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Abstract: The presence of pharmaceutical and personal care products in water is increasing tremen-
dously nowadays. Typical representatives are diclofenac (DCF) and triclosan (TCS). Acute toxicity
of these substances was experimentally assessed using the freshwater algae Raphidocelis subcapitata
(living, immobilized). The IC50 achieved for R. subcapitata was 177.7–189.1 mg·L−1 for DCF and
5.4–17.2 µg·L−1 for TCS, whereas, regarding DCF, the results corresponded to the values observed by
other authors. Concerning TCS, the results were lower than predicted and indicated TCSs’ higher
toxicity. The immobilized R. subcapitata showed comparable results with its living culture for DCF
only. Regarding K2Cr2O7 and TCS, the immobilized alga was more sensitive. The DCF and TCF
removal from water was tested by sorption, photocatalytic and photolytic processes. TiO2 was used
as a photocatalyst. Norit and SuperSorbon were used as sorbents based on activated charcoal. The
DCF decomposition achieved by both photo-processes was very fast. The starting concentration
fell below the detection limit in less than one minute, while bioluminescence on Aliivibrio fischeri
showed no toxic intermediates formed only in the case of photocatalysis. DCF and TCS removals by
sorption were significantly faster on Norit than SuperSorbon, while the bioluminescence inhibition
remained insignificant.

Keywords: pharmaceuticals; personal care products; ecotoxicity; Raphidocelis subcapitata; photocataly-
sis; sorption; Aliivibrio fischeri; cleaning up

1. Introduction

Currently, water pollution poses a severe problem, and significant attention has been
focused on emerging contaminants. These chemicals include pharmaceuticals, personal
care products and various other substances, such as pesticides and endocrine-disrupting
compounds [1,2].

They have been found to be ubiquitously present in surface waters, as well as wastew-
ater treatment plant (WWTP) effluents across the world [3–6]. These substances get into
waters mainly at homes and hospitals due to human excretion and/or disposal of unused
medication and are released to the aquatic environments in metabolized and/or unmetabo-
lized forms via wastewater discharges [7]. Particularly, effluents from certain small sewage
treatment plants were considerably polluted, where concentrations of several pharmaceuti-
cals exceeded 1 µg·L−1 [8]. Related to the fact that pharmaceuticals are generally designed
to exert an effect on humans, toxic impacts of their residues are considered as or even more
serious than those of pesticides.
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Some typical representatives of pharmaceuticals are diclofenac (DCF) and triclosan
(TCS), antibacterial and antifungal agents used as personal care products additives. Di-
clofenac belongs to the group of nonsteroidal anti-inflammatory drugs (NSAID) and are
one of the most commonly found pharmaceuticals in surface and wastewaters. Its global
consumption has been estimated at around 940 tons per year in 2019 [9]. DCF in effluents
from WWTP are usually found at levels reaching 1 µg·L−1. Several studies have reported
chronic toxic effects on fish at these concentrations [10], e.g., liver and kidney damage after
21 days in Salmo trutta f. fario [11]. Moreover, diclofenac has been found to act in an unspe-
cific manner by nonpolar narcosis and to follow the concept of concentration addition in the
growth inhibition test on Desmodesmus subspicatus, as well as in the immobilization test on
Daphnia magna [8]. In many ecotoxicity experiments, performed by standardized methodolo-
gies, diclofenac’s effective concentration (EC50) or nonobservable/low-observable effective
concentrations (NOEC/LOEC) have been established. For example, Ferrari et al. [12]
measured EC50 11.45 mg·L−1 for Aliivibrio fischeri (30 min), 224.3 mg·L−1 for Daphnia magna
and 22.7 mg·L−1 for Ceriodaphnia dubia (both 48 h). The same authors set the NOEC/LOEC
values for C. dubia (7 days) 1.0/2.0 mg·L−1 and Danio rerio (10 days) 4.0/8.0 mg·L−1. Simi-
larly, moderate toxicities with EC50 in the range from 10 to 100 mg·L−1 were observed by
other authors [8,13,14]. Basically, Lemna minor [8] appeared to be the most sensitive test
species for DCF.

