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Abstract: Mining activities create disturbed and polluted areas in which revegetation is complicated,
especially in northern areas. For the first time, the state of the ecosystems in the impact zone of tailings
formed during the processing of rare earth element deposits in the Subarctic have been studied.
This work aimed to reveal aspects of accumulation and translocation of trace and biogenic elements
in plants (Avenella flexuosa (L.) Drejer, Salix sp., and Betula pubescens Ehrh.) that are predominantly
found in primary ecosystems on the tailings of loparite ores processing. The chemical composition
of soil, initial and washed plant samples was analyzed using inductively coupled plasma mass
spectrometry. Factor analysis revealed that anthropogenic and biogenic factors affected the plants’
chemical composition. A deficiency of nutrients (Ca, Mg, Mn) in plants growing on tailings was
found. The absorption of REE (Ce, La, Sm, Nd) by A. flexuosa roots correlated with the soil content
of these elements and was maximal in the hydromorphic, which had a high content of organic
matter. The content of these elements in leaves in the same site was minimal; the coefficient of REE
bioaccumulation was two orders of magnitude less than in the other two sites. The high efficiency of
dust capturing and the low translocation coefficient of trace elements allow us to advise A. flexuosa
for remediation of REE-contained tailings and soils.

Keywords: rare earth elements; contamination; tailings; Avenella flexuosa (L.) Drejer; Salix spp.; Betula
pubescens Ehrh

1. Introduction

For a long time, the mining industry has been one of the major sources of environmen-
tal pollution [1,2]. Industrial activity damages ecosystems and threatens human health [3].
Particularly, mining and subsequent waste storage have a complex impact on the environ-
ment around the world. Compared to direct emissions, the impact of stored ore processing
waste is more complicated and delayed. Tailing ponds harm the ecosystem by spreading
pollutants through wind, surface water (including acid mine drainage, i.e., AMD), and
groundwater infiltration [4]. This leads to the contamination of soils, plants, and water
bodies, the content of potentially toxic elements which far exceeds the natural level [5].

Further, the interaction of pollutants with multielement soil solutions and micro-
biota changes their mobility, bioavailability, and toxicity [6,7], increasing the contents of
pollutants, including rare earth elements (REE), in plants in the vicinity of mining en-
terprises [8,9]. The chemical composition of plants in impact areas of mining tailings is
affected directly by dust deposition from the atmosphere, and indirectly by uptake of
chemical elements from contaminated soils [10,11]. The accumulation and integration
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of pollutants into plant physiological cycles cause a variety of stress reactions, such as a
decrease in photosynthetic activity, height, yield, oxidative cellular stress, and many oth-
ers [12–15], which consequently lead to the migration of potentially toxic elements through
food chains [16–18] and cause risks for humans [19–21]. Naturally, in the mining zone of
REE-containing ores, REE can enter the environment and be accumulated in various ways,
creating a potential threat to the ecosystem and public health [22,23]. Despite a growing
body of REEs research in the environment, the role of these elements as emerging pollutants
and their bio-toxicity remains poorly understood.

Developing effective and sustainable programs for the restoration of industrially
disturbed lands to reduce the risk of environmental pollution from decommissioned tailing
dumps becomes urgent. It is possible to apply phytoremediation—a nature-inspired
approach of sustainable plant cover creation using species resistant to certain pollutants [24].
Phytoremediation can occur in two ways: phytostabilization and phytoextraction [25]. For
phytostabilization, plants that accumulate potentially toxic elements in their roots can
be used, and for phytoextraction it is recommended to use plants that can absorb and
accumulate pollutants from the soil in the aboveground parts [25–27]. As seed material, it is
recommended to use plants that grow widely in the study area and are resistant to external
influences and pollution [4]. Native plant communities growing in metal-contaminated
sites can cope with elevated metal levels in soils, so they are much more resilient to this
environment than introduced plants (for example, from commercial grass seeds) and can
be more effectively used for remediation [28]. Moreover, the use of native plant species
to reclaim overburden dumps is a low-cost method that avoids the environmental risks
associated with non-native species.

The study of areas of ecosystem self-restoration on tailing dumps is a source of data
on the physiological and biochemical mechanisms of plant reactions and the levels of their
tolerance to contamination. Thus, a study of false yellowhead (Dittrichia viscosa (L.) Greuter)
growing on tailings demonstrated an increase in the activity of soluble peroxidases and phe-
nolic compounds, which indirectly indicates the development of a protective mechanism
against oxidative stress caused by excess metal content [29]. Alpine fireweed (Epilobium
dodonaei Vill.) and sand rockcress (Cardaminopsis arenosa (L.) Hayek) growing on mining
waste also exhibit physiological mechanisms that reduce the harm from increased metal
content [30,31]. The results indicate the ability of native plants to adapt to increased content
of metals and metalloids in the air and soil, based on individual protective mechanisms.
Revegetation is becoming an integral part of mine waste remediation, as plants can acceler-
ate the process of primary soil formation through the production of biomass. However, the
effectiveness of this process may vary depending on the type of vegetation.

The current study aimed to fill the gap in the data about the content of REE and nutri-
ents in native plant species growing on revegetated mining tailings at different distances
from the dump of the REE enterprise. The largest REE enterprise of loparite ores has been
operating in the Russian Subarctic for decades, but we did not find any reports about its
effect on the chemical composition of plants in the impact zone. The use of factor analysis
and indicators of chemical elements’ accumulation allows us to assess the contribution of
an anthropogenic factor in the chemical composition of the aboveground parts of plants.
This study provides important information about the suitability of pioneer native species
for phytostabilization of the revegetated mining tailings and the subsequent migration of el-
ements along the food chain. The practical goal was to develop a cost-effective remediation
strategy for dusted areas in harsh climatic conditions.

2. Materials and Methods
2.1. Study Area

The study area is located in the vicinity of dusty tailing dumps formed during the
beneficiation of loparite ores (Ce,Na,Ca)(Ti,Nb)O3. The mining enterprise is located in
the center of the Kola peninsula, NE Europe (67.890076◦ N 34.615571◦ E), and has been
operating since 1951. Two fields of tailing dumps formed during the operation of the
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enterprise. The first field functioned from 1951 to 1985; since December 1985, tailing pulp
has been discharged to the second field of the tailing dump. To date, the total mass of
accumulated solid waste exceeds 18 million tons [32].

