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Abstract: Plastic contamination in the environment is common but the characterisation of plastic
ingested by fish in different environments is lacking. Hence, a meta-analysis was conducted to
identify the prevalence of plastic ingested by fish globally. Based on a qualitative analysis of plastic
size, it was determined that small microplastics (<1 mm) are predominantly ingested by fish globally.
Furthermore, our meta-analysis revealed that plastic fibres (70.6%) and fragments (19.3%) were the
most prevalent plastic components ingested by fish, while blue (24.2%) and black (18.0%) coloured
plastic were the most abundant. Polyethylene (15.7%) and polyester (11.6%) were the most abundant
polymers. Mixed-effect models were employed to identify the effects of the moderators (sampling
environment, plastic size, digestive organs examined, and sampling continents) on the prevalence of
plastic shape, colour, and polymer type. Among the moderators, only the sampling environment and
continent contributed to a significant difference between subgroups in plastic shape and polymer type.

Keywords: microplastic; shape; colour; polymer type

1. Introduction

Global plastic production has increased drastically from around 1.5 million tonnes
in 1950 to 368 million tonnes in 2019, due to the high demands of consumers [1,2]. As a
consequence of the large production volume of plastics and defective waste management
system, it is very common for plastics to accumulate in the environment, such as in
seawaters [3,4], deep sea sediments [5], artic sea ice [6], lakes [7], soils [8], and even in
the atmosphere [9]. Slow degradation of the plastics has led to their accumulation in the
environment. Nonetheless, radiation, heat and friction may cause fragmentation of the
plastics [4] and turn them into secondary microplastics, which are plastic particles less than
5 mm in size [10]. Additionally, primary microplastics are produced purposefully to be
used in various products [11] or industries [12].

It is estimated that between 1.15 and 2.41 million tonnes of mismanaged plastic waste
are discharged into the oceans through rivers annually [13]. In 2014, it was estimated
that at least 5.25 trillion plastic particles, weighing 268,940 tonnes, were floating in the
world’s oceans [14]. Hence, there is an increased risk of marine organisms ingesting plastic
particles due to their high concentration in oceans. Organisms might ingest the particles by
primary ingestion because they recognise the items as potential prey, or secondary ingestion
via contaminated prey [15]. Many publications have shown that plastic particles are
ingested by a wide variety of animal taxa in various environments, including seabirds [16],
waterbirds [17], crustaceans [18,19], sharks [20] and other fish [21] and cetaceans [22,23].
Furthermore, there is trophic transfer in the ecosystem from lower to higher trophic level
based on both experimental [24,25] and field studies [26–29].
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Direct fatality due to the blockage of the digestive tract by larger size plastic debris has
been found in many marine organisms, such as turtles [30], sea birds [31], and manatees [32].
The death of a whale shark was suspected to be caused by plastic ingestion with subsequent
inflammation of the stomach mucosa triggering wounds and infections [33]. Several severe
impacts due to the ingestion of plastic particles by fish in laboratory conditions have also
been documented [34,35]. The plastic particles are able to promote inflammation and
accumulation of lipids in zebrafish liver [36]. The growth and body condition of reef fish
decreased significantly when food pieces were substituted by microplastic particles, and
these effects escalated at higher microplastic concentrations [37]. Intestinal lesions in fish
were observed in an experimental study and the severity increased with the concentration
of microplastics [38]. Nevertheless, the exposure settings for the laboratory experiments
cannot fully represent the natural environments in which the plastic types, sizes, and
concentrations may fluctuate temporally and spatially.

Plastic ingestion by fish has been fairly well reviewed. The earliest review reported the
incidence of plastic ingestion in 22 fish species [39]. Subsequent and more recent reviews
have recorded the number of fish as follows: 90 species [40], 34 [41], 95 [42], 200 [43],
323 [44], 165 [45]; and 386 [46]. There were also various reviews on plastic ingestion by
fish, but these included other marine biotas [47–49]. A systematic review of the occurrence
of microplastics based on their characterisations was conducted but limited to freshwater
fish species [50]. In view of the gaps in the knowledge on plastic characterisations in
different environments, a meta-analysis, which included samples from all environments,
was conducted to investigate the possible factors affecting plastic ingestion by fish, and to
identify the abundance of plastic ingested on a global scale based on its characterisations.

2. Materials and Methods
2.1. Literature Review

In this review paper, a literature review was conducted using web-based search
engines: Google Scholar and electronic databases, such as PubMed, Web of Science, Science
Direct and Wiley Online Library from 1970 to December 2021 with the following keywords:
“microplastic” OR “plastic” OR “plastic ingestion” OR “marine debris” AND “fish”.

2.2. Quality Assessment and Data Extraction

The publications were reviewed based on the following criteria (Figure 1). Firstly,
the titles and abstracts of the articles were screened to search for related studies. Studies
on fish exposure to plastics in a laboratory setting were excluded. In the second step, the
materials and methods section of each article was examined to ensure that the numbers
of plastic shape, colour, and polymer type were reported. If the data were not reported in
numbers, they were extracted from published diagrams using WebPlotDigitizer Version 4.5
(Ankit Rohatgi, Pacifica, CA, USA). Studies that assigned plastic size class and predominant
size class were included for qualitative analysis. Due to the importance of contamination
control in plastic research during the extraction process, the studies were checked for
quality assessment/quality control (QA/QC). Studies that did not include any QA/QC
were excluded from meta-analysis of plastic characterisation.

