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Abstract: Heavy metal pollution in the Antarctic has gone beyond our imagination. Copper toxicity
is a selective pressure on Planococcus sp. O5. We observed relatively broad tolerance in the polar
bacterium. The heavy metal resistance pattern is Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+. In the study, we
combined biochemical and metabolomics approaches to investigate the Cu2+ adaptation mechanisms
of the Antarctic bacterium. Biochemical analysis revealed that copper treatment elevated the activity
of antioxidants and enzymes, maintaining the bacterial redox state balance and normal cell division
and growth. Metabolomics analysis demonstrated that fatty acids, amino acids, and carbohydrates
played dominant roles in copper stress adaptation. The findings suggested that the adaptive mecha-
nisms of strain O5 to copper stress included protein synthesis and repair, accumulation of organic
permeable substances, up-regulation of energy metabolism, and the formation of fatty acids.

Keywords: Antarctic strain; copper stress; adaption responses; metabolomics

1. Introduction

Over the past few years, with the high level of industrial activities and widespread pes-
ticides and fertilizers, heavy metals have been commonly detected in diverse environments
around the world and gradually accumulated [1]. Furthermore, heavy metal concentrations
can be subsequently biomagnified thousands of times through biological amplification
in an ecosystem [2]. Therefore, these heavy metals seriously threaten the stability of the
ecological system and the health of human beings [3].

Although metals play an essential role, directly or indirectly, in vital cellular processes
such as aerobic metabolism and cellular respiration, heavy metal concentrations above
the maximum threshold are toxic to living things by the alterations of nucleic acids and
polypeptide conformation and the disturbance of cell wall integrity, enzyme specificity,
oxidative phosphorylation, and osmotic balance [4,5]. As we all know, microorganisms
are found almost everywhere on earth [6]. Microbes have activated defensive strategies
and evolved several adaptation mechanisms for survival [7], such as accumulation on a
cell wall, transportation across the cell membrane, a permeable membrane, intracellular
sequestration, and enzymatic detoxifications [5,8]. The capability of organisms to modu-
late their metabolism is a central characteristic required for proliferation, hibernation, and
survival [9]. The metabolic mechanism of microbial resistance to heavy metal could be eluci-
dated in detail from different perspectives, which we shall describe next. Adjusting the fatty
acid composition of the cell membrane and reconfiguring energy-generating processes have
been seen as the most efficient adaptation mechanisms to heavy metals [10]. Under metal
stress, partial microorganisms fulfill their energy requirements through substrate-level
phosphorylation rather than oxidative phosphorylation [11]. For example, the resistance of
Proteobacteria to heavy metals may be because the phylum can utilize a variety of organics
as carbon and energy sources [12]. The presence of large amounts of long-chain fatty
and phospholipid saturation contributes to low fluidity and rigidity of the membrane
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to prevent the bacterial cell from contaminants [13,14]. Active efflux and precipitation
are in bacterial partial resistance toward metals [15], shown in the acidophilic bacterium
Acidithiobacillus ferrooxidans and Bacillus sphaericus [16–18]. In Escherichia coli, the addition
of copper (Cu) stimulates the degradation of intracellular polyphosphate, and phosphate
exportation also supports this mechanism [19]. In addition, heavy metals are precipitated
and eliminated by compounds produced by microorganisms under heavy metal stress,
contributing to a degree of bacterial resistance to metals [15]. To circumvent aluminum
(Al) toxicity, Pseudomonas fluorescens promotes the synthesis of citrate involved in the se-
questration of Al [20]. Desulfovibrio desulfuricans can regulate the precipitation of metals
by forming metal sulfides [21]. The metabolic level of low molecular weight organic acids
can be up-regulated to dissolve heavy metals by using them as a final electron acceptor or
decreasing pH [22,23]. Oxalobacter formigens absorb as minimal as possible Pb by converting
it to oxalate that can be excreted from the gut [24]. Interestingly, bacteria increase stress
response-related metabolites to rebalance oxidative stress and osmotic pressure damaged
by heavy metals. For instance, Scenedesmus obliquus increases lipid esters and Cys-GSH
isomers for antioxidant defense mechanisms and reactive oxygen species prevention under
cadmium stress [25]. In addition, ethanol tolerance involves increased glycine metabolism,
which serves as protective osmolytes in Escherichia coli [26].