The climatic conditions of the study area are quite harsh. The climate type of the
central part of the Kola Peninsula is subarctic continental climate (Dfc according to Köppen
climate classification) [33]. In recent years, the territory of the Kola Peninsula has seen an
unstable trend towards warmer and longer summers. Further data are provided based on
a series of climate measurements from 2012 to 2022 at the Roshydromet (Federal Service
of Russia on Hydrometeorology and Monitoring of the Environment) weather station
No. 22127, closest to the study area, located in the village of Lovozero [34,35]. The station
coordinates are 68.018779 N, 34.99697 E, located at an altitude of 161 m above sea level and
at a distance of 20 km in the northeast direction from the sampling points. The average
annual air temperature is −1.4 ◦C, the average annual precipitation is 480.5 mm, with a
maximum in August. The following parameters are typical for the sampling period in
September. The average daily temperature in September is 9.7 ◦C, nighttime 4.1 ◦C. The
average wind speed is 3.6 m/s, the average number of rainy days is 13, with precipitation
amounting to 23.1 mm. The growing season begins on average on June 10 and lasts for
three months until early or mid-September.

The central part of the tailing dump is represented by technogenic sands with a
predominance of nepheline, feldspars, aegirine, and sodalite in the mineral composition
and the absence of vegetation cover. As we move away from the sand alluvial site, we
observe the development of pioneer vegetation groups and a gradual complication of the
plant community structure and the formation of an organic soil horizon.

The studies were carried out on sample plots (10 × 10 m), located in areas of an
overgrown tailing dump with varying degrees of development of plant communities and
soil profile, as well as a conditional background plot at a distance from the tailing dump
(Figure 1).

Site 1 (AV) was located in the area of focal self-overgrowing of tailings sands, 5 m from
the upper edge of the pit bowl. Distance from tailing dump was about 0 m. According to
WRB 2022 [36], the soils of the first site are classified as Protic Arenosol with technogenic
soil formation on nepheline tailing dump and pioneer vegetation. A buried organic horizon
[O] was identified in the soil profile, which indicated the re-deposition of nepheline tailing
material on the surface after the onset of primary overgrowth processes. The vegetation
was represented by a cereal community, with a predominance of Avenella flexuosa (L.)
Drejer, isolated inclusions of Salix sp. and Betula pubescens Ehrh., and the dominance of
Polytrichum commune Hedw. in the moss–lichen layer. The age of the plant community
did not exceed 35 years, the mineral composition of the soil was dominated by nepheline,
feldspars, and aegirine.

Site 2 (AO) was located in the south-west direction from the open tailing dump in an
area with continuous overgrowth of tailings sands in hydromorphic conditions. Distance
from tailing dump was about 100 m. The soil was described as Protic Arenosol also with
technogenic soil formation on nepheline tailing dump. The soil profile on this site was
highly differentiated from the upper (0–5 cm) layer containing organic material, when the
layer 5–10 cm was predominantly mineral. The mineral composition of soil was similar
to site 1. The plant community was represented by a grass-forb group of A. flexuosa and
Chamaenerion angustifolium (L.) Scop., dominated by Salix sp. and the single presence of
B. pubescens. and B. nana in the tree–shrub layer and the dominance of P. commune in the
moss–lichen layer. The estimated age of the plant community was 35–70 years.



Toxics 2023, 11, 898 4 of 19Toxics 2023, 11, x FOR PEER REVIEW  4  of  21 

Figure 1. Location and appearance of sampling points. 

Site 1 (AV) was located in the area of focal self-overgrowing of tailings sands, 5 m 

from the upper edge of the pit bowl. Distance from tailing dump was about 0 m. Accord-

ing to WRB 2022 [36], the soils of the first site are classified as Protic Arenosol with tech-

nogenic soil formation on nepheline tailing dump and pioneer vegetation. A buried or-

ganic horizon [O] was identified in the soil profile, which indicated the re-deposition of 

nepheline tailing material on the surface after the onset of primary overgrowth processes. 

The vegetation was represented by a cereal community, with a predominance of Avenella 

flexuosa (L.) Drejer, isolated inclusions of Salix sp. and Betula pubescens Ehrh., and the dom-

inance of Polytrichum commune Hedw. in the moss–lichen layer. The age of the plant com-

munity did not exceed 35 years, the mineral composition of the soil was dominated by 

nepheline, feldspars, and aegirine.   

Site 2 (AO) was located in the south-west direction from the open tailing dump in an 

area with continuous overgrowth of tailings sands in hydromorphic conditions. Distance 

from tailing dump was about 100 m. The soil was described as Protic Arenosol also with 

technogenic soil formation on nepheline  tailing dump. The soil profile on  this site was 

highly differentiated from the upper (0–5 cm) layer containing organic material, when the 

layer 5–10 cm was predominantly mineral. The mineral composition of soil was similar to 

site 1. The plant community was  represented by a grass-forb group of A. flexuosa and 

Chamaenerion angustifolium (L.) Scop., dominated by Salix sp. and the single presence of B. 

pubescens. and B. nana  in  the  tree–shrub  layer and  the dominance of P. commune  in  the 

moss–lichen layer. The estimated age of the plant community was 35–70 years. 

Site 3 (AP) was located in the north-west direction from the tailings dump and had 

the zonal soil type—Albic Podzol (Arenic, Folic). Distance from tailing dump was about 

300 m. The mineral  composition was dominated by quartz, albite, and nepheline. The 

Figure 1. Location and appearance of sampling points.

Site 3 (AP) was located in the north-west direction from the tailings dump and had
the zonal soil type—Albic Podzol (Arenic, Folic). Distance from tailing dump was about
300 m. The mineral composition was dominated by quartz, albite, and nepheline. The
plant community was represented by a typical shrub moss–lichen community of mountain
tundra with the dominance of B. nana in the tree–shrub layer; A. flexuosa and Salix sp. Were
presented in single copies.