Detailed data-location, part of digestive organs examined, plastic extraction method,
percentage of plastic ingested, plastic size, shape, and colour, and the polymer type were
recorded. The environments where the samples were collected were retrieved from the
publications based on the GPS coordinates given or sampling procedures stated in the
method in each publication. The source of the samples was classified into marine, estuary,
freshwater, aquaculture, and market. Samples obtained from markets were grouped into
marine, estuary, or freshwater if the study specified the source of the samples [51]. Studies
that purchased samples directly from the market without the source information of the
samples were classified into the “market” category [52]. The plastic extraction methods
were categorized into three groups, as proposed by a previous review [44]. Method 1 is a
visual analysis of the GIT content with the naked eye; Method 2 is a visual analysis of the
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GIT content using a microscope; and Method 3 is the chemical digestion of the GIT content,
followed by filtration and microscope analysis. There are many definitions of plastic size
across different guidelines and articles. For consistency, the relative size of plastic ingested
by fish in this study was sorted as microplastic (<5 mm), mesoplastic (5–25 mm), and
macroplastic (25–1000 mm) [53–55]. For the shape of plastics, it was standardised into five
categories: fibre, film, fragment, foam, and pellet (Table 1), which is in line with several
studies [7,54,56–58]. The colours of the plastics were classified into red, orange, yellow,
green, blue, purple, pink, brown, grey, black, white, transparent, and others. In studies that
revealed plastics from the environment or other biota, only plastics ingested by fish were
considered. If samples were collected from different environments, data from the same
data were documented separately.
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Table 1. Standardised shape description of plastic.

Standardised Shape Description Alternative Shape

Fibre Thin or fibrous plastic that has a length
longer than its width

Line, Monofilament, Thread, Polyfilament,
Twine, Fibrous, Microfibre

Film Flat and thin plane of smooth or angular
edges plastic

Sheet, Plastic Packaging, Wrapper, Plastic Bag,
Packet Wrap, Food Package, Strip

Fragment Irregular, hard, and jagged plastic particle Flake, Particle, Piece, Tag, Chip

Foam Lightweight, sponge-like plastic
Polystyrene, Polystyrene Spherule, Styrofoam,

Styrofoam Fragment, Sponge, Expanded
Polystyrene Foam (EPS)

Pellet Hard, rounded plastic particle Bead, Granule, Microbead, Particle, Spherule

Note: Particle shape of each study was assigned to the closest standardised shape based on the appearance shown
in the publications.

2.3. Statistical Analysis

Data of the number of plastic shape, colour, or polymer type (k) and the total number
of plastics ingested (n) were extracted from the selected studies. Proportion of the plastic
characterisation in a single study was calculated with the formula: p = k/n. Meta-analysis
of proportions was employed to obtain a more precise estimation of the overall proportion
for all plastic characterisations. Since proportions of <0.2 were common in the studies, the
pooled prevalence of plastic characterisation was calculated by applying arcsine square
root transformation on the proportion data. Publication bias was examined through funnel
plots by trim-and-fill method and Egger’s regression test with a confidence interval (CI)
of 95%. Between-study heterogeneity was evaluated with I2 statistic and tested using the
Paule-Mandel estimator method. Fixed effects model was used in the case of low hetero-
geneity whereas random effects model was used for high heterogeneity. Mixed effects
meta-regression model was employed in which the random-effects model was used to
combine study effects within each subgroup and the fixed-effect model was used to test
if the effects across the subgroups differed significantly from each other. In this model,
assumption of different between-study variance across subgroups was applied to identify
if different moderators (i.e., sampling environment, plastic size, digestive organs examined,
or sampling continent) affect the prevalence of the plastics. Subgroups forest plot was
created based on different moderators. Meta-regression models were used to analyse char-
acterisations that were the most abundant: shape (fibre, fragment, film, and pellet), colour
(blue, black, transparent, and white), polymer types (polyethylene (PE), polyester (PES),
polypropylene (PP), and polyamide (PA). The rare characterisations were not subtracted
from the total plastic numbers even though they were not included in the meta-regression
models. Hence, relative abundance of each characterisations were estimated based on total
plastic numbers from all of its characterisations. All statistical analyses and plotting were
performed in R software (R Core Team, version 4.1.2, Vienna, Austria).

3. Results
3.1. Overview

The number of studies that reported the assessments of plastic size, shape, colour,
and type were 127, 281, 195, and 153, respectively. Studies without QA/QC (n = 107)
were excluded for the analysis of plastic size, while 94 studies with QA/QC and revealed
the assessments of all three characterisations (shape, colour, and polymer type) in the
same study were selected for meta-analysis. In total, data of five shapes, 13 colours, and
25 polymer types were recorded. It should be noted that the total count of plastics in
polymer types was different from shape and colour, because not all of the plastics were
tested with the polymer characterisation test.
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3.2. Prevalence of Plastic Ingested