The Antarctic, an isolated place and often considered a clean slate, is facing the chal-
lenge of negative factors derived from human activities [27–29]. Unfortunately, heavy
metals have been detected in abiotic samples such as surface soil, atmosphere particu-
late, and snow in Antarctica [30]. Furthermore, heavy metal concentrations in Southern
Ocean organisms are significantly higher than in other oceans [29]. The migration and
accumulation of heavy metals have become one of the severe problems in Antarctica. In
fact, Cu is one of the most common sources of heavy metals contributing to contamination
in Antarctica [31]. As an essential micronutrient, Cu is employed by most organisms to
perform different functions, such as acting as a catalytic cofactor in cellular redox reactions
and metal homeostasis [32–34]. However, an excessive amount of copper can be toxic.

Although the adaptation strategies to Cu have been relatively well characterized, the
metabolic reprogramming leading to stress-induced lifestyle changes in polar microorgan-
isms remains a mystery. The sensitivity of organisms to contamination may vary with
latitude [35]. Polar organisms have evolved unique characteristics to adapt to severe
regimes at high latitudes, including lower metabolisms, longer lifespans, and higher lipid
content in tissues [36]. However, most research focuses on low-temperature enzyme pro-
duction and low-temperature adaptation mechanisms, which ignores unique metabolic
mechanisms that adapt to the environment [37,38]. Strain O5 isolated from Antarctic sea
ice was subsequently identified as Planococcus based on 16S rDNA sequence analysis [39].

In this study, cell growth and physiological and biochemical variations of the Antarctic
bacterium Planococcus sp. O5 after Cu2+ exposure were analyzed to explore the tolerance
mechanism of the bacterium to Cu. The results will help elucidate the adaptation mech-
anism of polar microorganisms under heavy metal exposure. Meanwhile, the strain has
extensive tolerance to heavy metals, which can be applied to deal with the heavy metal
pollution in Antarctic in the future.

2. Materials and Methods
2.1. Bacterial Strains and Culture

The Antarctic strain Planococcus sp. O5 was isolated from Antarctic sea ice collected
by the 23rd China Antarctic scientific expedition. To investigate the growth effect of Cu2+

exposure, strain O5 was cultured in 2216E liquid medium (5.0 g of peptone, 1.0 g of yeast
extract, and 0.015 g of iron phosphate tetrahydrate in 1000 mL of purified and sterilized
seawater) at 10 ◦C with the agitation of 120 rpm. Additional CuSO4 (final concentration
0.5 mmol/L) was added as copper stress.
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2.2. MIC Determination of Heavy Metals

The minimum inhibitory concentration (MIC) of strain O5 was tested as described
by Rajpert [40]. Various metal resistance tests were performed in log phase culture of
strains that were inoculated in 2216E liquid medium supplemented with Cu2+, Cd2+,
Pb2+, Zn2+, and Hg2+ in the concentration ranging from 0 mM to 1500 mM. Strain growth
was monitored using OD595 measurement with a UV spectrophotometer. The lowest
metal concentration that hampered growth was regarded as the MIC of the test strain
against metal.

2.3. Measurements of Electrical Conductivity and Biomass

The membrane permeability was detected using a conductivity meter, and the biomass
was measured using OD595 [41].

2.4. Measurements of Antioxidant System

Changes in the antioxidant enzyme activities were determined to understand the
influence of Antarctic bacterium under copper stress. For this purpose, 100 mg of fresh
weight (FW) bacterial strain was homogenized in 20 mL 50 mM phosphate buffer (pH 7.8)
using a prechilled mortar and pestle before centrifugation at 12,000 rpm for 30 min at 4 ◦C.
The collected supernatants were employed to determine the antioxidant enzyme activities
of superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX),
and the content of glutathione (GSH) and carotenoid.

SOD activity was assayed as described by Zhang based on the inhibition of the oxidation
inhibition rate of pyrogallol reaching 50% [42], and GR was measured following the method
of Pinto, Mata, and Lopezbarea. GR activity was measured in OD340/(min•g FW) [43]. APX
activity was measured using the method of Nakano, Y. and Asada, K. A unit of the enzyme
activity was defined as ascorbic acid consumed by the bacterium (min•g FW) [44]. GSH
content was performed as per the report described by Yoon and was measured in OD400 [45].
The multiparameter flow cytometry method documented by Freitas [46] was used to assay
carotenoid content.