2.2. Sampling and Analysis

Sampling was carried out at the end of the growing season (mid-September). Three
plant species were selected at each site: A. flexuosa (roots, vegetative aerial parts, ears), Salix
sp. (leaves), and B. pubescens (leaves). Plant sampling was carried out according to the
requirements [37]. Sampling of birch and willow leaves was carried out from at least five
shrubs for each site. Leaf samples were taken from the upper third of the crown, about
25–30 g from each bush. Wavy hair-grass samples were taken by digging out three (at the
tailings site) and five tussocks with plants (at two other sites).

Samples of the upper soil layer (rhizosphere soil) were taken at the sites using the
envelope method to a depth of 10 cm to obtain an average sample weighing 2 kg. The
pH value of the aqueous extract was determined by the potentiometric method using the
I-160MI ion meter. Particle size distribution was analyzed using a Beckman Coulter LS 13
320XR laser (with ALM module and PIDS attachment for measuring particles from 40 nm
to 2000 µm, “Beckman Coulter, Inc.”, Brea, CA, USA) particle size analyzer.

Plant samples were washed three times with distilled water. Plant and soil samples
were air-dried, ground in agate mortar, and sieved through a sieve with a mesh size of
0.071 mm.
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Soil samples were ground in a powdery state, ashed at a temperature of 550 ◦C, and
an absolutely dry sample was placed in a glassy carbon crucible (SU-2000). The sample
decomposition was carried out by the open acid method at a temperature close to the
boiling point in hydrofluoric acid during evaporation to wet salts. The sample was then
dissolved in concentrated nitric acid while heating, followed by dilution with 2% HNO3
while heating. After the sample solution cooled, it was quantitatively transferred into
plastic test tubes with screw caps, 4–5 drops of H2O2 were added and brought to a fixed
volume of 20–30 mL 2% HNO3 (distilled from “special purity grade”), which was used as a
dilution solution and control sample.

Microwave digestion of plants samples was carried out in fluoroplastic autoclaves
(Sineo system Jupiter-B series, SINEO Microwave Chemistry Technology (Shanghai) Co.,
Ltd., China). The sample was ground to a powdery state and the air-dried sample was
placed in an autoclave. A mixture of nitric and hydrofluoric acids in a ratio of 16:1 was
added to the sample, kept for 8 h, and after the active gas separation stopped, 4–5 drops of
H2O2 were added. The autoclaves were tightly sealed and decomposition was carried out at
a temperature of 180 ◦C. After the sample solution cooled, it was quantitatively transferred
into plastic test tubes with screw caps to a fixed volume of 20–30 mL 2% HNO3 (distilled
from “special purity grade”), which was used as a dilution solution and control sample.

The resulting solutions were analyzed using a mass spectrometer with inductively cou-
pled plasma (ELAN 9000 Perkin Elmer, Waltham, MA, USA) at the Shared Use Center of the
Institute of the North Industrial Ecology Problems, Kola Science Center, Russian Academy
of Sciences. The quality of analysis was ensured by simultaneous decomposition and
analysis of the certified standard samples: birch leaf LB-1 (GSO 8923-2007; SO COOMET
0067-2008-RU), grass mixture TR-1 (GSO 8922-2007; SO COOMET 0066-2008-RU). The ob-
servational error was less than 0.5% at p = 0.95. The organic carbon content was determined
using a CS-2000 Eltra sulfur and carbon analyzer (Eltra GmbH, Hamburg, Germany).

Operational control of the stability of the calibration characteristic was carried out
every eight analyzed samples using standard solutions with a concentration in the middle
of the calibration characteristic. The drift of the analytical signal did not exceed 2–4%.
The precision and repeatability of the analysis were assessed by the standard deviation
within 5 h and 5 min, respectively. The value of the standard deviation varied between
2–5%. The accuracy was checked by the degree of similarity of the result of the certified
standard samples analysis, the sample preparation of which was carried out in the same
way as the analyzed samples. The data obtained were assessed as correct if the analysis
result corresponded to the composition of the certified standard samples given in its
certificate (passport).

2.3. Data Treatment and Statistical Analysis

The content of macro and trace elements in plant samples was compared with the
average values of the total element content in Birch, Salix sp., and A. flexuosa, growing in
Northern and Eastern Europe [38,39].

The ratios of contents in the initial (not washed) and washed samples were calculated
to identify the anthropogenic influence on the chemical composition of aboveground plant
organs. Factor analysis was carried out using MS Excel 2016, StatPlus package (version v7,
AnalystSoft Inc., Vancouver, BC, Canada). The Kaiser–Meyer–Olkin (KMO) measure of
sample adequacy was calculated in R 4.3.1 (R Core Team) using psych package.

The bioaccumulation coefficient (BC) was calculated as the ratio of the metal concen-
tration in plant tissues to the metal concentration in the soil according to Formula (1):

BC = Cip/Cis, (1)

where Cip is the metal concentration in plant tissues (roots, stems, or leaves), and Cis is the
metal concentration in the soil [40].
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The translocation coefficient (TC) was calculated as the ratio of the concentration in
the shoots to the concentration in roots according to Formula (2):

TC = Cil/Cir, (2)

where Cil is the metal concentration in plant tissues (stems or leaves) and Cir is the metal
concentration in plant roots. TC is a dimensionless coefficient; a higher value implies a
higher ability of plants to absorb chemical elements from the soil [41]. Bioaccumulation
and translocation coefficients are widely used in modern research to obtain information
about the effects of metals on plants, including the assessment of nanoparticles of metal
oxides and metal ions in the soil–plant system [42]; studying the accumulation and dis-
tribution of metals in plants in areas of industrial pollution [43,44] and the potential of
phytoremediation [45].

3. Results and Discussion
3.1. Chemical Composition of Soils

The content of chemical elements in soil samples is presented in Table 1. The samples
were statistically different (p < 0.05). The pH value of the water extract was 7.31 ± 0.11,
6.92 ± 0.13 and 6.65 ± 0.10 for samples from areas AV, AO, and AP, respectively. According
to the texture (physical clay content (<0.01 mm)), soil samples AV, AO, and AP (8.88, 5.13,
and 3.72%, respectively) were classified as sandy soil.