Triclosan (TCS), also known as irgasan, is a widely used antibacterial and antifun-
gal agent, which is present as an additive in a variety of consumer products, including
soaps, toothpastes, deodorants and cosmetics [15]. This substance is present even in clothes,
textile and children’s toys [3]. The release of TCS into aquatic systems causes adverse ef-
fects on the environment and biota. Triclosan, being lipophilic, tends to accumulate in
animal and human adipose tissue, and has also been detected in urine, blood and breast
milk [16]. TCS and its degradation products are persistent, bioaccumulative and toxic, and
spread through aquatic and terrestrial food chains [17]. Triclosan has been found in the
surface water of various places worldwide in the concentrations ranging from 30 ng·L−1 to
2.3 µg·L−1 [18–20] and wastewater effluent from 100 ng·L−1 to 2.7 µg·L−1 [15,17,21]. More-
over, it has been confirmed that TCS tends to concentrate in freshwater sediments in the
levels of 0.1 to 53 mg·kg−1 dry weight and marine sediments of 0.02–35 µg·kg−1 dry
weight. Its accumulation in wastewater activated sludge is also considerable, reaching
from 0.58 to 15.6 mg·kg−1 dry weight [17]. Various authors have established acute tox-
icity levels of TCS in the range of EC50 0.28 µg·L−1 for Aliivibrio fischeri (15 min) [22],
LC50 260 to 602 µg·L−1 for fishes (24–96 h) [16,23], EC50 390 µg·L−1 for Daphnia magna
(48 h) [16] and algae EC50 1.4 to 2.8 µg·L−1 for Desmodesmus subspicatus (72–96 h) [16,21].
The chronic toxicity data of TCS are still highly limited; however, Orvos et al. [16] and
Reiss et al. [21] have measured the NOEC/LOEC values for D. magna (21 days) in the
levels of 40/200 µg·L−1 and for D. subspicatus of 0.5/0.69 µg·L−1 (72–96 h) and Raphidocelis
subcapitata of 0.2/0.4 µg·L−1 (72 h) [24]. Algae R. subcapitata [25] appeared to be the most
sensitive test species for TCS.

Regarding treatment processes, the tertiary treatment approaches have often been
proposed to decompose the pharmaceutically active compounds in wastewater [7]. The
choice of technology depends on a number of objective factors, such as the type of water
and its amount, the load of pathogens, the input composition and the concentration of
pharmaceutical and personal care products, including all accompanying pollutants. There
are plenty of interesting technological practices already being applied, and even those
which could be applied, to all types of water in general (chlorination, ozonation, bioremedi-
ation, membrane separation, electrochemical methods, advanced oxidation processes, etc.);
however, their scale-up is difficult. A number of hybrid combinations of UV/oxidants, e.g.,
UV/TiO2 + UV/H2O2 + UV/persuphates + UV/Fenton + O3, which may significantly re-
duce EDs, exist; nevertheless, these have, so far, been more interesting in terms of scientific
knowledge, especially regarding the economic point of view [26]. The literature abounds in
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hundreds of sophisticated procedures; unfortunately, they are realistically feasible only in
the laboratory scale.

The use of ultraviolet (UV) radiation [27,28], similar to photocatalysis [29], is effective
and reduces pollutant concentrations; however, it can also produce a number of toxic
by-products [30]. For example, Salgado et al. [31] have identified numerous transformation
by-products of DCF formed during UV photolysis (such as hydroxylated species, quinone-
imine and phenyl-acetic acids). Furthermore, the environmental metabolite of TCS methyl-
triclosan (MTCS) increases hydrophobicity and also shows a higher bioaccumulation
potential [32]. Thus, it is important to design more effective treatment strategies for
pharmaceutically active compounds not only to minimize their general discharge to the
environment, but also to prevent the discharge of those by-products which are even more
harmful than their parent compounds [7]. The sorption process seems to be a suitable
candidate even for the scale-up and real application as a tertiary step in water treatment
plants. Various types of sorbents have been successfully tested, including specially modified
organoclays with cationic surfactants [33], lignite activated cokes [34], and biological
activated carbon [35].

In this study, acute toxicity of various DCF and TCS concentrations was assessed by
the freshwater microalga Raphidocelis subcapitata applied as a living (free) culture and/or in
an alginate (immobilized) form. Simultaneously, the removal of DCF and TCS from water
by sorption and photo-processes was performed. The rate and efficiency of sorption were
compared with contaminants’ disintegration by photocatalytic and photolytic processes,
which are considered to be highly effective methods. The article is focused not only on
each process efficiency, but also the assessment of a potential risk of treated water due to its
toxicity increase. During these experiments, toxicity was continuously monitored on the
luminescence bacteria of Aliivibrio fisheri.