Only 34 out of the 107 studies (31.8%) included plastic sizes larger than 5 mm (meso-
plastic and macroplastic) in their findings. Larger size particles were not included in
many studies, especially recent studies, because they preferred to focus on microplastic
ingestion. The most prevalent size of plastic ingested was microplastic for all the studies.
Microplastics were often divided into two groups called small microplastic (<1 mm) and
large microplastic (1–5 mm) [59,60]. Among the studies that reported the size class of
plastic ingested, more than two-thirds of the studies (74.0%) recorded small microplastic
as the predominant size class (Figure 2) [27,52,56,61–163]. Based on the pooled prevalence
data, fibre plastic was the most abundant plastic ingested by the fish, with a relative abun-
dance of 71.6% (CI 64.0–78.7%). The second most abundant plastic shape was fragment
(19.4%; CI 13.8–25.7%), followed by film (0.5%; CI 0–1.5%) and pellet (0.0%; CI 0.0–0.2%)
(Figure 3). Egger’s regression test indicated that there was no significant publication bias
for plastic shapes (Figure S1, fragment: Z = 1.377, p = 0.169, pellet: Z = 1.491, p = 0.136)
except fibre (Z = −2.256, p = 0.024) and film (Z = 2.457, p = 0.014). A high heterogeneity
(I2 = 93.6–98.8%) was observed between studies for plastic shapes. Furthermore, blue
colour plastic was predominantly ingested by fish, with a relative abundance of 24.5% (CI
20.3–28.9%). The second most abundant plastic colour was black (18.1%; CI 13.7–22.9%),
followed by transparent (6.8%; CI 4.1–9.9%), and white (5.8%; CI 3.4–8.5%) (Figure 4).
Egger’s regression test revealed that there was no significant publication bias for plastic
colours: blue (Z = 0.300, p = 0.764), black (Z = −0.050, p = 0.960), transparent (Z = 0.418,
p = 0.676), and white (Z = −0.156, p = 0.876) (Figure S2). Similar to plastic shape, a high
heterogeneity was found (I2 = 98.0–98.6%) between studies on colour. The most abundant
polymer type ingested by fish was PE, with a relative abundance of 15.7% (CI 11.3–20.6%),
followed by PES (11.6%; CI 7.8–16.0%), PP (6.8%; CI 4.2–9.9%), and PA (5.6%; CI 2.9–8.8%)
(Figure 5). Egger’s regression test indicated that there was no significant difference for
polymer types: PE (Z = 0.738, p = 0.460), PES (Z = −0.560, p = 0.576), and PA (Z = −0.813,
p = 0.416), except PP (Z = 2.128, p = 0.033) (Figure S3). The between-study heterogeneity for
polymer types was slightly lower than plastic shape and colour (I2 = 90.7–95.1%).

A similar proportion for the dominant class size was observed in different environ-
ments, except in estuary. Seawater environments had the largest percentage, with small
microplastics as the predominant size class of plastic ingested (80.6%), followed by aquacul-
ture (75.0%), market and freshwater (71.4%), and estuary (57.1%) (Figure 4). The subgroups
of continents shared similar proportion, except in Oceania (50.0%). Asia had the largest
proportion of small microplastics (77.6%), followed by North America and Africa (75.0%),
and Europe (72.4%). A mixed-effects model was applied to identify potential sources of het-
erogeneity with four categorical moderators (sampling environment, plastic size, digestive
organs examined, and sampling continent). A significant difference between groups was
found for two out of the four moderators, specifically, environment and continent for plastic
shape and polymer type. In the case of environment, a significant subgroup difference was
observed in plastic shapes: fibre (Qm = 16.311, p = 0.003), fragment (Qm = 15.743, p = 0.003),
and pellet (Qm = 16.453, p = 0.003), except in film (Qm = 0.824, p = 0.935). Fibre was relatively
more abundant in the market (89.7%), estuary and aquaculture (87.0%) environments than
in freshwater (75.0%) and seawater (67.0%) environments. In contrast, fragments were
more abundant in seawater (23.9%) than in freshwater (13.7%), aquaculture (10.7%), estuary
(7.0%), and market (6.8%). The continent groups appeared to be significantly different
in plastic shapes: fibre (Qm = 18.734, p = 0.002), fragment (Qm = 24.886, p < 0.001), film
(Qm = 28.279, p < 0.001), and pellet (Qm = 33.926, p < 0.001). The abundance of fibre was
significantly higher in North America (95.0%, p = 0.001) than the rest of the continent:
Asia (74.8%), Europe (66.9%), Oceania (66.0%), Africa (60.6%), and South America (53.7%).
The prevalence of fragment was higher in Africa (38.5%), South America (38.4%), Oceania
(32.5%), Europe (23.0%), and significantly lower in Asia (14.7%, p = 0.033), and North
America (1.5%, p < 0.001).
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Figure 2. Overview of the assigned plastic size class and predominant size class of each study in
different environments. Only size classes less than 5 mm are shown in this diagram. Each bar
represents the plastic size class assigned in each study. Darker colour bars represent predominant
size ingested. (S: Seawater; E: Estuarine; F: Freshwater; A: Aquaculture; M: Market). References: [27]
Markic et al., 2018; [52] Ding et al., 2019a; [56] McNeish et al., 2018; [61] Abbasi et al., 2018; [62] Abidli
et al., 2021; [63] Abiñon et al., 2020; [64] Agharokh et al., 2021; [65] Arias et al., 2019; [66] Atamanalp
et al., 2021a; [67] Atamanalp et al., 2021b; [68] Atici et al., 2021; [69] Avio et al., 2015; [70] Avio et al.,
2020; [71] Bagheri et al., 2020; [72] Bayo et al., 2021; [73] Beer et al., 2018; [74] Bellas et al., 2016; [75]
Bessa et al., 2018; [76] Bottari et al., 2021; [77] Chen et al., 2021; [78] Cordova et al., 2020; [79] Crutchett
et al., 2020; [80] da Silva et al., 2021; [81] Daniel et al., 2020; [82] Dhimmer, 2017; [83] Digka et al.,
2018; [84] Ding et al., 2019b; [85] Feng et al., 2019; [86] Garcia-Garin et al., 2019; [87] Ghosh et al., 2021;
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[88] Gurjar et al., 2021a; [89] Gurjar et al., 2021b; [90] Hamilton et al., 2021; [91] Heshmati et al.,
2021; [92] Hipfner et al., 2018; [93] Hossain et al., 2019; [94] Hosseinpour et al., 2021; [95] Huang et al.,
2020; [96] Jaafar et al., 2021; [97] James et al., 2020; [98] Karbalaei et al., 2019; [99] Koongolla et al.,
2020; [100] Li et al., 2021; [101] Lin et al., 2020; [102] Liu et al., 2021; [103] Lopes et al., 2020; [104]
Lusher et al., 2013; [105] Lusher et al., 2016; [106] Makhdoumi et al., 2021; [107] McIlwraith et al.,
2021; [108] Morgana et al., 2018; [109] Murphy et al., 2017; [109] Murphy et al., 2017; [110] Naidoo
et al., 2020; [111] Nematollahi et al., 2021; [112] Nikki et al., 2021; [113] O’Connor et al., 2020; [114]
Palazzo et al., 2021; [115] Palermo et al., 2020; [116] Pan et al., 2021; [117] Park et al., 2021; [118]
Parton et al., 2020; [119] Parvin et al., 2021; [120] Pellini et al., 2018; [121] Pereira et al., 2020; [122]
Piccardo et al., 2018; [123] Pullen, 2019; [124] Rasta et al., 2021; [125] Rios-Fuster et al., 2019; [126]
Rodríguez-Romeu et al., 2020; [127] Romeo et al., 2015; [128] Rummel et al., 2016; [129] Sainio et al.,
2021; [130] Sathish et al., 2020; [131] Savoca et al., 2021; [132] Selvam et al., 2021; [133] Shabaka
et al., 2020; [134] Siddique et al., 2021; [135] Silva-Cavalcanti et al., 2017; [136] Sparks & Immelman,
2020; [137] Su et al., 2019; [138] Sun et al., 2019; [139] Suwartinigsih et al., 2020; [140] Taghizadeh
Rahmat Abadi et al., 2021; [141] Tanaka & Tadaka, 2016; [142] Tsangaris et al., 2020; [143] Turhan,
2021; [144] Valente et al., 2019; [145] Wang et al., 2021a; [146] Wang et al., 2021b; [147] Wang et al.,
2020; [148] Wieczorek et al., 2018; [149] Wootton et al., 2021a; [150] Wootton et al., 2021b; [151] Wu
et al., 2020; [152] Xu et al., 2021; [153] Yuan et al., 2019; [154] Zakeri et al., 2020; [155] Zhang et al.,
2020a; [156] Zhang et al., 2020b; [157] Zhang et al., 2019; [158] Zhang et al., 2021a; [159] Zhang et al.,
2021b; [160] Zhang et al., 2021c; [161] Zheng et al., 2019; [162] Zhu et al., 2019a; [163] Zhu et al., 2019b.