Comparison of the data with the content of REE in background areas of soddy–
podzolic soils in the European part of Russia [46] indicates their significant enrichment
with elements included in minerals of the developed deposit. This observation was found
not only for primary soils, developing on tailing technogenic material, but also on the
conditional background soil of the AP site.

Table 1. Content of chemical elements in soil samples.

Element Tailings [47] AV AO AP Soils [46] Soils on Nepheline
Tailings [48]

Content, %
C 0.00 0.27 ± 0.03 4.5 ± 0.31 5.40 ± 0.48 3.5–4.5 8–11
Al 7.86 10.57 ± 0.06 10.34 ± 0.06 14.98 ± 0.06 - 11.53
Ca - 0.89 ± 0.01 0.76 ± 0.01 2.5 ± 0.06 - 3.87
Fe 3.01 4.4 ± 0.04 3.40 ± 0.07 6.33 ± 0.03 - 6.22
K - 2.99 ± 0.1 2.49 ± 0.03 3.82 ± 0.04 - 4.51

Mg - 0.25 ± 0.01 0.21 ± 0 1.24 ± 0.05 - 0.70
Na - 9.08 ± 0.12 7.09 ± 0.09 6.34 ± 0.06 - 8.61
Si 22.31 22.44 ± 0.36 22.61 ± 0.58 33.02 ± 0.44 - 19.05

Content, mg·kg−1

Ce 852 1813 ± 115 3021 ± 88 264 ± 13 10 388
La 160 933 ± 6 1859 ± 63 167 ± 12 4 279
Mn 1351 1863 ± 57 1411 ± 58 1439 ± 59 - 1394
Nd 106 607 ± 20 962 ± 20 93 ± 2 20 -
Pr 34 223 ± 8 362 ± 18 20 ± 1 1 -
Sc 134 3 ± 1 6 ± 1 4 ± 1 - -
Sm 12 78 ± 2 121 ± 7 15 ± 1 4 29
Sr 943 1956 ± 199 1511 ± 152 981 ± 20 - 1565
Zn 171 232 ± 8 184 ± 17 195 ± 8 - 113
Zr 2105 2381 ± 66 1269 ± 57 384 ± 8 - 404

Note. A dash means no data.

Comparison of data from the AV site with primary soils formed on apatite–nepheline
ores enrichment wastes [48] revealed an increased content of elements included in the
loparite ores enrichment tailings, namely: La, Ce, Mn, Si, Sm, Sr, Zr. The content of light
group REE (La-Sm) in the AO sample, as well as in the AV sample, exceeded their content
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in the tailings of the enrichment of loparite ores [47]. Apparently, this is related to the
creation and commissioning of the second tailings field, carried out before 1985, and is
currently affected by dusting of loose enrichment tailings [49]. Previously, it was shown
that finely dispersed tailing material is significantly enriched in the above elements [50]. It
should be noted that the REE content in the soils of point AO was higher than AV, which
may be due to the peculiarities of REE accumulation by organic matter during the process
of soil formation on technogenic parent material under hydromorphic conditions [51].

The content of the same elements in the AP soil sample taken at a distance from the
tailings dump was significantly lower. In turn, for such basic plant nutrients as Ca and
Mg, soil depletion was noted in comparison with Clark values [52] and their contents
in primary soils on nepheline sands [48]. It is worth noting that there are quite a few
works devoted to the study of the content of REE in the soils of the Kola Peninsula [53–55].
Increased REE content was observed in the soils of the area of the largest REE deposit in
China—Bayan Obo, which indicated the influence of mining activities on the concentration
and distribution of individual REE [56]. A study of the chemical composition of soils near
the Bayan Obo mine conducted in 2016 showed anomalous accumulation of REE in surface
soils. The average concentration of total REE was 1906.12 mg·kg−1, with average values for
background soils in China being 181 mg·kg−1, varying from 149.75 to 18,891.81 mg·kg−1,
depending on the sampling site and direction relative to mine. Concentrations of individual
light REE exceeded the background values of soils by 20 times for La (518.14 mg·kg−1) and
Pr (88.81 mg·kg−1), 20 times for Ce (982.78 mg·kg−1), and 13 times for Nd (262.63 mg·kg−1).
The order of distribution of average concentrations of individual elements is similar to
the distribution in mined ores, which confirms the influence of mining activities on soil
composition [56].

Similar studies conducted at the abandoned REE and uranium Mary Kathleen Mine
in Central Queensland, Australia [57] showed high soil Ce (1550 mg·kg−1), followed by La
(645 mg·kg−1), whereas the concentrations of Gd (25 mg·kg−1) and Lu (1.5 mg·kg−1) were
significantly lower.

3.2. Chemical Composition of Plants

The content of chemical elements in washed plant leaves, as well as the total content
of elements in the leaves of B. pubescens, Salix sp., and A. flexuosa, growing in Northern and
Eastern Europe, is presented in Tables 2–4.

Table 2. Content of chemical elements in washed plant samples: B. pubescens (leaves).