2. Experimental
2.1. Materials and Reagents

Diclofenac sodium salt (an analytical standard, C14H10Cl2NNaO2, CAS: 15307-79-6);
triclosan (a certified reference material, C12H7Cl3O2, CAS: 3380-34-5); cyclohexane (for
HPLC ≥ 99.9%, C6H12, CAS: 110-82-7); potassium dichromate (≥97.0%, K2Cr2O7, CAS:
7778-50-9), titanium (IV) isopropoxide (≥97.0%, Ti[OCH(CH3)2]4, CAS: 546-68-9) and Triton
X-114 (a laboratory grade, C27H48O7.5, CAS: 9036-19-5), supplied by Sigma-Aldrich (Prague,
Czech Republic), were used during the toxicity assessment and treatment experiments.

Ammonium chloride (≥99.5%, NH4Cl, CAS: 12125-02-9); boric acid (≥99.5%, H3BO3,
CAS: 11113-50-1); calcium chloride, dihydrate (≥99.0%, CaCl2·2H2O, CAS: 10035-04-8);
cobalt chloride, hexahydrate (98%, CoCl2·6H2O, CAS: 7791-13-1); copper chloride, di-
hydrate (≥99.0%, CuCl2·2H2O, CAS: 10125-13-0); disodium EDTA, dihydrate (≥99.0%,
Na2EDTA.2H2O, CAS: 6381-92-6); ferric chloride, hexahydrate (97.0%, FeCl3·6H2O, CAS:
10025-77-1); magnesium chloride, hexahydrate (99.0%, MgCl2·6H2O, CAS: 7786-30-3); mag-
nesium sulphate, heptahydrate (≥98.0%„ MgSO4·7H2O, CAS: 10034-99-8); manganese
chloride, tetrahydrate (≥98.0%, MnCl2·4H2O, CAS: 13446-34-9); potassium dihydrogen
phosphate (≥99.0%, KH2PO4, CAS: 7778-77-0); sodium bicarbonate (≥99.7%, NaHCO3,
CAS: 144-55-8); sodium molybdate, dihydrate (≥99.0%, Na2MoO4·2H2O, CAS: 10102-40-6)
and zinc chloride (≥98.0%, ZnCl2, CAS: 7646-85-7), all supplied by Sigma-Aldrich (Prague,
Czech Republic), and demineralized water (with conductivity of less than 10 µS.cm−1)
produced in the PURELAB flex 1 equipment supplied by ELGA LabWater (Lane End, UK)
were used for the alga growth media preparation.

The activated charcoal Norit® SX 2 pure p.a. (POCH SA, Gliwice, Poland) and Super-
Sorbon I (Donau Carbon, Frankfurt, Germany) were used during sorption tests. The glass
beads used as the carrier for catalyst’s layers (diameter 1.5 mm) were supplied by Ginzel
(Lodenice u Berouna, Czech Republic).

The freshwater microalga Raphidocelis subcapitata (formerly Selenastrum capricornutum)
was applied in two forms: as a living (free) culture and in an alginate (immobilized) form
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(Figure 1). The fresh microalga was supplied in a 1.5 mL Eppendorf ampule from the
Culture Collection of Autotrophic Organisms (CCALA, Trebon, Czech Republic). The
strain no. 433 Raphidocelis subcapitata (Korshikov) Nygaard et al. [36] was used. The
immobilized alga was supplied commercially as algal beads in 10 mL tubes (MicroBioTests,
Gent, Belgium).
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Figure 1. Used forms of Raphidocelis subcapitata (formerly Selenastrum capricornutum): (a) culture
SKULBERG 1959/1 (CCALA 433) [36]; (b) living (free) inoculum; (c) immobilized algal beads.

The luminescence bacteria of Aliivibrio fisheri (formerly Vibrio fischeri) was not pur-
chased independently. The luminescence test was performed in a selected accredited
laboratory (see Section 2.2).

