–22.50 16.57 Dicentrarchus
labrax (adults) Portugal (Tejo estuary) [105]

ND–36.00 12.00 Lemna gibba Argentine (Luján and
Moreno cities) [47]

ENR ND–0.64 0.20 Crab China (Beibu Gulf) [1]
6.73–102.87 34.66 17.92 Fish China (Guangxi) [63]

ENO 0.09–0.24 Mitten crab China (Dongying) [107]
ND–0.54 0.18 Shrimp China (Beibu Gulf) [1]

LOM ND–316.51 13.04 9.99 Phytoplankton China (Peal River) [108]
ND–78.66 17.52 13.53 Zooplankton China (Peal River) [108]

PEF ND–1.00 0.04 Fish muscle China (Taihu Lake) [109]
MAR ND–LOQ 0.01 ND Fish muscle China (Taihu Lake) [109]

SAR 3.40–3.90 3.55 Oncorhynchus
mykiss Peru (Lake Titicaca) [60]

ND–0.34 Penaeus Vannamei China (Dongying) [107]

3.1. The Bioaccumulation Pattern of FQs in Aquatic Organisms
3.1.1. Bioaccumulation of Different FQs

Understanding the bioaccumulation pattern of pollutants is crucial for accurately
assessing their ecological health risks. Researchers, through extensive laboratory simulation
experiments, found that different FQs exhibit varying bioaccumulation patterns within
the same organism [110–113]. For instance, after exposing Cyprinus carpio to 8 different
FQs (Balofloxacin (BAL), ENO, ENR, FLE, LOM, MOX, OFL, and Sparfloxacin (SPA)) for
28 days, the concentration of MOX in fish tissues significantly surpassed other FQs. The
fish’s liver showed the highest bioaccumulation of MOX, reaching 42.94 times, 35.59 times,
and 34.23 times higher than OFL, LOM, and SPA, respectively [110]. Similarly, Chen
et al. [112] discovered that the bioaccumulation ability of FLE and DIF in aquatic plants
was significantly greater than that of OFL and MAR. However, the underlying reasons for
such differences in bioaccumulation ability have yet to be determined. Chen et al. [112]
and Claude et al. [114] proposed a positive correlation between the bioaccumulation
concentration of compounds and their log Kow values. Simultaneously, Zhou et al. [115]
and Zhang et al. [116] found a negative correlation between log bioconcentration factor
(BCF) values in aquatic animals and log Kow. However, the distribution coefficient (log
D) associated with pH values is a better predictor of compound bioaccumulation within
organisms. Furthermore, other studies have revealed that factors such as the substituent
interaction between R7 and R8 positions in the FQs structure (Figure S1), as well as the
compound’s chemical structure, solubility, and molecular weight, may also impact their
accumulation ability within organisms [110,113].

3.1.2. Bioaccumulation of FQs in Different Organisms

Different organisms exhibit significantly varied capabilities in the enrichment of FQs,
indicating species-specific bioaccumulation of these compounds. Zhang et al. [116] con-
ducted a study to detect the residual concentrations of ∑FQs in fish, shrimp, and Stichopus
japonicus. Their findings revealed that FQ concentrations in fish (0.61 to 171.00 ng/g ww)
were significantly higher than those in shrimp (0.32 to 27.30 ng/g ww) and S. japonicus
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(0.39 to 1.19 ng/g ww). Moreover, in aquatic plants, Chen et al. [112] observed that Cyperus
papyrus exhibited significantly higher bioaccumulation abilities for five FQs (PEF, MAR,
OFL, FLE, DIF) compared to Lythrum salicaria, Ruellia simplex, and Acorus calamus. The
reasons for these bioaccumulation differences may be attributed to the organisms’ capabili-
ties in antibiotic uptake, metabolism, as well as the content of proteins and lipids within
their bodies [17,116,117]. Additionally, the differential bioaccumulation abilities of aquatic
plants for FQs might be associated with the activity of their root microbiota [118]. It is
worth noting that current research on the enrichment of FQs mainly focuses on different
animals and plants, with limited studies on the differences in bioaccumulation among
different trophic levels within ecosystems. Further research in this area is warranted.