Element AV AO AP Birch [38]

Content, %
Al 0.1 ± 0.001 0.03 ± 0.001 0.13 ± 0.006 0.0027
Ca 1.06 ± 0.02 0.84 ± 0.015 1.06 ± 0.02 1.1
Fe 0.05 ± 0.001 0.02 ± 0.001 0.08 ± 0.001 0.0082
K 0.78 ± 0.01 1.17 ± 0.021 0.87 ± 0.016 1.03

Mg 0.34 ± 0.006 0.27 ± 0.003 0.35 ± 0.004 0.394
Na 0.08 ± 0.001 0.02 ± 0.001 0.09 ± 0.001 <0.002
Si 0.2 ± 0.001 0.11 ± 0.007 0.36 ± 0.003 0.0118

Content, mg·kg−1

Ce 42.68 ± 1.36 6.97 ± 0.33 28.23 ± 1.57 -
La 22.04 ± 1.56 3.11 ± 0.36 13.14 ± 2.67 -
Mn 191.13 ± 2.43 198.16 ± 4.03 285.26 ± 5.08 1470
Nd 19.58 ± 2.53 3.65 ± 0.28 13.07 ± 1.03 -
Pr 5.82 ± 1.76 0.96 ± 0.03 3.86 ± 1.53 -
Sc 0.48 ± 0.13 0.20 ± 0.05 0.23 ± 0.02 <0.03
Sm 2.06 ± 0.29 0.21 ± 0.01 0.95 ± 0.01 -
Sr 755.64 ± 2.13 501.26 ± 6.78 373.94 ± 4.02 36.4
Zn 348.99 ± 1.75 508.67 ± 4.87 229.53 ± 5.03 205
Zr 30.86 ± 0.97 7.00 ± 2.51 28.73 ± 3.06 0.05

Note. A dash means the absence of data in literature.
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Table 3. Content of chemical elements in washed plant samples: Salix sp. (leaves).

Element AV AO AP Salix sp. [38]

Content, %
Al 0.04 ± 0.001 0.01 ± 0.001 0.01 ± 0.001 0.0025
Ca 0.86 ± 0.016 1.02 ± 0.02 1.09 ± 0.021 1.1
Fe 0.03 ± 0.001 0.01 ± 0.001 0.02 ± 0.001 0.0079
K 1.24 ± 0.028 0.82 ± 0.015 0.43 ± 0.01 1.65

Mg 0.1 ± 0.001 0.12 ± 0.001 0.15 ± 0.001 0.301
Na 0.04 ± 0.001 0.01 ± 0.001 0.01 ± 0.001 0.0023
Si 0.17 ± 0.001 0.1 ± 0.001 0.1 ± 0.001 0.0097

Content, mg·kg−1

Ce 21.44 ± 1.23 1.92 ± 0.12 1.47 ± 0.25 -
La 10.19 ± 1.99 0.61 ± 0.02 0.60 ± 0.01 -
Mn 893.26 ± 4.43 396.57 ± 7.07 225.76 ± 4.83 310
Nd 9.04 ± 1.46 0.66 ± 0.02 0.45 ± 0.01 -
Pr 2.63 ± 1.25 0.22 ± 0.01 0.17 ± 0.01 -
Sc 2.52 ± 1.03 0.61 ± 0.21 1.56 ± 0.74 <0.03
Sm 0.53 ± 0.01 0.10 ± 0.01 0.05 ± 0.01 -
Sr 660.11 ± 7.89 746.40 ± 10.02 536.62 ± 6.49 37.3
Zn 679.44 ± 8.05 1828.24 ± 44.12 183.77 ± 4.38 125
Zr 13.89 ± 3.87 2.24 ± 0.63 4.38 ± 0.03 0.04

Note. A dash means the absence of data in literature.

The gross content of Ca, Mg, and, in most cases, Mn in woody plants was lower
than the average European background, which indicates that the plant supply by these
elements in bioavailable form is scarce. Manganese deficiency has also been noted for wavy
hair-grass. At the same time, an aboveground biomass of woody plants contained large
amounts of Al and REE, which are part of the enrichment tailings.

At a similar site, REE concentrations in aboveground and underground parts of plants
collected from a site near the inactive Quinta do Bispo uranium mine in Portugal [58]
showed accumulation of LREE in both aboveground and underground parts. Thus, for
the aboveground part of the Salix sp. samples, the REE concentration was 1670 µg·kg−1,
including LREE—1320 µg·kg−1; concentrations of La—349 µg·kg−1, Ce—521 µg·kg−1, Pr—
85.4 µg·kg−1, Nd—363 µg·kg−1. For the underground part, the REE concentrations were
23,200 µg·kg−1, including LREE—19,200 µg·kg−1; concentrations of La—5560 µg·kg−1,
Ce—7640 µg·kg−1, Pr—1290 µg·kg−1, Nd—4730 µg·kg−1. The corresponding content of
these elements in the rhizosphere soils of the site amounted to a total of REE—231 mg·kg−1,
including LREE—195 mg·kg−1; concentrations of La—46.9 mg·kg−1, Ce—93.0 mg·kg−1,
Pr—11.5 mg·kg−1, Nd—43.3 mg·kg−1. According to research [59], in the same areas, the
total content of REE in the soil was in the range from 83.6 to 275 mg·kg−1, including LREE
from 73.9 to 247 mg·kg−1.

The wavy hair-grass is characterized by an increased, in comparison with background
values, content of Al, Zr, and REE. The absorption of REE (Ce, La, Sm, Nd) by roots
correlated with the content of these elements in the soil and was maximum for the AO
point. At the same time, the content of these elements in the leaves at this point was
minimal, which indicates the activation of biological mechanisms of protection against the
toxic effects of high concentrations of REE.
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Table 4. Content of chemical elements in washed plant samples: A. flexuosa.

Element
AV AO AP A. flexuosa [39]

Roots Leaves Ears Roots Leaves Ears Roots Leaves Ears

Content, %
Al 1.29 ± 0.03 0.33 ± 0.004 0.05 ± 0.001 1.11 ± 0.006 0.09 ± 0.001 0.15 ± 0.006 2.73 ± 0.029 0.14 ± 0.004 0.03 ± 0 0.0032
Ca 0.3 ± 0.004 0.33 ± 0.004 0.19 ± 0.006 0.4 ± 0.005 0.18 ± 0.006 0.49 ± 0.005 1.11 ± 0.022 0.29 ± 0.003 0.21 ± 0.006 0.1454
Fe 0.47 ± 0.005 0.14 ± 0.001 0.03 ± 0.001 0.32 ± 0.003 0.05 ± 0.001 0.2 ± 0.006 1.22 ± 0.006 0.09 ± 0.001 0.02 ± 0.001 0.0061
K 0.84 ± 0.016 0.7 ± 0.014 0.16 ± 0.004 0.38 ± 0.004 0.5 ± 0.008 0.17 ± 0.004 1.05 ± 0.025 0.7 ± 0.014 0.17 ± 0.004 2.062