2.2. Toxicity Assays

The freshwater toxicity assessment on R. subcapitata was carried out in accordance with
the ISO 8692:2012-ed.3.0 standard on the Water quality—Fresh water algal growth inhibition
test with unicellular green algae and the OECD Guideline—Test no. 201 Freshwater alga and
cyanobacteria, growth inhibition test [37,38]. Both methods are appropriate for chemicals
easily dissolvable in water. They are based on the observance of growth of the concentration
of algal cells in the test solution and the growth medium through time.

The microalga toxicity assays were performed as 6 tests, each repeated 3 times. Three
tests were performed with de-immobilized algal cells and three with the living algal cells.
Each was exposed to different concentrations of potassium dichromate (0; 0.3; 0.6; 1.2;
2.4; and 4.8 mg·L−1) used as a reference substance, triclosan (0; 1.5; 4.5; 13.5; 40.5; and
121.5 µg·L−1) or DCF (0; 50; 100; 200; 400; and 800 mg·L−1) separately. Microalga toxicity
assays were carried out in 100 mL Erlenmeyer flasks placed on a stainless-steel mixing plate
(P-Lab, Prague, Czech Republic) under a fluorescent white light lamp unit (MicroBioTests,
Gent, Belgium), with constant illumination of 6000–10,000 lux. The optimal cultivation
conditions were maintained within the temperature 23 ± 2 ◦C by a wall CO2/thermo
detector (Klimafil, Prague, Czech Republic). The initial concentration of algal cells in each
flask was 10,000 c·mL−1. In 72 ± 2 h, the concentration of algal cells was measured in
each sample with a spectrophotometer instrument Cary 60, at 685 nm wavelength (Agilent,
Prague, Czech Republic) 6 times, for better precision.

The average specific growth rate for a period of time was calculated as the logarithmic
increase in the biomass through an equation mentioned in the ISO 8692:2012-ed.3.0 standard,
as well as the percent inhibition of growth rate. The inhibition concentration (IC50) was
estimated with the Probit method using the MS Excel program (Microsoft, USA). Regarding
the inhibition concentration (IC50), the PROAST module calculation (the National Institute
of the Netherlands), as a part of the programing language R, was used. The PROAST
is a software package used for statistical analyses of dose–response data (‘PROAST|
RIVM’). The achieved data were inserted in the module, and the IC50 was calculated by
two methods—the exponential method (met1) and the Hill method (met2). The validity
of the algal tests was checked by the fulfilment of the following parameters: the average
specific growth rate had the minimum value of 1.4 d−1, the pH value at the end of the
test did not differ more than 1.5 from the starting value of pH, and the calculation of the
variation coefficient of the growth rate in the control replicates did not exceed 5%.



Toxics 2022, 10, 422 5 of 14

The toxicity assay of intermediates (from photocatalysis and photolysis experiments)
were determined by the bioluminescence assay on Aliivibrio fischeri according to the ISO
11348-2:2007-ed.2.0/Amd.1:2018 standard on the Water quality—Determination of the in-
hibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria
test)—Part 2: Method using liquid-dried bacteria [39]. The luminescence inhibition rate was
measured at 15 and 30 min of exposition by the LUMIStox instrument using the Lumistox
Luminescent bacteria test (both HACH LANGE, Dusseldorf, Germany). The degree of
inhibition was evaluated from the average values of luminescence intensity, which was
measured in several replicates by an accredited laboratory of the Povodi Labe Co. (Obristvi,
Czech Republic).

2.3. Photocatalyst and Sorbent Characterization

Textural properties of both sorbents, Norit and SuperSorbon, were determined by
nitrogen physisorption using the volumetric instrument ASAP 2020 (Micromeritics, Nor-
cross, GA, USA). The specific surface area (SBET) was evaluated by the BET method; the
micropore volume (Vmicro) and the mesopore surface area (Smeso) by the t-plot method
with Lecloux–Pirard master isotherm; and pore-size distribution by the advanced BJH
method. Nitrogen isotherms of both sorbents revealed a combination of I and IV types of
isotherms according to IUPAC classification, with a steep increase at very low p/p0, which
indicated the presence of micropores. Both sorbents possessed a high surface area, with
a significant portion of micropores together with the clear maxima of the pore radius at
7.6 nm for SuperSorbon and 4.7 nm for Norit. It was evident that textural parameters of
SuperSorbon almost doubled those of Norit; however, the particle sizes of applied sorbents,
Norit 0.25 mm and SuperSorbon 5 mm, could have significantly influenced the sorption
rates, owing to the diffusion of molecules into the binding sites (Figure 2).
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isotherm of physical nitrogen adsorption. (b) Distribution of mesopores from the adsorption branch
of the isotherm of physical nitrogen adsorption.