2.5. GC-MS analysis of Metabolites
2.5.1. Sample Preparation

The bacteria supplemented with 0.5 mmol/L Cu2+ in the logarithmic and stable phases
were acquired by centrifugation at 12,000 rpm at 4 ◦C for 5 min, respectively. Subsequently,
2 mL of 60% precooled methanol (−40 ◦C) were added and placed on ice for 5 min to
quench the cellular reaction. After centrifugation, the collected cell pellet was introduced to
0.5 mL of methanol (50%, −40 ◦C), followed by rupturing with the sonication method. The
broken cells were centrifuged (4 ◦C, 12,000 rpm, 10 min), and 10 µL of succinic-2,2,3,3-d
4 acid (0.3 mg/mL) was added to the supernatant. When the sample was dried, 100 µL of
20 mg/mL pyridine amine hydrochloride was added and subsequently oxidated at 30 ◦C
for 1.5 h. Afterward, MSTFA (100 mL) was used to derivate the samples by incubation at
37 ◦C for 0.5 h.

2.5.2. GC-MS Analysis of Metabolites

The metabolites were analyzed using GC-TOF-MS (Agilent 7890A, Santa Clara, CA,
USA), and 1 µL of the derivatized sample was injected into GC-MS, which was equipped
with a DB-FFAP capillary column (60m × 0.25 µm × 0.25µm). The elution program setting:
isothermal at 80 ◦C for 1 min, then an increase of 2 ◦C min−1 up to 100 ◦C, and ramped at
4 ◦C min−1 to 240 ◦C, and then held for 15 min at 240 ◦C. The ion source temperature was
maintained at 200 ◦C. The mass spectrometer was set to scan a mass range of 50–800 m/z at
20 scans/s with an electron beam of 70 eV.
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2.5.3. Data Processing

The peak integration and peak alignment were conducted by applying the XCMS
package of R software, and components were manually identified and confirmed using the
NIST library. Noise and low abundance components were eliminated from the data matrix
based on a noise threshold (S/N > 10). The ultimate two-dimensional matrix consisted of
retention time (RT) and mass-to-charge ratio (m/z) data pairs.

2.5.4. Statistical Analysis

The processed data matrix was submitted to the MetaboAnalyst 4.0 (http://www.
metaboanalyst.ca/, accessed on 4 March 2022) to conduct data pre-processing and mul-
tivariate statistical analysis. Data were normalized to total integral normalization before
being log-transformed. Principal component analysis (PCA) was performed to provide a
general overview and remove irrelevant variables. Orthogonal partial least squares dis-
criminant analysis (OPLS-DA) was conducted to further investigate the metabolic variation.
Metabolites of interest were filtered using volcano plots with fold change (FC) ≥1.2 and
p-value < 0.05. To explore the related metabolic pathways for differential metabolites,
compounds of interest were imported into the Pathway modules of MetaboAnalyst.

3. Results
3.1. Heavy Metals Resistance Analysis

Typical bacterial growth was observed in the induced and normal groups (Figure 1a).
Although the growth rate of Planococcus sp. O5 in the normal group was higher in the
induced group in the first 72 h, the growth of the copper exposure group presented an
equal OD595 value to the untreated group subsequently. The relative metal resistance of
strain O5 was in the order of Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ (Figure 1b), and the MIC
reached 1.0 mmol/L, 0.8 mmol/L, 0.7 mmol/L, 0.6 mmol/L, 0.5 mmol/L, respectively.
Meanwhile, the optimum concentration of copper stress was determined to be 0.5 mmol/L.
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Figure 1. (a) Growth curves of the Planococcus sp. O5 in the absence and presence of 0.5 mmol/L Cu2+.
(b) Heavy metal tolerance of Planococcus sp. O5 of Cu2+, Zn2+, Pb2+, Cd2+, and Hg2+, separately.
(c) Effect of 0.5 mmol/L Cu2+ on the conductivity of Planococcus sp. O5.