Mg 0.08 ± 0.001 0.12 ± 0.001 0.11 ± 0.001 0.07 ± 0.001 0.05 ± 0.001 0.66 ± 0.006 0.41 ± 0.004 0.12 ± 0.001 0.11 ± 0.001 0.1078
Na 1.17 ± 0.025 0.07 ± 0.001 0.05 ± 0.001 0.49 ± 0.005 0.07 ± 0.001 0.07 ± 0.001 1.33 ± 0.03 0.08 ± 0.001 0.03 ± 0.001 0.0014
Si 4.03 ± 0.044 7.39 ± 0.058 6.26 ± 0.058 3.85 ± 0.067 4.17 ± 0.058 4.91 ± 0.058 12.86 ± 0.029 3.33 ± 0.006 6.12 ± 0.031 -

Content, mg·kg−1

Ce 373.74 ± 4.38 91.84 ± 2.94 15.07 ± 1.12 431.55 ± 5.37 21.43 ± 1.23 14.07 ± 1.01 50.80 ± 2.01 21.64 ± 1.92 7.75 ± 2.65 0.05
La 171.99 ± 4.03 43.19 ± 2.97 6.62 ± 1.02 209.99 ± 5.07 9.59 ± 1.87 5.61 ± 1.24 20.75 ± 3.05 10.26 ± 2.25 3.37 ± 1.01 0.027
Mn 361.50 ± 6.87 180.40 ± 4.32 117.79 ± 3.87 546.97 ± 6.93 115.81 ± 3.67 173.07 ± 4.62 551.65 ± 7.03 92.10 ± 2.53 259.48 ± 4.76 529
Nd 104.96 ± 3.08 24.94 ± 3.05 7.06 ± 1.49 199.29 ± 3.97 8.30 ± 1.22 7.37 ± 1.15 18.56 ± 2.41 9.20 ± 1.58 3.37 ± 0.97 0.019
Pr 76.34 ± 4.08 12.00 ± 1.46 2.03 ± 0.69 63.85 ± 5.83 2.69 ± 1.27 1.86 ± 0.98 6.47 ± 4.02 2.88 ± 1.52 0.92 ± 0.05 0.005
Sc 8.81 ± 4.01 1.72 ± 0.97 0.19 ± 0.42 6.43 ± 2.03 0.51 ± 0.21 2.30 ± 0.54 6.18 ± 1.23 0.53 ± 0.04 0.05 ± 0.01 -
Sm 11.70 ± 0.93 1.71 ± 0.05 0.47 ± 0.01 14.48 ± 1.02 0.60 ± 0.02 0.41 ± 0.01 1.53 ± 0.01 0.68 ± 0.01 0.21 ± 0.01 -
Sr 436.09 ± 5.43 272.73 ± 2.09 133.96 ± 2.01 315.42 ± 3.45 210.03 ± 1.84 142.50 ± 2.57 366.67 ± 4.05 62.03 ± 3.02 210.48 ± 1.99 4.2
Zn 202.78 ± 1.78 113.12 ± 1.06 74.11 ± 1.02 236.99 ± 4.07 40.58 ± 7.53 75.73 ± 6.34 60.41 ± 4.65 64.44 ± 3.82 111.88 ± 6.49 28
Zr 334.37 ± 4.08 80.79 ± 7.49 14.99 ± 3.83 229.01 ± 6.45 20.24 ± 3.65 94.53 ± 7.5 227.76 ± 3.35 21.40 ± 4.05 7.29 ± 1.36 -

Note. A dash means the absence of data in literature.
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3.3. The Anthropogenic Effect on Plants’ Chemical Composition

The chemical composition of aboveground plant parts is affected by the element
migration from soil and roots and/or their adsorption from the atmosphere [60,61].

The distribution of trace elements and REE was studied in the leaves of some endemic
plants, in the atmospheric fallout and soils of rural, urban, and industrial ecosystems in
Sicily to indicate the composition of atmospheric dust in [62]. The results of that study
confirmed plant exploitation as a bioindicator of environmental quality.

Tables 5–7 present the chemical composition of samples of initial aboveground plant
parts: leaves of B. pubescens and Salix sp. and leaves and ears of A. flexuosa.

Table 5. Content of chemical elements in initial plant samples: B. pubescens (leaves).

Element AV AO AP

Content, %
Al 0.15 ± 0.005 0.03 ± 0.002 0.08 ± 0.002
Ca 1.22 ± 0.03 1.21 ± 0.034 1.21 ± 0.022
Fe 0.07 ± 0.004 0.03 ± 0.002 0.07 ± 0.004
K 1.08 ± 0.013 0.95 ± 0.013 0.66 ± 0.017

Mg 0.31 ± 0.014 0.3 ± 0.009 0.39 ± 0.016
Na 0.15 ± 0.005 0.03 ± 0.002 0.04 ± 0.002
Si 0.22 ± 0.013 0.14 ± 0.005 0.36 ± 0.009

Content, mg·kg−1

Ce 56.60 ± 2.30 11.59 ± 0.59 11.86 ± 0.32
La 28.17 ± 0.37 4.74 ± 0.36 5.08 ± 0.32
Mn 256.58 ± 12.26 269.35 ± 16.47 288.56 ± 16.24
Nd 15.95 ± 0.58 3.33 ± 0.54 3.76 ± 0.31
Pr 4.64 ± 0.38 0.57 ± 0.14 1.02 ± 0.26
Sc 5.46 ± 0.38 0.08 ± 0.01 1.50 ± 0.08
Sm 2.96 ± 0.29 0.57 ± 0.09 0.35 ± 0.05
Sr 803.90 ± 46.21 808.59 ± 32.38 285.35 ± 13.57
Zn 395.20 ± 16.24 700.80 ± 37.15 425.20 ± 17.39
Zr 52.77 ± 2.82 9.99 ± 0.33 13.80 ± 0.43

Table 6. Content of chemical elements in initial plant samples: Salix sp. (leaves).