For plastic colour, no significant subgroup difference was found in the moderator of
environment, except white (Qm = 11.020, p = 0.026). The prevalence of blue plastic was high-
est in aquaculture (33.9%), followed by estuary (32.9%), market (25.8%), freshwater (25.6%),
and seawater (22.9%) environments. In addition, the abundance of black plastic was higher
in market (28.4%) and aquaculture (27.9%) than in freshwater (21.2%), seawater (17.7%),
and estuary (10.3%) environments. Likewise, subgroup analysis with the moderator of
continent revealed that there was no significant difference between plastic colours: blue
(Qm = 5.156, p = 0.397), black (Qm = 5.936, p = 0.313), transparent (Qm = 5.259, p = 0.385),
and white (Qm = 7.747, p = 0.188). In the moderator of environment, a significant difference
was found in two polymer types, namely PP (Qm = 29.693, p < 0.001) and PA (Qm = 21.143,
p < 0.001). PP had a higher abundance in freshwater (8.5%) and seawater (7.9%) than in
aquaculture (5.4%), estuary (3.1%), and market (0%) environments. In contrast, PA was
relatively more abundant in aquaculture (15.4%) than in seawater (7.4%), estuary (4.0%),
freshwater (1.1%), and market (0.1%) environments. Subgroup analysis with the moderator
of continent showed that a significant difference was found in PA (Qm = 50.287, p < 0.001)
and PES (Qm = 12.174, p = 0.033). PE has the highest prevalence in Asia (21.6%), followed
by Europe (17.2%), South America (15.1%), and Africa (14.3%), and significantly lower in
North America (5.2%), and Oceania (0%). PES has a different distribution across continents,
with a higher abundance in South America (22.0%), followed by Asia (14.2%), Oceania
(13.6%), North America (12.2%), Europe (8.3%), and Africa (3.1%).
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groups of continents shared similar proportion, except in Oceania (50.0%). Asia had the 
largest proportion of small microplastics (77.6%), followed by North America and Africa 
(75.0%), and Europe (72.4%). A mixed-effects model was applied to identify potential 
sources of heterogeneity with four categorical moderators (sampling environment, plastic 
size, digestive organs examined, and sampling continent). A significant difference be-
tween groups was found for two out of the four moderators, specifically, environment 

Figure 5. Prevalence forest plot for plastic polymer type. Blue squares represent subgroup means,
while red diamonds and the dotted line represent the overall mean. (a) Subgroup of sampling envi-
ronment. (b) Subgroup of sampling continent. PE: Polyethylene; PP: Polypropylene; PES: Polyester;
PA: Polyamide. For statistical details, see individual forest plots in supplementary information
(Figures S12–S15).

4. Discussion

Microplastics are widely defined as plastics with a size of <5 mm, whereas small
microplastics and large microplastics are defined as plastics with a size of <1 mm and 1 to
5 mm, respectively. Small microplastics were the predominant plastic size ingested by fish in
most of the reviewed studies. It was estimated that the most abundant plastic in the marine
environment was microplastic (92.5%) [14]. The proportions of large and small microplastics
in the marine environment were 62.3% and 37.7%, respectively. However, the concentration
might be underestimated since the lower size limit of sampling and modelling used was
0.33 mm, whereby a 2.5-fold increase in microplastic contamination was observed when the
lower size limit was 0.1 mm [164]. Hence, the actual concentration of small microplastics
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could be higher than the initial prediction. A similar concentration of microplastics can be
expected in other environments since most of the microplastics in the marine environment
originated from land sources such as sewage and runoff. A high concentration of small
microplastics in the environment tend to be ingested by fish more easily through primary
ingestion because they resemble their prey, especially zooplanktons, or secondary ingestion
due to the attachment of plastics on their prey [15]. The predominance of small microplastics
might be due to longer retention time in GIT, as they need longer time to be evacuated from
the fish compared to larger size plastics [165]. However, several studies have excluded
small microplastics during microscopic inspection and analysis, which might underestimate
the actual number of plastics ingested [166–169]. It was reported that a lower detection
limit would result in higher frequency of occurrence of plastic ingestion [46]. Studies with
fish samples of smaller body size may influence the outcome, since they are unable to
ingest larger size plastics. Therefore, there is a need to reduce the threshold size of plastic
detection in order to identify all plastics, since small microplastics dominate the plastic
ingested.