3.2. Change in the Membrane Permeability

Electrical conductivity provides an indirect indication of membrane permeability. The
conductivity of the control was stably maintained between 200–230 mS/m, as shown in
Figure 1c. Correspondingly, the conductivity of the bacteria-induced with Cu2+ increased

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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slowly on days 1–7 before dramatically increasing on day 10, reaching 586 mS/m. These
findings suggested that the integrity of the cell membrane was altered after stimulation
with 0.5 mmol/L Cu2+.

3.3. Response of the Antioxidant System

We also measured the changes in the content of antioxidant substances and the activi-
ties of antioxidant enzymes further to understand the biochemical mechanism of strain O5
to Cu, as shown in Figure 2. The enzymatic activity of SOD, GR, and APX remained almost
unchanged throughout the experiment without Cu2+ induction. However, SOD and GR
activities rose fast after the exposure to 0.5 mmol/L Cu2+, reaching their maximum value
on day 2 and 3, respectively. In contrast, APX activity decreased and was significantly lower
than the control. Carotenoid and GSH content accumulated rapidly under 0.5 mmol/L
Cu2+ stress and remained considerably higher content than in the untreated group.
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Figure 2. Effects of 0.5 mmol/L Cu2+ on the activities of SOD (a), GR (b), APX (c), GSH (d), and
Carotenoid (e) of Planococcus sp. O5.

3.4. Metabolic Response of Strain O5 to Cu Induction
3.4.1. Metabolic Profile Analysis

In the PCA score plot (Figure 3a), all 24 data samples were within the 95% confidence
ellipse, indicating that no sample contained outliers. Although there was a noticeable
separation between the Cu exposure and the control groups in the PCA, the treatment and
control groups were intermixed. To further investigate the metabolic variation induced by
copper stress, OPLS-DA was performed. As demonstrated in Figure 3b,c, the treatment
and control groups showed a more distinct separation. The R2 values for the OPLS-DA
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model were satisfactory (>0.945, >0.99), explaining the majority of the variance between the
samples. The Q2 values were much higher (>0.728, 0.7), indicating that the vast majority of
the variation was to be expected.
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Figure 3. (a) shows the PCA models for 24 samples; numbers 1,2 represent the control group and
copper exposure in the logarithmic phase, and numbers 3,4 represent the control group and copper
exposure in the stationary growth phase. (b,c) separation of control (red) and copper exposure
(green) samples in logarithmic phase and stationary growth phase using OPLS-DA, respectively.
(d,e) metabolites changes mapped to the metabolic pathways exposed to 0.5 mmol/L Cu2+ of
Planococcus sp. O5 in the logarithmic and stationary growth phase.

3.4.2. Identification and Analysis of Differential Metabolites

To discover the significant alterations of metabolites induced by copper exposure, we
evaluated the changes in metabolites abundances using the filtering function of volcano
plots. In total, 13 different metabolites were filtered based on the FC and the p-value with
4 significantly reduced and 9 increased (Table S1). The differential metabolites included
energy, amino acid acids, and organic acids.

3.4.3. Perturbed Biological Pathway Responded to Copper Stress

Pathway analysis was performed to investigate relevant pathways connected to Cu
response, with the results shown in Figure 3d,e. The color shades and circle size were
based on p-values and pathway impact values. Redder and large pathway circles indicated
that the pathway was greatly perturbed. MetaboAnalyst Pathway found 7 key metabolic
pathways in the logarithmic phase using pathway enrichment analysis, with pyruvate
metabolism, butanoate metabolism, and glycine serine and threonine metabolism showing
the most pronounced changes. Similarly, the most significant changes in the metabolic
pathway also had the most critical impact during the stable growth phase. The p-value and
impact factor of significant pathways are shown in Tables S2 and S3.
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4. Discussion

Heavy metal ions, which are highly toxic, non-degradable, bioaccumulate, and biomag-
nifying as a result of the food chain, constitute a severe threat to ecological environments.
Copper ions are micronutrients essential for the biological functions of living organisms.
However, excess copper ions in cells are detrimental through various induced physiological,
biochemical, and genotoxic effects [47]. Only copper-resistant microorganisms can strive
and utilize trace metals to achieve metabolic functions while resisting or detoxifying their
excesses. To discover the adaptation strategies of Antarctic microorganisms to heavy metal
(Cu) stress, we combined biochemical and metabolomics methods to analyze the bacterium
Planococcus sp. O5, isolated from the Antarctic sea ice sample.