Element AV AO AP

Content, %
Al 0.06 ± 0.006 0.03 ± 0.002 0.03 ± 0.001
Ca 0.89 ± 0.024 0.96 ± 0.015 1.2 ± 0.027
Fe 0.04 ± 0.001 0.02 ± 0.002 0.02 ± 0.001
K 1.62 ± 0.023 1.1 ± 0.029 0.51 ± 0.008

Mg 0.09 ± 0.005 0.11 ± 0.005 0.16 ± 0.006
Na 0.07 ± 0.006 0.03 ± 0.003 0.02 ± 0.003
Si 0.12 ± 0.008 0.3 ± 0.007 0.67 ± 0.013

Content, mg·kg−1

Ce 30.80 ± 1.32 5.82 ± 0.44 5.97 ± 0.57
La 15.17 ± 0.63 1.76 ± 0.32 2.33 ± 0.37
Mn 839.90 ± 33.26 453.75 ± 20.37 259.60 ± 15.46
Nd 9.06 ± 0.70 2.22 ± 0.46 2.45 ± 0.55
Pr 4.03 ± 0.45 0.53 ± 0.10 0.27 ± 0.03
Sc 2.00 ± 0.25 2.00 ± 0.22 2.00 ± 0.15
Sm 1.05 ± 0.28 0.26 ± 0.03 0.24 ± 0.02
Sr 783.51 ± 23.97 793.39 ± 15.26 605.21 ± 13.05
Zn 805.00 ± 29.03 2110.00 ± 55.59 259.60 ± 6.26
Zr 23.69 ± 0.62 9.94 ± 0.26 5.76 ± 0.46
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Table 7. Content of chemical elements in initial plant samples: A. flexuosa.

Element
AV AO AP

Leaves Ears Leaves Ears Leaves Ears

Content, %
Al 1.39 ± 0.077 0.12 ± 0.007 0.27 ± 0.007 0.06 ± 0.001 1.03 ± 0.012 0.07 ± 0.004
Ca 0.27 ± 0.012 0.24 ± 0.017 0.29 ± 0.008 0.27 ± 0.016 0.49 ± 0.011 0.26 ± 0.012
Fe 1.55 ± 0.022 0.1 ± 0.004 0.14 ± 0.008 0.05 ± 0.003 0.51 ± 0.006 0.07 ± 0.005
K 1.96 ± 0.047 0.21 ± 0.007 0.58 ± 0.009 0.25 ± 0.006 0.92 ± 0.012 0.20 ± 0.017

Mg 0.06 ± 0.004 0.12 ± 0.01 0.06 ± 0.004 0.1 ± 0.006 0.1 ± 0.005 0.11 ± 0.007
Na 1.38 ± 0.032 0.12 ± 0.007 0.24 ± 0.008 0.06 ± 0.002 1.05 ± 0.04 0.07 ± 0.002
Si 15.7 ± 0.443 9.53 ± 0.118 6.66 ± 0.033 10.25 ± 0.061 8.44 ± 0.033 6.86 ± 0.031

Content, mg·kg−1

Ce 153.18 ± 4.21 39.69 ± 1.17 69.40 ± 3.07 15.00 ± 0.58 272.53 ± 9.01 19.21 ± 1.40
La 57.22 ± 1.16 18.00 ± 0.59 34.46 ± 0.40 6.22 ± 0.46 133.30 ± 6.27 8.16 ± 0.37
Mn 801.90 ± 42.33 139.50 ± 5.37 220.22 ± 6.91 291.95 ± 13.69 526.29 ± 20.83 202.44 ± 17.62
Nd 47.23 ± 1.09 10.20 ± 1.02 19.75 ± 0.79 4.55 ± 0.47 83.59 ± 3.79 5.70 ± 1.02
Pr 17.32 ± 0.68 3.48 ± 0.87 8.94 ± 0.31 1.36 ± 0.39 35.93 ± 0.37 1.86 ± 0.08
Sc 124.05 ± 13.02 1.90 ± 0.15 9.23 ± 0.21 0.90 ± 0.27 39.02 ± 1.26 0.08 ± 0.01
Sm 6.41 ± 0.17 1.72 ± 0.28 2.54 ± 0.18 0.50 ± 0.06 9.37 ± 0.32 1.23 ± 0.10
Sr 878.64 ± 37.89 171.59 ± 10.69 320.75 ± 11.78 253.36 ± 12.70 660.95 ± 13.07 186.52 ± 10.90
Zn 185.80 ± 5.95 118.60 ± 4.74 77.24 ± 2.41 148.80 ± 4.79 105.60 ± 4.18 110.60 ± 4.87
Zr 189.60 ± 7.03 29.35 ± 0.78 78.96 ± 1.52 13.58 ± 0.61 293.09 ± 7.78 16.40 ± 0.59

The factor analysis method allows us to determine the level of anthropogenic load
on the chemical composition of the study object, and distinguish industrial and natural
sources of chemical elements [63–65].

The KMO index verified the sampling adequacy for the analysis. KMO = 0.71, which
was well above the accepted limit of 0.5. Based on the results of factor analysis, the
two clearest factors affecting the chemical composition of leaves and ears were identified;
the contribution of these factors for the initial and washed plant material was 80.6 and
72.7%, respectively (Figure 2).
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Figure 2. Factor analysis of the chemical composition of the initial (A) and washed (B) aboveground
plant parts. The percentage of variance explained by each factor is shown in the axis labels.

The first (anthropogenic) factor with a high positive (>0.82) weight included REE, as
well as Al, Fe, and Na, present in loparite ores. This factor is most likely associated with the
movement of dust flows of solid particles from the tailings pond and their settling on plants.
The second (biogenic) factor combined elements such as Ca, K, Mn, Zn, and Sr. It should be
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noted that the contribution of the anthropogenic factor in the chemical composition of plants
after washing decreased by 23% and the contribution of the biogenic factor increased by 29%.

REEs are strongly associated with the mineral matrix and Al2O3, TiO2, and Fe2O3
since they are present in the crystal lattice of minerals in REE deposits [66,67]. At the
same time, the REE input to the plant tissues is controlled by the multiply factors such as
soil properties, pH, redox potential, root exudates, cation exchange capacity, interactions
amongst REEs and compounds, etc. [67].