3.1.3. Bioaccumulation of FQs in Different Tissues and Growth Stages

Further research has revealed that different tissues and organs in organisms exhibit
varying capabilities to accumulate FQs. Sun et al. [119] and Chen et al. [110] explored the
distribution of FQs in various tissues of C. carpio, revealing the liver as the central organ of
bioaccumulation, with a proportion as high as 70.99% (MOX). Similar findings were observed
in Danio rerio [111] and Bellamya aeruginosa [120], where the OFL content in the viscera was
significantly higher than in other tissues. This distribution difference may be related to the
phospholipid content in organisms, as phospholipids, the main components of biological
cell membranes, are widely distributed in visceral tissues such as the liver and kidneys [121].
Given the lipophilic nature of the majority of FQs, they are more prone to bioaccumulate
in tissues with higher lipid content. Similar studies have identified a significant positive
correlation between the bioaccumulation of FQs and lipid content in organisms at different
growth stages (Eichhornia crassipes, fish, shrimp, and S. japonicus) [116,122]. In addition, Zhu
et al. [17] observed that the distribution proportion of ENR in S. japonicus’ body wall and
mouth increases with exposure time, while the gastrointestinal and respiratory tracts decrease
with exposure time. Therefore, the distribution of antibiotics in various tissues of organisms
may also be related to the metabolic capacity of different tissues at different periods. In
conclusion, while phospholipids are an essential factor influencing the distribution of FQs
in organisms, factors such as tissue metabolism capacity can also impact their distribution
within the body.

When exploring the distribution of FQs within aquatic plants, it has been observed
that roots serve as the primary sites for bioaccumulation [112,113,122–124]. For exam-
ple, Yan et al. [125] and Liu et al. [113] exposed E. crassipes and Phragmites australis to
CIP-contaminated water, revealing that CIP concentration in the root tissues exceeded
that in stems and leaves by 1 to 2 orders of magnitude across various exposure levels.
Through transpiration, antibiotics accumulated in the roots are transported to stem and
leaf tissues. The distance of this transport, influenced by photosynthetic activity, influences
the concentration of antibiotics in stem and leaf tissues and the ability of self-migration and
transformation [122,126].

3.1.4. Bioaccumulation of FQs in Different Exposure Concentration and Duration

In general, the bioaccumulation of pollutants in organisms is directly proportional to
the exposure concentration, while the BCF shows an inverse relationship. For example,
Deng et al. [127] observed a 2.79-fold increase in CIP content in the roots of E. crassipes when
exposed to 1000 µg/L CIP (8.56 µg/g) for 7 days compared to 10 µg/L CIP (3.01 µg/g).
He et al. [120] investigated NOR and OFL content in the muscular foot of the B. aeruginosa
after 28 days of exposure. They found that the NOR (20.68 ng/g) and OFL (94.38 ng/g)
levels in the 2 µg/L group were only 0.84% and 3.60% of those in the 2000 µg/L group,
respectively. BCF values in the 2 µg/L group were 10.34 L/kg for NOR and 47.19 L/kg for
OFL, while values in the 2000 µg/L group exceeded 5 L/kg. The higher bioaccumulation of
antibiotics at higher concentrations may be due to their passive transport within organisms.
Simultaneously, higher antibiotic concentrations can induce lipid peroxidation in cell
membranes, limiting their ability to be consumed and transferred within the organisms
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and resulting in reduced BCF values [128,129]. Regarding the influence of exposure time,
studies on organisms such as the B. aeruginosa [120], C. carpio [110], E. crassipes [123], and S.
japonicus [17] revealed an increasing trend in FQ content with prolonged exposure time.
However, beyond a certain threshold, the FQ content in organisms exhibited a fluctuating
pattern. The fluctuation pattern observed can be attributed to the metabolic processes
and excretion mechanisms of organisms in response to pollutants [110,130]. When the
rate of absorption of FQs exceeds the rate of metabolism and excretion, the concentration
of FQs in the organism gradually accumulates. However, as the metabolic and excretion
processes strengthen, it can lead to a decrease in the concentration of FQs in the organism.
Once the concentration of FQs reaches a certain low point, FQs present in the water can be
reabsorbed, resulting in a subsequent increase in the concentration of FQs in the organisms.
This periodic process of metabolism and excretion accounts for the fluctuation pattern
observed in the concentration of FQs in organisms.