This meta-analysis showed that the largest percentage of plastics ingested by fish
was in the form of fibre and fragment. Several studies have documented fibre plas-
tics to be the most prevalent type of plastic in seawater, freshwater, and aquaculture
environments [170–174]. Fibre plastics in the environment originate mainly from the ef-
fluent of wastewater treatment plants. An experiment illustrated that a single garment is
able to produce >1900 fibres per wash and all garments can release >100 fibres per litre
of effluent [12]. Similarly, it was estimated that over 700,000 fibres could be discharged
from an average wash load of 6 kg fabrics [175]. Another source of fibre plastic in the
environment could be from the fishery activities. The abrasion of abandoned, lost, or
discarded fishing gears has contributed about 18% of the marine plastic debris in the
marine environment [4]. Some fish species do not actively take up fibre plastic; instead,
the fibre plastics are passively sucked in while breathing [176]. Therefore, most of the fish
species may unintentionally ingest plastics that are ubiquitous in the environment. After
exposure to microplastic in a laboratory study, fibre plastic accumulated the most in the gut
of zebrafish, followed by fragment and pellet plastics [177]. Another study demonstrated
that fibre and pellet plastics shared a similar retention time in the GIT when goldfish were
fed with plastic of different shapes [178]. Shape-dependent accumulation of plastic could
be another factor contributing to the prevalence of fibre plastic in fish, but more research
is required. The accumulation period of plastic in GIT of fish may affect the outcome of
the studies, as the plastics that have been extracted from the fish do not exactly represent
the amount of plastic ingested throughout its lifetime. Instead, those samples that were
found to have a relatively smaller quantity of non-fibre plastic might have egested those
plastics out of their bodies when they were sampled. Hence, a larger sample size of the
same species from the same sampling area should be examined to tackle this limitation.

Among the studies reviewed, blue is the most common plastic colour ingested by
fish, followed by black, white, and transparent. Based on the global analysis of floating
plastics in sea water, white and transparent/translucent (47%) are the most abundant
plastic colours, followed by yellow and brown (26%), and blue (9%) [179]. This does not
imply that the plastics in the ocean are mostly white and transparent/translucent, as the
authors have excluded fibre plastic from the analysis due to the possibility of airborne
contamination and fragments made up 83.6% of all the plastics collected. For studies that
included fibre plastic, the predominant colours of the fibre were blue, black, transparent,
and white [170]; black, grey, blue, and red [180]; transparent, blue, black, and red [181]; and
transparent, white, blue, and red [182], respectively. The inconsistent results among the
studies could be attributed to the differences in methodology and sampling region. Similar
dominant colours such as blue, black, white, and transparent were observed in different
studies. Hence, fish might accidentally consume the plastics by feeding or breathing, since
the results were similar to the colour of plastics present in the environment. A study
conducted in the China Sea revealed that the proportion of the plastic colour ingested by
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fish was similar to the proportion in water and sediment of the same sampling site [156].
Another possible explanation for the results could be related to selective feeding for the
species sampled. Large pieces of plastic debris with blue and yellow colours were reported
to be preferred by the fish [183]. Blue plastics were found to be predominantly ingested
by Amberstripe scad, Atlantic chub mackerel, and fish larvae due to the resemblance to
one of their preys: blue pigmented copepod species that were abundant in the sampling
areas [184–186]. The blue pigmentation featured on zooplankton in the ocean [187] might
account for them being confused with blue plastic particles. We hypothesise that only
specific fish species ingest blue plastic deliberately due to the resemblance to its prey and
most species consume blue plastic incidentally as a result of its abundance during feeding
and breathing.

Our results confirmed that PE, PES, PP, and PA were the most prevalent polymer
types ingested by fish globally. The results were not surprising, as these polymer types
were widely found in marine and freshwater environments [173,188,189]. The abundance
of these polymer types in the environments could be due to improper disposal of plastic
waste, as they accounted for 80% of the global plastic waste generated in 2015 [190]. PE and
PP might be derived from the abrasion of fishing tools, since they are widely used in fishery
activities around the world, as well as the packaging used for foods and manufactured
products. PE and PP are less dense polymers that will usually float on the surface of the
water and are likely to be ingested by pelagic species, while demersal species tend to ingest
dense plastics such as PES and PA because they usually suspend in the water column or
deposition in the seabed. PA and PES are widely used in fishery activities and the clothing
industry. The abundance of PA and PES in the environment is mostly originated from the
effluent of washing clothes and the usage of fishery tools. For some studies, only part of
the plastics extracted from the samples was tested with the polymer characterisation test,
which could lead to a potential bias of these results.