When comparing the results of factor analysis of the chemical composition of the initial
and washed aboveground plant parts, an interfactorial transition of some elements was
revealed. Thus, such biogenic elements as Zn and Si, after removing surface contamination
from the terrestrial parts of plants, were included in the second factor.

The relationship between the content of elements in the initial and washed plant
material is presented in Figure 3.
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The most effective in capturing finely dispersed material among the studied plant species
was wavy hair-grass: the proportion of dust deposited on the surface of leaves in areas with
maximum anthropogenic load (AV) and with natural soil influenced by dust flows (AP) was
the largest for this species. At the same time, in the AO site, which has an average level of
dust and the soil of which is composed mainly of tailing material, the contribution of surface
pollution to the content of elements was similar for all examined plant species.

The ratio between the content of elements in the initial and washed plant material for
biogenic elements in most cases did not exceed 2.0, while for elements with a technogenic
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source, this ratio was more than 2.0. The exception was birch, for which this ratio in the
conditional background area was less than 1.0 and did not exceed 2.0 in other areas.

3.4. Bioconcentration and Translocation Coefficients

Calculation of bioaccumulation coefficients makes it possible to assess the ability of a
particular plant species to increase the accumulation of an element by aboveground plant
organs and, accordingly, to remove it from the geochemical cycle, including potentially
toxic elements, and also allows you to indirectly assess the supply of soils with certain
macrocomponents. Bioaccumulation coefficients of macro and trace elements in plant
samples are presented in Figure 4.
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Birch accumulated calcium and magnesium, willow accumulated calcium. Both
considered species of woody plants accumulated zinc in the aboveground parts of plants:
the bioaccumulation coefficient for birch varied from 1.05 to 2.31, for willow from 1.1 to
4.5. The accumulation of zinc in the aboveground parts of willows was also noted in [68].
For wavy hair-grass, all bioaccumulation coefficients did not exceed 1. Noteworthy is the
behavior of scandium, whose similarity to the behavior of alkaline earth metals, in contrast
to other REE, was noted in [69].

Low values of REE bioaccumulation coefficients are probably due to low contents
of these elements in mobile, bioavailable forms. Plants containing significantly smaller
amounts of REEs compared to soils perform a barrier function in the food chain, preventing
the transfer of REEs from the soil to animals and humans, and when absorbed from the
soil (as opposed to the aerogenic supply of elements), the maximum accumulation of REEs
is noted in the roots of plants [70]. It should be noted that with a higher concentration of
REE in the soils of the AO site, the bioaccumulation coefficient in this site was the lowest,
which is associated with the conditions of the soil-forming process described above and is
consistent with the data obtained in [51].

The translocation coefficient was calculated for wavy hair-grass, since only for this
plant samples were taken of not only the aboveground biomass (leaves, ears) but also the
roots (Figure 5).
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There is an active accumulation and transfer of important nutrients: calcium, potas-
sium, magnesium, zinc, and silicon, which are necessary for plant growth. It is reported
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that under natural conditions, 80% of REE are retained in the roots, and REE concentrations
in plant parts decrease in the order of root > stem > leaf > flower > fruit and seeds [71–73].
The contents of HM and REE in parts of wavy hair-grass samples were distributed in a
similar way: roots > leaves > ears.

High zinc accumulation by aboveground plant parts is explained by the detected
increased content of mobile forms in soil samples. As is known, the greatest danger
is posed by mobile, bioavailable forms of zinc extracted by ammonium acetate buffer
solution [74,75]. The migration of HMs accumulated in the roots to the shoots begins after
the roots lose the ability to stabilize or accumulate HMs [76].

The rapid growth of wavy hair-grass and its tolerance to HMs and REEs, as well as
its ability to absorb and accumulate metals in the roots, recommend its use for phytostabi-
lization of contaminated soils by limiting the transfer of pollutants further along the food
chain [77].

4. Conclusions

1. For the first time, a study of three native plants species (Betula pubescens, Salix
sp., and Avenella flexuosa) collected in the impact zone of a rare metal enterprise in the
Subarctic was carried out. Plants were sampled from sites of partly overgrowing tailings of
loparite ores’ processing with varying degrees of soil profile development, as well as from
a conditional background area.

2. Analysis of the content of macro and trace elements in soil and plant samples
revealed a deficiency of nutrients (Ca, Mg, Mn) at all sites.

3. Two factors affecting the chemical composition of aboveground plant parts were
found, the contribution of which for the initial and washed plant material was 80.6 and
72.7%, respectively: anthropogenic (REE, Al, Fe, and Na) and biogenic (Ca, K, Mn, and Sr).
The contribution of the anthropogenic factor to the chemical composition of plants after
washing decreased by 23%, and the contribution of the biogenic factor increased by 29%.

4. The REE content in primary soils with a high carbon content (C = 4.5%), formed
on tailings under hydromorphic conditions, was higher than in the area with weak devel-
opment of the plant community on tailings (C = 0.3%) and conditional background soil
(C = 5.4%). The absorption of REE (Ce, La, Sm, Nd) by A. flexuosa roots correlated with
the soil content of these elements. The content of these elements in leaves in the same area
was minimal, which indicates the activation of biological mechanisms of protection against
the toxic effects of high concentrations of REE. The coefficient of REE bioaccumulation by
A. flexuosa in this site was in the range of 0.005–0.009, while in the other two sites it was
0.02–0.1. The REE translocation coefficient from roots to leaves and leaves to ears in this
site was also an order of magnitude lower than in other sites.

5. The wavy hair-grass A. flexuosa is recommended for the phytoremediation of
tailings, as it is highly effective in capturing dusty material and has a low content of REE
and potentially toxic metals in its aboveground parts, which prevents their migration in
food chains. Another undoubted advantage of this species is the ability of the indigenous
population to produce a large number of seeds, which makes it possible to carry out
reclamation and reduce the damage to public health caused by dusty tailings.
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