3.2. The Impact of Other Factors on the Bioaccumulation of FQs in Aquatic Organisms
3.2.1. Effects of Coexisting Pollutants

In aquatic environments, the coexistence of multiple pollutants often leads to complex
pollution, an essential factor affecting the bioaccumulation of FQs in marine organisms.
For example, Zhao et al. [111] found that the addition of copper (Cu) can promote the
uptake of ENR and OFL in D. rerio, and the promotion effect is more significant at low
Cu concentration (2.56 µg/L) compared to high Cu concentration (25.6 µg/L). Marcelo
et al. [131] studied the bioaccumulation of multiple antibiotics (amoxicillin, ENR, and doxy-
cycline) in Lemna minor. They found that compared to a single exposure, the concentration
of ENR in L. minor decreased by 24.80% to 37.50% after binary or ternary mixture exposure.
The decrease in concentration may result from the competition for adsorption sites on the
surface of the biofilms by multiple antibiotics. In addition, it has been found that dissolved
organic matter (DOM) can not only compete for adsorption sites on the biofilm surface,
thereby reducing the bioavailability of FQs [132], but also form complexes with pollutants
through chelation reactions, further reducing their bioavailability [133]. Therefore, the
presence of DOM may also reduce the absorption of FQs by organisms.

3.2.2. Effects of Environmental Factors

Furthermore, changes in environmental factors can also influence the bioaccumulation
of FQs in organisms. Studies have shown that FQs are ionizable compounds, with their
cationic and anionic parts facing challenges in passing through cell membranes due to
electro-repulsion, electro-attraction, and ion trapping effects. In contrast, the non-ionized
molecular part can undergo ‘ion trapping’, becoming trapped inside the cell membrane and
facilitating the absorption of the compound’s zwitterionic form by plants [134]. Therefore,
the water’s pH can play a role in influencing the bioaccumulation of FQs in organisms.
On the other hand, sediment particles in water can adsorb antibiotics, thus reducing their
bioavailability [135]. Changes in water salinity also contribute to alterations in the distribu-
tion of antibiotics between the water phase and solid phase, affecting their bioaccumula-
tion [135]. However, there are currently no reports on the impact of environmental factors
on the bioaccumulation of FQs in organisms. Therefore, further research is warranted to
investigate this aspect and gain a more in-depth understanding.

4. Metabolism and Half-Life of FQs in Aquatic Organisms

Exogenous compounds entering the organism undergo biotransformation under the
action of relevant metabolic enzymes [24]. The metabolism of these compounds in the
organism is mainly divided into three phases. In Phase I, hydrolysis, oxidation, or reduction
reactions take place under the catalysis of Phase I enzymes such as CYP450 enzymes
and peroxidases, resulting in the formation of more hydrophilic compounds [136,137].
Moving into Phase II, subsequent to Phase I, enzymes like glutathione-S-transferases,
methyltransferases, and transaminases catalyze the opening of the ring, leading to the
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formation of small molecular compounds [138,139]. Finally, Phase III is a distinctive
metabolic stage in plants that involves the separation and storage of the metabolic products
within the cell wall or vacuoles [124,140,141].