The crystallographic structure of the prepared thin film of TiO2 photocatalyst was
performed by X-ray diffraction (Panalytical-MRD laboratory diffractometer with the Cu
anode). TiO2 photocatalyst in the form of four thin layers contained only a pure anatase
crystalline phase. The textural properties of TiO2 photocatalyst were evaluated for a powder
equivalent and are shown in Table 1. Further details can be found at Solcova et al. [40]. The
photos of glass beads with TiO2 layer together with both sorbents (Norit and SuperSorbon)
are shown in Figure 3.
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Table 1. Textural properties of sorbents and TiO2 photocatalyst.

Tested Materials
Textural Characteristics

SBET (m2·g−1) Smeso (m2·g−1) Vmicro (mm3
liq·g−1) rmax (nm)

Norit 688 274 216 4.7

SuperSorbon 1378 612 395 7.6

TiO2 68 50 14 1.5
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2.4. Treatment Experiments

The photolytic and photocatalytic reaction experiments regarding the removal of both
pollutants were performed under UV light at normal temperature and under pressure
conditions (25 ◦C; 1 atm). The experiments were accomplished in a batch reactor with
the reaction solution volume of 200 mL. The initial concentration of DCF or TCS was
1 mg·L−1. The beaker contained a bed of the photocatalyst, glass beads covered by four
nanostructured TiO2 layers (5 g beads with 2.5 mg active amount of TiO2) [40,41]. The
UV lamp Philips HOK 4/120 SE, 400 W medium pressure mercury lamp (Philips N.V.,
Amsterdam, the Netherlands) with a wavelength in the range of 250–420 nm was applied
for the photoreactions. It reached several maxima in the whole range, and the intensity of
the light measured in the reactor was 62 W·m−2 for UV-Vis, 55 W·m−2 for UVA, 46 W·m−2

for UVB and 108 W·m−2 for UVC [40]. To avoid the influence of sorption, the photocatalyst
was immersed into the solution and kept in the dark for 15 min. Subsequently, the UV
lamp was turned on.

The sorption experiments were realized in a batch reactor using an orbital shaker GFL
3005, 300 rpm (Lauda DR. R. Wobser GmbH & Co. KG, Lauda-Königshofen, Germany)
with a particular volume of the reaction solution at 100 mL. The initial concentration of
DCF or TCS used was the same as in the photolytic and photocatalytic processes. Activated
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commercial charcoal Norit and SuperSorbon were chosen to perform sorbent tests. The
amount of applied sorbent was 1 g per 100 mL of the solution. The sorption experiments
were executed under the normal temperature and pressure conditions (25 ◦C; 1 atm).
Sorbents were separated from the samples by a nylon filter with the pore size of 0.45 µm
(Carl Roth GmbH & Co. KG, Karlsruhe, Germany). All reactions were repeated at least
three times, and the error never exceeded 5%.

The LC/MS system consisting of a UHPLC chromatographic station Dionex Ultimate
3000 (Thermo Fischer Scientific, Waltham, MA, USA) and a Q-TOF mass spectrometer
with ultra-high resolution (>60,000 FSR) and precise molecular weight determination
(HRAM) Q-TOF Impact II (Bruker Daltonik, Bremen, Germany) were used for contami-
nant analyses. The samples were separated using the Acclaim® RSLC 120 C18 column
(2.2 µm 120 Å 2.1 × 100 mm, Thermo Fisher Scientific, Waltham, MA, USA) equipped with
the Acquity UPLC BEH C18 VanGuard precolumn (Waters, Milford, MA, USA) by gradient
elution using 0.1% formic acid mobile phases (A) and methanol (B) at the constant flow
rate of 0.3 mL·min−1. The gradient started at 30% B; then, it was increased to 100% B in
5 min and held for 3 min, and, finally, was equilibrated to initial conditions by 30% B for
4 min. The column temperature was set at 35 ◦C.