4.1. Heavy Metals Resistance

In this study, the Antarctic bacterium Planococcus sp. O5 exhibited a relatively broad tolerance
to Cu2+, Hg2+, Zn2+, Cd2+ and Pb2+, and especially Pb2+ and Cu2+ (Figure 1b). Similar bacte-
rial resistance to multiple heavy metals was reported in other Antarctic strains, such as Antarctic
Rhodotorula mucilaginosa resistance pattern of Cd2+ > Pb2+ = Mn2+ > Cu2+ > Cr3+ > Hg2+, and Antarc-
tic bacteria isolated from rock lichen resistance pattern of Cr3+ > Ni3+ > Cu2+ > Co2+ > Hg2+ [48,49].
Multiple heavy metals resistance is attributed to these metals with similar toxic mecha-
nisms and detoxifying processes [50]. In addition, the growth curve of bacteria appeared
that the Antarctic sea-ice bacterium challenged by copper has adapted to the presence of
0.5 mmol/L Cu2+ (Figure 1a). In addition, the emergence of a lag phase may be due to
oxidative stress induced by copper requiring the consumption of glutathione (GSH), whose
synthesis requires additional energy. A similar adaptation mechanism has been observed
in Aspergillus niger [51].

4.2. Effect on Redox Status

Reactive oxygen species (ROS), including superoxide anion (O2−), hydroxyl radical
(·OH), and hydrogen peroxide (H2O2), are among the significant toxicities of heavy metals
to most living organisms by altering the reducing environment [52,53]. The membrane
structure of polar bacterium was damaged by lipid peroxidation (Figure 1c), and similar
responses occurred in other microorganisms [54]. However, strain O5 could take advantage
of various antioxidative defense systems to rebalance the redox status (Figure 4) [55].
Glutathione (GSH), an essential indicator of the redox environment, plays a major role in
cellular defense response against oxidative stress [56]. The copper resistance expressed
in our study may also be explained by the activation of glutathione, which is rich in
thiol groups and may be related to a metal complexation mechanism via a rich sulfur
bond. This detoxification mechanism has been demonstrated in yeast [57]. Therefore, the
increase in GR activity was entirely expected. The GR activity boosted the regeneration
efficiency of GSH to maintain the intracellular redox balance. GR catalyzes GSSG into GSH
in the presence of coenzyme β-nicotinamide adenine dinucleotide 2′-phosphate hydrate
(NADPH) [58], which has been regarded as being related to resistance to oxidative stress
in a microorganism [59]. Carotenoids are mainly located in the cell membrane, acting
as antioxidant protectants for the cell membrane integrity [60]. In short, it is of great
significance to regulate different antioxidant mechanisms when facing endogenous redox
damage induced by copper.

4.3. Metabolic Reprogramming

The pathway enrichment analysis indicated that copper stress could generate metabolic
reprogramming, resulting in alterations in many metabolites, particularly in energy, amino
acid acids, and lipid metabolism, forming a metabolic network to deal with copper stress
(Figure 5).
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4.3.1. Energy Metabolism

Carbohydrate and energy metabolism acted as key attributions in the adaptive re-
sponses to heavy metals [49]. In organisms, lactic acid is a byproduct of anaerobic
metabolism, and pyruvic, an end product of glycolysis by the Embden Meyerhof pathway,
is conversed to lactate acid by oxidizing nicotinamide adenine dinucleotide (NADH) in
the presence of lactate dehydrogenase [61]. Bacteria activated the breakdown of sugars to
generate more energy and amino acids as a defensive mechanism when exposed to copper.
As a result, pyruvate acid and NADPH accumulated abundantly, leading to an aggregation
of lactic acid. This energy model might alleviate the cytotoxicity of extreme Cu by reducing
ROS levels [62].