Currently, researchers have detected metabolites of different FQs, including ENR, CIP,
LEV, MOX, and GAT (Figure S2), in aquatic plants (Chlamydomonas reinhardtii [18], Chlorella
vulgaris [139,142], Scenedesmus obliquus [139,143], E. crassipes [122,123], Chrysopogon zizan-
ioides [136], Oryza sativa L. [141]) and aquatic animals (S. japonicus [17], Sparus aurata [144],
Dicentrarchus labrax [145]). In aquatic plants, the primary metabolic pathways for FQs
involve ring cleavage and hydroxylation of the piperazine ring. In algae, over 40% of the
metabolites from FQs metabolism are formed through ring opening, followed by hydrox-
ylation, dealkylation, demethylation, and oxidation. Similarly, in aquatic animals, ring
cleavage and hydroxylation of the piperazine ring remain the main metabolic pathways
for FQs. However, unlike plants, defluorination is a significant pathway for metabolite
formation in almost all aquatic animals, particularly in S. japonicus [17], where 80% of ENR
metabolites are formed through defluorination. Thus, the primary metabolic pathways of
FQs in aquatic organisms include ring cleavage, hydroxylation, and defluorination.

Research has revealed variations in both the quantity and composition of FQ metabo-
lites across different tissues and organs in aquatic organisms. Saumik et al. [136] identified
ten metabolites of CIP in C. zizanioides, with two in the roots and nine in the stems. Hu
et al. [141], detected six CIP metabolites in Oryza sativa L., while only very few were de-
tected in the stems (two) and leaves (one). A study on the S. japonicus, a marine organism,
found that ENR formed five metabolites in its body, with the lowest concentration of parent
compounds observed in the digestive tract and the highest concentration of metabolites [17],
indicating that the S. japonicus’ digestive tract is the primary site for ENR metabolism. The
metabolism of antibiotics primarily occurs under the catalysis of specific enzymes, so
the expression and activity of different metabolic enzymes may cause differences in FQs
metabolism among other tissues of organisms. It is important to note that certain phase I
metabolites can be as toxic as, or even more toxic than, the parent compounds [124,140]. For
example, Hossein et al. [19] found that the metabolite of CIP exhibited significantly lower
half-lethal concentrations (EC50) than the parent compound for fish, daphnids, and green
algae. Therefore, further research is necessary to investigate the environmental hazards
posed by FQs metabolites.

Concurrently, studies have explored the half-life of FQs in aquatic organisms, revealing
how factors like compound type, species, and tissue distinctions influence this duration.
For instance, Chen et al. [110] conducted a 28-day exposure of C. carpio to different FQs
in water. During the subsequent 96-h elimination period, the concentration of SPA in the
liver decreased by nearly 90%, while ENR remained at 96.40%. In another study, Song
et al. [146] found that the half-life of DAN in C. carpio haematopterus bile tissue (170.24 h) was
significantly longer than in muscle plus skin (47.89 h) and plasma (59.11 h). Furthermore,
Wang et al. [147] discovered that the half-life of NOR in the kidney of Sparus macrocephalus
(3.87 days) was almost double that of Japanese sea perch. These findings highlight the
complex interplay of compound characteristics and biological factors in determining the
persistence of FQs in aquatic environments. Currently, there is a dearth of information
regarding the half-life of FQ in aquatic plants. Consequently, it is necessary to conduct
additional research to facilitate a more comprehensive understanding of this phenomenon.