3. Results and Discussion
3.1. Toxicity Assay

After 72 ± 2 h of testing, the concentration of algal cells in the samples varied between
20,000 c·mL−1 and 2.5 mil. c·mL−1, depending on the tested contaminant and its concen-
tration. The determined average growth rate and the average inhibition rate expressed as a
percentage can be found in Table 2 for the free algae and Table 3 for the immobilized algae.

Table 2. Results of tests with the living (free) culture of R. subcapitata.

Pollutant Concentration
(mg·L−1) Average Growth Rate ∗ (d−1) Average Inhibition Rate ∗ (%)

Potassium dichromate
(K2Cr2O7)

0 1.68 1.84 1.95 - - -

3.0 × 10−1 1.71 1.79 1.73 −2 3 11

6.0 × 10−1 1.51 1.48 1.81 10 19 7

12.0 × 10−1 1.09 1.15 1.70 35 37 12

24.0 × 10−1 0.59 0.54 0.61 65 71 69

48.0 × 10−1 0.53 0.52 0.42 68 72 78

Triclosan (TCS)

0 1.71 1.84 1.71 - - -

1.5 × 10−3 1.85 1.79 1.84 −8 3 −8

4.5 × 10−3 0.73 1.18 0.72 58 36 58

13.5 × 10−3 0.53 0.98 0.52 69 46 70

40.5 × 10−3 0.37 0.91 0.39 78 50 77

121.5 × 10−3 0.46 0.58 0.47 73 69 73

Diclofenac (DCF)

0 1.67 1.85 1.95 - - -

0.5 × 102 1.55 1.62 1.63 7 12 16

1.0 × 102 1.12 0.81 1.59 33 56 18

2.0 × 102 0.72 0.74 0.92 57 60 52

4.0 × 102 0.68 0.78 0.57 59 58 71

8.0 × 102 0.62 0.72 0.58 63 61 70

Note: ∗ three columns mean three replicates.
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Table 3. Results of tests with R. subcapitata in the alginate (immobilized) form.

Pollutant Concentration
(mg·L−1) Average Growth Rate ∗ (d−1) Average Inhibition Rate ∗ (%)

Potassium dichromate
(K2Cr2O7)

0 1.90 1.68 1.84 - - -

3.0 × 10−1 1.76 1.80 1.79 8 -8 3

6.0 × 10−1 1.38 1.45 1.47 28 13 20

12.0 × 10−1 0.69 0.69 0.59 64 59 68

24.0 × 10−1 0.34 0.39 0.36 82 77 80

48.0 × 10−1 0.28 0.44 0.25 85 74 86

Triclosan (TCS)

0 1.90 1.68 1.84 - - -

1.5 × 10−3 1.53 1.74 1.71 20 −4 7

4.5 × 10−3 0.78 1.12 0.92 59 33 50

13.5 × 10−3 0.53 0.57 0.55 72 66 70

40.5 × 10−3 0.38 0.39 0.53 80 77 71

121.5 × 10−3 0.36 0.18 0.55 81 89 70

Diclofenac (DCF)

0 1.78 1.67 1.67 - - -

0.5 × 102 1.57 1.50 1.76 12 10 −5

1.0 × 102 1.37 1.39 1.33 23 16 20

2.0 × 102 0.80 0.81 0.73 55 51 56

4.0 × 102 0.68 0.74 0.77 62 55 54

8.0 × 102 0.61 0.65 0.66 66 61 61

Note: ∗ three columns mean three replicates.

The pH measurements before and after testing the control samples, coefficient variation
of growth rate and the IC50 are displayed in Table 4. The table and Figure 4 reflect the
results connected with the two methods used for measuring the IC50. The (met1) regards
the exponential method (met1) and (met2) the Hill method.

Table 4. IC50 measured on R. subcapitata (free vs. immobilized form).