5. Gaps and Recommendations

Fish are an essential component of a healthy human diet. Fish consumption increased
significantly from 9.0 kg per capita in 1961 to 20.5 kg per capita in 2018 worldwide, which
increased at an average annual rate of 1.5% [191]. As of 2017, fish consumption contributed
17% of animal protein intake, and 7% of all protein intake globally [191]. Although the
viscera of fish are removed prior to consumption, humans still have a strong likelihood
to be exposed to microplastics and even nanoplastics (<1 µm) due to the translocation
of plastics to muscle tissues [192]. Meanwhile, many commercial fish species have been
found to have microplastics embedded in their muscles, which are likely to be consumed
by humans [61,193,194]. It was reported that seafood was one of the top three contributors
of microplastics consumption by humans among the commonly consumed items [195].
Fish and bivalves were the seafood included in the study and they estimated that the
total microplastics consumption of a person ranged from 39,000 to 52,000 particles per
year. Lately, microplastics were detected within a small sample size of human stools,
suggesting that humans had ingested these particles [196,197]. Although there was no
direct evidence showing the sources of microplastics ingested by humans, it is still highly
possible that part of the microplastics ingested originated from seafood, since the majority
of the participants in the study consumed seafood within the study period [196,197].
Nevertheless, some fish species such as Japanese anchovy are commonly consumed by
humans without the elimination of GIT, and it further increases the risk of translocation of
plastic from fish to humans [141]. Furthermore, 262 out of 391 species that ingested plastic
are commercial species that are frequently consumed by humans [44]. This should raise
awareness of the dangers of consuming microplastics, since it poses a significant threat to
human health [198]. However, research concerning plastic ingestion of fish in aquaculture
environments has been overlooked and there are only a few studies on the incidence of
plastic ingestion within this environment [151,162,199–201]. As of 2018, the contribution of
world aquaculture to global fish production reached 82.1 million tonnes annually, which
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contributed 46.0% of the total fish production and increased from 25.7% in 2000 [191]. Fish
cultured in aquaculture are exposed to plastic debris due to aged and shattered fishery
equipment [202] and to contaminated feeds [203]. In fact, aquaculture sites are prone to
accumulate plastic debris that may be ingested by fish incidentally [151,162]. There are
studies showing that aquaculture fish have a lower incidence plastic ingestion than wild
fish [200,201]. Hence, awareness towards them should be raised to further investigate the
plastic contamination level within aquaculture fish, since they constitute almost half of the
fish for human consumption globally.

Furthermore, gill and muscle tissue of the same sample should be examined together
for the presence of plastic, since plastic contamination in gill was often reported [61,204] and
even poses health risk towards the fish [205]. Deficiency of the record of plastic ingestion
by fish is evident, as only 555 out of 22,581 known species have been investigated [46,206],
comprising 2.5% compared to other taxa such as sea birds (44.0%), marine mammals
(56.1%), and turtles (100.0%) [207]. Although there has been a significant improvement
in ingestion records compared to previous records (fish, 0.3%; sea birds, 39.1%; marine
mammals, 26.1%; and turtles, 85.7%) [49], more research on plastic ingestion in other fish
species is necessary to further reveal the potential hazards in the environment.

In future research, the lowest threshold of plastic size should be mentioned in the study
and threshold filter pore size must be at least 1 µm to fulfil the criteria of microplastics [208]
and to capture all plastics ingested, since the predominant size of the plastic is <1 mm. It is
difficult to compare the dominant size class ingested by fish across different studies because
most of the studies have assigned a distinct size class (Figure 2), and the inconsistent
classifications have made the comparison of plastic ingested by size more difficult. Instead,
the plastic size classes should be standardised for ease of comparison of the dominant size
class of plastic ingested between studies. Likewise, the shape of the plastics should be
standardised, as suggested by GESAMP [54], into fibre, fragment, film, pellet, and foam.
Since fibre is the dominant plastic shape ingested by fish, it should not be excluded from
the analysis. Possible contamination should not be used as an exclusion criterion for plastic
analysis [209]. Instead, extra care should be taken to eliminate possible contamination [210].
For studies that intend to investigate only the occurrence of microplastic in fish, any plastic
that is 5 mm and above should not be excluded [211]; instead, it should be archived to record
their characterisations such as size, shape, and colour, since it is still an anthropogenic
particle and may pose a significant risk towards the fish. Polymer identification tests
should be carried out randomly among the plastics extracted from the samples [212]. For
future studies, it is essential that the size, colour, and shape of plastic ingestion be recorded
and analysed to further validate if the fish species has a certain preference regarding
plastic ingestion.