5. Toxicity of FQs
5.1. EC50 Values of FQs

This study assessed the toxicity of 10 FQs in algae, bacteria, crustaceans, fish, mollusk,
and plants (Figure 3 and Table S3) [19,28,120,148–181]. According to the classification crite-
ria proposed by the Joint Group of Experts on Scientific Aspects of Marine Environmental
Protection (GESAMP) [182], the toxicity of FQs was categorized (Figure 3), showcasing a
variance of 1 to 4 toxicity levels among different aquatic organisms. As noted by Pavla
et al. [28], distinct species exhibit varying degrees of toxicity in response to antibiotics.
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Bacteria proved susceptible to FQs, with EC50 values ranging from 0.01 to 23.60 mg/L.
Among them, CIP, OFL, ENR, LOM, and ENO exhibited very high toxicity to bacteria, as
their average EC50 values fell below 10−1 mg/L. Algae and plants demonstrated the next
tier of sensitivity, with 71.43% (algae) and 57.14% (plants) of the tested FQs classified as
moderately toxic or higher. Notably, LEV exhibited extremely toxic effects on M. aeruginosa
(24 h), with an EC50 value of 0.008 mg/L [154]. Conversely, crustaceans, fish, and mollusk
showed relatively weaker sensitivity to FQs. Among them, mollusk displayed the least sen-
sitivity, with EC50 values ranging from 31.10 to 222.60 mg/L, and almost 75% of the tested
FQs demonstrated negligible toxicity to this species [120,176,181]. Fish and crustaceans
exhibited mildly toxic effects, with EC50 values spanning from 2.17 to 192.00 mg/L.
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Comparing the toxicity of various FQs to aquatic organisms revealed that MOX, NOR,
and FLU exhibit relatively weak toxicity. NOR proved non-toxic to both plants and mollusk,
with EC50 values ranging from 104.50 to 336.00 mg/L [120,168]. MOX similarly showed
non-toxicity to mollusk, with an EC50 of 120 mg/L [176] (Table S3). Regarding the other FQs,
at least one showed high toxicity to aquatic organisms, reaching levels classified as “high
toxic” or higher. Assessing the percentage of species tested with a toxicity level classified as
high or above, LOM (100%) and ENO (100%) demonstrated the highest toxicity, followed
by CIP (40%) and ENR (40%). It should be noted that the experimental conditions, such as
the developmental stage of organisms, water pH, temperature, light conditions, etc., were
not considered in the analysis of the collected aquatic organism samples. For instance, FQs
are ionizable compounds, and changes in water pH may affect their ecotoxicity [183,184].
In addition, conclusions could not be drawn for some FQs (such as DAN, PEF, FLE, SAR,
and DIF) due to a lack of toxicity data.

5.2. Toxicological Effects of FQs on Aquatic Organisms

The toxic effects of FQs on aquatic organisms primarily involve three aspects: (1) the
antioxidant defense system, including the concentrations of hydrogen peroxide (H2O2),
malondialdehyde (MDA), glutathione (GSH), glutathione S-transferase (GST), and glu-
tathione peroxidase (Gpx), as well as activities of superoxide dismutase (SOD), catalase
(CAT), peroxidase (POD), and ascorbate peroxidase (APX); (2) the growth, development,
and behavioral activities of organisms; and (3) genetic damage and genetic toxicity.
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Research has found that FQs have an impact on the antioxidant defense system
and growth development of aquatic plants. FQs can induce the production of reactive
oxygen species (ROS) within organisms. The bioaccumulation of these ROS can aggravate
lipid peroxidation in cell membranes, leading to cell membrane rupture, damage, and
even apoptosis [185,186]. H2O2, a type of ROS, exhibited a substantial increase in L.
minor exposed to CIP, with the 1.05 mg/L exposure group showing nearly three times the
content of the control group, as observed by Marcelo et al. [129]. Another common ROS,
O2−, undergoes peroxidation reactions with cell membrane lipids, generating oxidative
products like MDA. Therefore, MDA levels indirectly reflect the severity of ROS attack
on the organism [187]. Researchers exposed the Chlamydomonas mexicana [188] and the
Myriophyllum verticillatum [189] to different FQs. The results revealed a significant rise in
MDA levels in organisms exposed to high concentrations of FQs, indicating pronounced
damage to cell membranes caused by ROS. Within organisms, enzymes such as SOD,
CAT, POD, and APX play roles in eliminating O2− and H2O2, with their activity levels
reflecting the organism’s intermittent capacity to remove ROS. In a study by Nie et al. [190],
Pseudokirchneriella subcapitata was exposed to CIP (0 to 2.5 mg/L), and after 96 h, the
activities of SOD, CAT, and APX were measured. The results showed that as the exposure
concentration increased, SOD activity increased, while the activities of CAT and APX
exhibited a trend of initially low promotion and inhibition. Meanwhile, in organisms
such as Prorocentrum lima and Chlorella sp (NOR) [191], L. minor (OFL) [192], E. crassipes
(CIP) [127], and P. australis (CIP) [113], activities of SOD, CAT, POD, and APX in the presence
of FQs were higher than those in the control group. However, under high concentrations or
prolonged exposure, the activities of these enzymes would decrease, indicating that low FQ
concentrations can trigger enzyme production for ROS elimination. As the oxidation level
increases, the organism’s capacity to produce specific enzymes to eliminate ROS diminishes.