Pollutant
Living (Free) Algae Alginate (Immobilized)

IC50 (mg·L−1) ∗
(met1)

IC50 (mg·L−1) ∗
(met2)

Average IC50
(mg·L−1)

IC50 (mg·L−1) ∗
(met1)

IC50 (mg·L−1) ∗
(met2)

Average IC50
(mg·L−1)

Potassium
dichromate
(K2Cr2O7)

1.5913 1.5538

1.6757

0.9302 0.9436

0.96541.4756 1.4734 1.0596 1.0306

2.0438 1.9165 0.9355 0.8928

Triclosan (TCS)

0.00399 0.00359

0.0172

0.00353 0.00344

0.00540.02488 0.02300 0.00815 0.00838

0.02483 0.02295 0.00451 0.00456

Diclofenac
(DCF)

171.60 175.30

177.68

180.64 183.89

189.11155.40 155.10 203.20 214.20

203.45 205.25 168.70 184.00

Note: ∗ three rows mean three replicates.
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Concerning the table and the graph mentioned above, the average IC50 for R. subcapitata
for DCF 177.7 mg·L−1 (free alga) to 189.1 mg·L−1 (immobilized alga), and opposite for TCS
5.4 µg·L−1 (immobilized alga) to 17.2 µg·L−1 (free alga), was achieved. Related to DCF,
the results corresponded to the values observed by other authors [13,14], whereas the TCS
results from our experiments were lower than expected.

Potassium dichromate (K2Cr2O7) was used as a reference substance during the alga
toxicity assay. According to Santos et al. [42], the IC50 was established at 0.9 mg·L−1

of potassium dichromate. A similar IC50 was indicated by our research for the immobi-
lized alga R. subcapitata, while the average IC50 for the immobilized alga was measured at
1 mg·L−1. The growth inhibition related to alga inoculum was significantly lower,
1.7 mg·L−1, which means that the fresh living alga were less sensitive to potassium dichro-
mate during our experiments. In the case of diclofenac (DCF), the IC50 concentrations
were 177.7 mg·L−1 for free-living R. subcapitata, resp. 189.1 mg·L−1 for its immobilized
form. These results are fairly similar, unlike the reference dichromate, meaning that the
sensitivity of both immobilized and free algae was comparable concerning DCF. How-
ever, the experimentally achieved values in this study were higher than the maximum
<100 mg·L−1 observed by other authors [8,13,14,43]. Triclosan (TCS) was tested in lower
concentrations (in µg·L−1), since its toxicity is much higher than DCF and the reference
substance of potassium dichromate. The experimentally measured IC50 was lower for the
immobilized algae, with the IC50 average of 5.4 µg·L−1, contrasting with 17.2 µg·L−1 for
the living alga. This indicates that, similarly to potassium dichromate, free-living algae are
less sensitive to TCS than R. subcapitata immobilized in the alginate form. The average IC50
of TCS achieved on immobilized alga corresponded to the value of 4.7 µg·L−1 established
by Tatarazako et al. [44], which was, however, still higher that the values of 0.2/0.4 µg·L−1

measured on the R. subcapitata by Yang et al. [24].
The previous research, where the sensitivity of immobilized and living algae to heavy

metals and pesticides was compared [45,46], showed that immobilized alga was either less
sensitive or comparable to living alga. Al-Hasawi et al. [45] explained the lower sensitivity
of immobilized algae to heavy metals as an effect of alginate, when alginic acid, alginate,
binds strongly to divalent cations, and thus reduces the toxicity of the tested substances.
However, this was not confirmed in our study. The immobilized R. subcapitata showed only
comparable results for DCF, while, for potassium dichromate and TCS, the immobilized
alga was controversially more sensitive than its living form. It was assumed that the result
was achieved due to the applied precise de-immobilization methodology, within which
the released alginate was thoroughly, twice washed out of alga suspension. Thus, there
was no reason for alginate properties to be the key factor of the sensitivity of immobilized
alga. The differences between immobilized algae beds and living algae cultures were
recognized based on the length of lag period. The immobilized algae have a longer lag
period. After the lag period was over, the specific growth rate was similar concerning both
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the immobilized and living algae [47]. This seems logical, since the immobilized algae were
chemically treated to be immobilized, and then chemically treated to be de-immobilized,
which is uncomfortable for algae. Therefore, they needed more time to adjust to the newly
introduced conditions. Moreover, free algae were introduced to the test conditions for
the period of three or four days prior to the test; hence, they overcame the lag phase
of adjusting. The immobilized algal cells were immobilized in their exponential phase;
nevertheless, the de-immobilization procedure and introduction into new conditions could
also affect the exponential phase.