4.3.2. Amino Acid Metabolism

Amino acids are commonly used in all living cells for osmoregulation, energy sources,
protein synthesis, metabolite precursors, and signaling molecules [63]. Glycine, an or-
ganic osmolyte [64], was reported to be closely associated with the Cu2+ tolerance of
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Pseudomonas [26]. In addition, glycine is a precursor of glutathione [65] and can alleviate
oxidative damage. A previous study demonstrated that lysine altered NADPH flux to
produce glutathione, enhancing tolerance to oxidative stress [66]. Hence, in this study,
lysine-overproducing was expected to exhibit higher tolerance to copper stress. Surpris-
ingly, proline content declined, which had not been observed in other organisms responding
to environmental stresses [67–70]. Proline metabolism is highly relevant to redox home-
ostasis, protein and nucleotide synthesis, and ATP production, and is especially closely
associated with the progression of oxidative stress [71]. Consequently, in this study, the
down-regulation of proline demonstrated the oxidative balance was disrupted under cop-
per stress, leading to lipid peroxidation [72]. Tyr is susceptible to modification under
conditions of cellular redox imbalance. The oxidation of phenylalanine is a marker of
oxidative stress [73]. Under conditions of ROS overaccumulation, tyrosine can be formed
by phenylalanine hydroxylation or oxidation [74]. Increased concentrations of Tyr were
also observed in plants in response to biological stress [75]. Moreover, the upregulation of
glycine, lysine, and tyrosine was considered to repair damaged proteins and activate the
synthesis of newer proteins [76]. The mentioned studies implicated the protein biosynthesis
mechanisms enhanced by excessive copper [77].

4.3.3. Lipid Metabolism

Stearic acid and palmitic acid were identified as quantitative markers of cellular
stress, with which the overproduction and accumulation of ROS have been frequently
associated [78]. This research implied the disruption of membrane integrity by lipid
peroxidation (Figure 1c). This damage mechanism induced by copper has also been
previously reported in filamentous fungus Paecilomyces marquandii [79]. Membranes of
bacteria consist mainly of a lipid bilayer and embedded proteins, which allow solutes to
selectively transport substances across the membrane to facilitate physiological processes
such as respiration and signal transduction [80]. Integrity and fluidity of cell membranes
influenced by lipids composition and the unsaturation degree of fatty acids are critical for
organism survival in response to external stress [81]. Stress factors usually lead to lipid
metabolism reconfiguration, resulting in decreased or increased membrane fluidity [82].
A low fluidity of the cell membrane can be perceived to effectively prevent copper ions
from entering the bacteria cells [83,84]. As expected, saturated fatty acids have identified
upregulation. In brief, the regulation of fatty acids significantly enhanced the resistance of
copper and oxidative.

Copper stress resulted in metabolic reprogramming, according to metabolic profile
analyses. In response to copper adaptation, bacteria activated the breakdown of intracel-
lular sugars to generate more energy. In addition, amino acids support diverse functions,
including maintaining appropriate cell status by increasing osmotic substances, producing
new stress proteins, and repairing damaged or misfolded proteins. Furthermore, the accu-
mulation of fatty acids may reduce the fluidity of the cell membrane, which can prevent
copper ions from entering the bacteria cells.

5. Conclusions

Planococcus sp. O5 presented a wide range of heavy metal resistance, such as Pb, Cu,
Cd, Hg, and Zn. In the study, we employed a system analysis strategy by integrating
biochemical and comparative metabolomics to shed light on the adaptive mechanism of
the polar bacterium to Cu2+. Our results indicated that strain O5 exhibited a relatively
broad tolerance to Cu2+, Hg2+ Zn2+, Cd2+, and Pb2+, especially Pb2+ and Cu2+. Under
copper pressure, strain O5 maintained intracellular redox balance by increasing antioxidant
enzymes (SOD, GR) and antioxidant substances (GSH, Carotenoid). Planococcus sp. O5
in the presence of Cu stress achieved inherently different metabolite profiles, including
amino acids, organic acids, and fatty acids. The adaption mechanism of strain O5 has
been introduced in protein synthesis and repair, organic osmolyte accumulation, energy
metabolism up-regulation, and fatty acids formation. This study laid a theoretical basis for
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revealing the response of biochemical and metabolomic mechanisms in polar bacterium
to heavy metals, while also providing a new perspective on the bioremediation of metal-
polluted environments.
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test chart of copper exposed group and untreated group in the logarithmic phase.
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