FQs in water can also have an impact on the growth and development of aquatic
plants. Studies have shown that FQs can hinder photosynthesis in algae (C. vulgaris [193]
and Scenedesmus dimorphus [174]) and aquatic plants (L. minor [129] and E. crassipes [125])
by disrupting the thylakoid membrane and inhibiting the expression of critical enzymes in
the photosynthetic electron transport chain. Hong et al. [189] noted a positive correlation
between the exposure concentration of ENR and the proportion of yellow leaves in M.
verticillatum, with a 29.03% increase in the proportion of yellow leaves under 50 mg/L ENR
exposure. At the molecular level, heightened concentrations of FQ (ENR) not only increase
the transcription levels of genes related to photosynthesis in Chlorella pyrenoidosa (psaB
and psbC) [169], but also inhibit chloroplast-specific enzyme (DNA gyrases) activity in
plants [113].

For aquatic animals, FQs can also influence their antioxidant defense system, growth
and development, behavior, and genetic integrity. Researchers conducted experiments
on Ctenopharyngodon idellus (ENR) [186], D. rerio (CIP) [194], and Pseudosciaena crocea
(NOR) [195], exposing them to various FQs. The findings revealed a significant increase in
the MDA content within aquatic organisms’ bodies when exposed to high concentrations
of FQs. Additionally, other studies demonstrated that FQs in water can enhance the activity
of SOD and CAT in Cirrhinus mrigala (CIP) [196] and D. rerio (NOR) [197]. Investigation
into enzyme changes associated with organism metabolism further showed a notable rise
in Gpx activity in D. rerio subjected to 5 mg/L of NOR for 96 h, compared to the control
group [198]. Similarly, elevated NOR concentrations increased GST activity in Carassius
auratus [199], while higher CIP concentrations increased GST activity in C. mrigala [196].

In terms of influencing the growth, development, and behavioral activities of organ-
isms, Roberto et al. [172] exposed Daphnia magna to water containing 6.90 mg/L of ENR,
LEV, and FLU for 12 days, discovering that all three types of FQs significantly inhibited the
survival rate of D. magna. Furthermore, D. rerio exhibited a significant decrease in heart
rate under the stress of higher concentrations of CIP and GAT [200]. Under NOR exposure
(25 mg/L), it reduced the hatching rate of embryos, increased mortality and deformity
rates, and interfered with the innate immune system [198]. Moreover, it has been observed
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that elevated concentrations of CIP not only induce decreased appetite and reduced body
size in Rhinella arenarum larvae [201] but also lead to diminished exploratory behavior in D.
rerio [194].

ROS remain the leading cause of DNA damage in aquatic organisms. Liu et al. [199]
observed that exposure to 0.4 mg/L NOR for 7 days resulted in significant damage to the
testicular DNA of male C. auratus; a parallel effect was noted in embryos of embryos of D.
rerio [202]. Additionally, heightened concentrations of ENR induce a differential expression
of genes related to the immune system and metabolism in the hepatopancreas of Eriocheir
sinensis (genes for alkaline phosphatase, NF-kappa B inhibitor alpha, alpha-amylase, and
beta-galactosidase-like) [203]. Furthermore, research has unveiled that FQs impact not only
the replication and transcription of enzyme genes but also have the potential to induce
the generation of drug-resistant bacteria and promote the production of resistant genes.
These immune genes may spread through various environmental pathways, contributing
to the development of multi-drug resistance in diverse organisms, highlighting an issue
that deserves special attention.