6. Conclusions

Our meta-analysis has revealed that the most abundant plastics ingested by fish
globally was <1 mm in size, fibre shape, blue colour, and PE polymer. The results obtained
were similar to the prevalence of plastics in environments where most of the fish species
could ingest them passively. Hence, more research needs to be carried out in order to
further validate if fish have a certain preference for ingesting plastic particles. Since fish are
a one of the major protein sources, the incidence of plastic ingestion by fish, especially in
aquaculture sites, should be a major cause for alarm, as it poses potential threats to human
health, yet there is still a lack of information on plastic ingestion in many commercial
fish species. Furthermore, it is essential that a standardised classification of plastic size,
shape, and colour be established for use in future studies. A better understanding of the
causes of plastic ingestion by fish can be achieved by adapting a uniform classification of
plastic characterisations.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10040186/s1, Figure S1: Funnel plot for the prevalence
of plastic’s shapes ingested by fish from all environments. Studies are represented by full circles
and imputed studies are represented by empty circles, Figure S2: Funnel plot for the prevalence
of plastic’s colours ingested by fish from all environments. Studies are represented by full circles
and imputed studies are represented by empty circles, Figure S3: Funnel plot for the prevalence of
plastic’s polymer type ingested by fish from all environments. Studies are represented by full circles
and imputed studies are represented by empty circles. PE: Polyethylene; PP: Polypropylene; PES:
Polyester; PA: Polyamide; PS: Polystyrene, Figure S4: Forest plot for fibre subgroup analysis. Red
diamonds represent subgroup means. Total: total plastics found in each study. Fibre: number of
fibres found in each study, Figure S5: Forest plot for fragment subgroup analysis. Red diamonds
represent subgroup means. Total: total plastics found in each study. Fragment: number of fragments
found in each study, Figure S6: Forest plot for film subgroup analysis. Red diamonds represent
subgroup means. Total: total plastics found in each study. Film: number of films found in each study,
Figure S7: Forest plot for pellet subgroup analysis. Red diamonds represent subgroup means. Total:
total plastics found in each study. Pellet: number of pellets found in each study, Figure S8: Forest
plot for blue subgroup analysis. Red diamonds represent subgroup means. Total: total plastics found
in each study. Blue: number of blues found in each study, Figure S9: Forest plot for black subgroup
analysis. Red diamonds represent subgroup means. Total: total plastics found in each study. Black:
number of blacks found in each study, Figure S10: Forest plot for transparent subgroup analysis.
Red diamonds represent subgroup means. Total: total plastics found in each study. Transparent:
number of transparent found in each study, Figure S11: Forest plot for white subgroup analysis. Red
diamonds represent subgroup means. Total: total plastics found in each study. White: number of
whites found in each study, Figure S12: Forest plot for PE subgroup analysis. Red diamonds represent
subgroup means. Total: total plastics found in each study. PE: number of PE found in each study. PE:
Polyethylene, Figure S13: Forest plot for PES subgroup analysis. Red diamonds represent subgroup
means. Total: total plastics found in each study. PES: number of PES found in each study. PES:
Polyester, Figure S14: Forest plot for PP subgroup analysis. Red diamonds represent subgroup means.
Total: total plastics found in each study. PP: number of PP found in each study. PP: Polypropylene,
Figure S15: Forest plot for PA subgroup analysis. Red diamonds represent subgroup means. Total:
total plastics found in each study. PA: number of PA found in each study. PA: Polyamide.

Author Contributions: Writing—original draft: K.P.L.; Writing—review and editing: K.P.L., P.E.L.,
S.Y.; Visualisation: K.P.L.; Data curation: K.P.L.; Formal analysis: K.P.L., J.D.; Funding acquisition:
P.E.L., C.S.; Supervision: P.E.L., C.S.; Methodology: K.P.L., K.H.L.; Validation: J.D., K.H.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the research fund from First Institute of Oceanography-
University of Malaya Joint Center of Marine Science and Technology (FIO-UM JCMST) (IF002-2020)
and Asian Countries Maritime Cooperation Fund (99950410).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Kok Ping Lim was supported by the FIO-UM JCMST.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. PlasticEurope. Plastics—The Facts 2020. Available online: https://www.plasticseurope.org/en/resources/market-data (accessed

on 20 February 2022).
2. PlasticEurope. The Compelling Facts About Plastics. Available online: https://www.plasticseurope.org/en/resources/market-

data (accessed on 20 February 2022).
3. Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut Bull. 2002, 44, 842–852. [CrossRef]
4. Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [CrossRef] [PubMed]
5. Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Env. Pollut. 2013, 182,

495–499. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/toxics10040186/s1
https://www.mdpi.com/article/10.3390/toxics10040186/s1
https://www.plasticseurope.org/en/resources/market-data
https://www.plasticseurope.org/en/resources/market-data
https://www.plasticseurope.org/en/resources/market-data
http://doi.org/10.1016/S0025-326X(02)00220-5
http://doi.org/10.1016/j.marpolbul.2011.05.030
http://www.ncbi.nlm.nih.gov/pubmed/21742351
http://doi.org/10.1016/j.envpol.2013.08.013
http://www.ncbi.nlm.nih.gov/pubmed/24035457


Toxics 2022, 10, 186 15 of 22

6. Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global warming releases microplastic legacy frozen
in Arctic Sea ice. Earths Future 2014, 2, 315–320. [CrossRef]

7. Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large,
remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [CrossRef]

8. Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Env.
Contam. Toxicol. 2019, 102, 741–749. [CrossRef]

9. Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from
Dongguan city, China: Preliminary research and first evidence. Env. Sci. Pollut. Res. Int. 2017, 24, 24928–24935. [CrossRef]

10. Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of
Microplastic Marine Debris. NOAA Technical Memorandum NOS-OR&R-30, Tacoma, WA, USA, 9–11 September 2008.

11. Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut.
Bull. 2009, 58, 1225–1228. [CrossRef]

12. Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on
shorelines woldwide: Sources and sinks. Env. Sci. Technol. 2011, 45, 9175–9179. [CrossRef]

13. Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans.
Nat. Commun. 2017, 8, 15611. [CrossRef]

14. Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution
in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913.
[CrossRef] [PubMed]

15. Ryan, P.G. Ingestion of Plastics by Marine Organisms. In Hazardous Chemicals Associated with Plastics in the Marine Environment;
Takada, H., Karapanagioti, H.K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 235–266.

16. Kuhn, S.; van Franeker, J.A. Plastic ingestion by the northern fulmar (Fulmarus glacialis) in Iceland. Mar. Pollut. Bull. 2012, 64,
1252–1254. [CrossRef] [PubMed]

17. Reynolds, C.; Ryan, P.G. Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar. Pollut Bull.
2018, 126, 330–333. [CrossRef] [PubMed]

18. Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull.
2011, 62, 1207–1217. [CrossRef] [PubMed]

19. Iannilli, V.; Di Gennaro, A.; Lecce, F.; Sighicelli, M.; Falconieri, M.; Pietrelli, L.; Poeta, G.; Battisti, C. Microplastics in Talitrus saltator
(Crustacea, Amphipoda): New evidence of ingestion from natural contexts. Environ. Sci. Pollut. Res. Int. 2018, 25, 28725–28729.
[CrossRef]