3.2. Contaminant Removal

Sorption technique was tested as a cheap method. This could solve the issue of water
contaminants that are either slowly biodegradable and/or easily biodegradable but their
massive consumption leads to continuous emission, which is significantly faster than its
environmental removal rate [48]. Simultaneously, the photocatalysis over titanium dioxide,
which is known for high efficiency of contaminant removal [49–51], and photolysis were
performed as comparative methods. Taking into consideration the scaling up and possible
future applications, titanium dioxide was used in the form of a thin layer, owing to the fact
that TiO2 in a powder form is suitable only for laboratory experiments.

Normalized diclofenac (DFC) concentration c.c0
−1 (left axis y) together with the

bioluminescence inhibition of A. fischeri bacteria (right axis y) over time are shown in
Figure 5. Evidently, the decomposition of diclofenac was very fast. The initial concentration
of diclofenac fell below the detection limit (0.87 ng/mL) in less than one minute for both
photo reactions. The bioluminescence inhibition of bacteria represented the toxicity of
formed intermediates and was generally low (because of low initial concentration of DCF).
The degree of inhibition for photocatalysis remained around zero, which means that no
toxic intermediates were formed during the reaction. Contrarily, toxic intermediates were
formed in the case of photolysis, and the inhibition of bioluminescence increased over time,
which characterizes this method as an environmentally unfriendly process. It corroborates
the published results [52–54].
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Figure 6 reflects DFC removal by sorption on SuperSorbon and Norit. Obviously, the
efficiency of DFC removal by sorption on Norit was 20 times faster than on SuperSorbon,
and even two times faster regarding the photocatalysis reaction. The differences between
applied sorbents relate to the particle sizes (Norit 0.25 mm and SuperSorbon 5 mm). The
internal diffusion occurred in the case of SuperSorbon and significantly affected the rate
of sorption. The inhibition of bioluminescence during the experiment remained at zero,
which was predictable for the sorption process.
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Concerning triclosan (TCS) removal, the efficiency of both tested systems, sorption
and photocatalysis, is shown in Figure 7. It is evident that both processes were really
fast. The TCS concentration dropped under 10% in a minute by photocatalysis, and the
sorption on both sorbents was even faster. During 20 s, TCS was totally eliminated from
the aqueous solution.
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decomposition by photocatalysis.

Definitely, sorption is not only an environmentally friendly process for contaminant
removal, but is also highly efficient. It is obvious that, regarding DCF and TCS, photocatal-
ysis and sorption can be used to remove both pollutants. Finally, the limiting factor always
relates to the economy of the process, which is the reason why photocatalysis is hardly
applicable on an industrial scale. Therefore, high efficiency, together with the low cost,
makes sorption the preferable process.

4. Conclusions

Both observed pollutants, TCS and DCF, are confirmed to be present in the water
environment, which poses a great risk to water and sediment biota. Toxicity associated
with them must be properly assessed and verified, even in connection with the application
of treatment technology to prevent formation of toxic intermediates. Furthermore, it is
essential to select an appropriate testing organism due to the fact that particular organisms
(used even within the standardized techniques for measuring acute toxicity) may show
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different results. In the case of our research, DCF was agreed on and the conclusions
related to it confirmed the results of previous studies. However, in the case of TCS, the
measured toxicity was lower. Moreover, it appeared that the use of alginate beads for
toxicity testing could not be fully supported. Concerning living free alga and immobilized
alga R. subcapitata, comparable results were achieved only for DCF, whereas no agreement
was reached related to TCS and the reference substance (K2Cr2O7).

The observed treatment processes (i.e., photolysis, photocatalysis and sorption) con-
firmed their high and fast efficiency for both aimed pollutants. However, in the case
of photolysis, toxic intermediates were observed to be formed (toxicity assessed by the
A. fischeri bioluminescence test), which, consequently, led to this process exclusion. Ad-
ditionally, the sorption of DCF on Norit, as well as the removal by photocatalysis, was
much faster than on SuperSorbon. Finally, due to the high costs of the photocatalysis
process, sorption is a favorable solution for removing these pharmaceutical and personal
care products from water sources. With respect to its low cost, it could also be used for
small wastewater treatment plants, which usually cover less than 10% of the population;
however, they represent a large area, for example, in the EU, 75–80%.
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