5.3. Toxicity and Influencing Factors of FQs in Aquatic Organisms

Numerous toxicological studies have highlighted the impact of other coexisting water
pollutants on the toxicity of FQs to aquatic organisms. For example, Hong et al. [189] found
that the addition of microplastics (1 to 5 mg/L) in water exacerbated the toxicity of ENR
to M. verticillatum, with a synergistic effect that correlated positively with microplastic
concentration. Heavy metals, such as Pb, not only heightened the oxidative stress induced
by CIP in D. rerio but also hindered the fish’s exploratory behavior [194]. Similarly, Jia
et al. [185] observed that co-exposure to heavy metals (Cu and Cd) and FQs (ENR and
CIP) exacerbated inflammation in D. rerio embryos. Furthermore, Zhang et al. [204] noted
that variations in water pH and dissolved organic carbon (DOC) significantly affected
the toxicity of CIP to M. aeruginosa, revealing potential differences in cell toxicity of up
to 10-fold under different water conditions. These findings indicate that changes in en-
vironmental factors can significantly influence the cellular toxicity of FQs. Therefore, a
comprehensive understanding of the toxic effects of FQs on aquatic organisms necessitates
careful consideration of changing environmental conditions.

6. Conclusions

This study examined 15 different FQs in rivers, lakes, and seawater worldwide. It
was found that developing countries showed markedly higher FQ residue levels than
their developed counterparts, notably in CIP and NOR, reaching maximum concentrations
of 542.45 µg/L and 251.14 µg/L, respectively. Researchers detected FQ bioaccumulation
in aquatic organisms, including fish, crabs, oysters, shrimps, and phytoplankton across
various water systems globally. Studies on the bioaccumulation patterns of FQs in or-
ganisms revealed that their physical and chemical properties (log Kow, log D, solubility,
molecular weight, etc.), species differences (growth stage, gender, different tissues, etc.),
and changes in water environmental factors (heavy metals, other antibiotics, dissolved
organic matter, water pH, salinity, etc.) can all affect the magnitude of FQ bioaccumulation.
FQs accumulating in organisms undergo biotransformation through three main metabolic
pathways: ring opening, hydroxylation, and defluorination. Notably, some metabolites
may exhibit higher toxicity than the parent compounds, necessitating further research into
the residual concentrations and toxicity of relevant FQ metabolites.

FQs showcased varying EC50 values among aquatic organisms, including algae, bacte-
ria, crustaceans, fish, mollusk, and plants. Overall, FQs exhibited higher toxicity towards
bacteria, with 62.50% displaying average EC50 values below 10−1 mg/L. Their toxicity
was comparatively milder towards algae and plants. Cephalopods demonstrated the least
sensitivity, with EC50 values ranging from 31.10 to 222.60 mg/L. Among different types of
FQs, LOM and ENO showed the highest toxicity, while MOX, NOR, and FLU displayed
relatively weaker toxicity. The toxicity of FQs towards aquatic organisms primarily mani-
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fested in three aspects: oxidative stress, impacts on growth and development, and genetic
damage. External factors such as heavy metals, microplastics, and changes in water pH
could influence the toxicity of FQs towards aquatic organisms. However, research in this
area is currently limited, and further investigation is warranted.

Based on the previous research findings, several key areas should be prioritized for
further studies on FQs: (1) Expanding the detection range of FQs during investigations into
antibiotic contamination in aquatic ecosystems is imperative. This expansion will allow
for a more comprehensive assessment of the current pollution levels in these water bodies.
(2) Research endeavors should encompass a broader spectrum of aquatic organisms within
the food chain, unraveling the intricate processes of FQ accumulation and biomagnification.
(3) Special emphasis should be placed on exploring the impacts of external environmental
factors on the accumulation levels and toxicity of FQs within organisms. (4) To gain a
holistic understanding of FQ toxicity towards aquatic organisms, a pivotal focus should be
directed towards studying the toxicity of their metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics11120966/s1, Figure S1. The structural formula of FQ; Figure S2. The
metabolites and possible pathways of GAT (a), MOX (b), LEV (c), CIP (d), and ENR (e) biodegradation
in aquatic organisms. Table S1: Physicochemical properties of selected FQs [5–9]; Table S2. Minimum,
maximum, mean, and median concentrations of representative FQs detected in different surface
water [5–9,13–16,26–104]; Table S3. Toxicity of selected fluoroquinolone towards various trophic
groups of organisms [19,28,120,148–181].
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