20. Fernandez, C.; Anastasopoulou, A. Plastic ingestion by blue shark Prionace glauca in the South Pacific Ocean (south of the Peruvian
Sea). Mar. Pollut. Bull. 2019, 149, 110501. [CrossRef]

21. Foekema, E.M.; De Gruijter, C.; Mergia, M.T.; van Franeker, J.A.; Murk, A.J.; Koelmans, A.A. Plastic in north sea fish. Env. Sci.
Technol. 2013, 47, 8818–8824. [CrossRef]

22. Lusher, A.L.; Hernandez-Milian, G.; O’Brien, J.; Berrow, S.; O’Connor, I.; Officer, R. Microplastic and macroplastic ingestion by a
deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mirus. Environ. Pollut. 2015, 199, 185–191. [CrossRef]

23. Stamper, M.A.; Whitaker, B.R.; Schofield, T.D. Case Study: Morbidity in a Pygmy Sperm Whale Kogia breviceps due to ocean-bourne
plastic. Mar. Mammal. Sci. 2006, 22, 719–722. [CrossRef]

24. Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Env. Pollut.
2014, 185, 77–83. [CrossRef]

25. Nelms, S.E.; Galloway, T.S.; Godley, B.J.; Jarvis, D.S.; Lindeque, P.K. Investigating microplastic trophic transfer in marine top
predators. Env. Pollut. 2018, 238, 999–1007. [CrossRef] [PubMed]

26. Chagnon, C.; Thiel, M.; Antunes, J.; Ferreira, J.L.; Sobral, P.; Ory, N.C. Plastic ingestion and trophic transfer between Easter Island
flying fish (Cheilopogon rapanouiensis) and yellowfin tuna (Thunnus albacares) from Rapa Nui (Easter Island). Env. Pollut. 2018, 243,
127–133. [CrossRef] [PubMed]

27. Markic, A.; Niemand, C.; Bridson, J.H.; Mazouni-Gaertner, N.; Gaertner, J.C.; Eriksen, M.; Bowen, M. Double trouble in the South
Pacific subtropical gyre: Increased plastic ingestion by fish in the oceanic accumulation zone. Mar. Pollut. Bull. 2018, 136, 547–564.
[CrossRef] [PubMed]

28. Welden, N.A.; Abylkhani, B.; Howarth, L.M. The effects of trophic transfer and environmental factors on microplastic uptake by
plaice, Pleuronectes plastessa, and spider crab, Maja squinado. Environ. Pollut. 2018, 239, 351–358. [CrossRef]

29. Ferreira, G.V.B.; Barletta, M.; Lima, A.R.A.; Morley, S.A.; Costa, M.F. Dynamics of Marine Debris Ingestion by Profitable Fishes
Along the Estuarine Ecocline. Sci. Rep. 2019, 9, 13514. [CrossRef]

30. Santos, R.G.; Andrades, R.; Boldrini, M.A.; Martins, A.S. Debris ingestion by juvenile marine turtles: An underestimated problem.
Mar. Pollut. Bull. 2015, 93, 37–43. [CrossRef]

31. Pierce, K.E.; Harris, R.J.; Larned, L.S.; Pokras, M. Obstruction and starvation associated with plastic ingestion in a Northern
Gannet Morus bassanus and a Greater Shearwater Puffinus gravis. Mar. Ornithol. 2004, 32, 187–189.

32. Beck, C.A.; Barros, N.B. The impact of debris on the Florida manatee. Mar. Pollut. Bull. 1991, 22, 508–510. [CrossRef]

http://doi.org/10.1002/2014EF000240
http://doi.org/10.1016/j.marpolbul.2014.06.001
http://doi.org/10.1007/s00128-019-02623-z
http://doi.org/10.1007/s11356-017-0116-x
http://doi.org/10.1016/j.marpolbul.2009.04.025
http://doi.org/10.1021/es201811s
http://doi.org/10.1038/ncomms15611
http://doi.org/10.1371/journal.pone.0111913
http://www.ncbi.nlm.nih.gov/pubmed/25494041
http://doi.org/10.1016/j.marpolbul.2012.02.027
http://www.ncbi.nlm.nih.gov/pubmed/22455662
http://doi.org/10.1016/j.marpolbul.2017.11.021
http://www.ncbi.nlm.nih.gov/pubmed/29421107
http://doi.org/10.1016/j.marpolbul.2011.03.032
http://www.ncbi.nlm.nih.gov/pubmed/21497854
http://doi.org/10.1007/s11356-018-2932-z
http://doi.org/10.1016/j.marpolbul.2019.110501
http://doi.org/10.1021/es400931b
http://doi.org/10.1016/j.envpol.2015.01.023
http://doi.org/10.1111/j.1748-7692.2006.00062.x
http://doi.org/10.1016/j.envpol.2013.10.013
http://doi.org/10.1016/j.envpol.2018.02.016
http://www.ncbi.nlm.nih.gov/pubmed/29477242
http://doi.org/10.1016/j.envpol.2018.08.042
http://www.ncbi.nlm.nih.gov/pubmed/30172118
http://doi.org/10.1016/j.marpolbul.2018.09.031
http://www.ncbi.nlm.nih.gov/pubmed/30509840
http://doi.org/10.1016/j.envpol.2018.03.110
http://doi.org/10.1038/s41598-019-49992-3
http://doi.org/10.1016/j.marpolbul.2015.02.022
http://doi.org/10.1016/0025-326X(91)90406-I


Toxics 2022, 10, 186 16 of 22

33. Haetrakul, T.; Munanansup, S.; Assawawongkasem, N.; Chansue, N. A Case Report: Stomach Foreign Object in Whaleshark
(Rhincodon Types) Stranded in Thailand. In Proceedings of the 4th International Symposium on SEASTAR2000 and Asian
Bio-logging Science (The 8th SEASTAR2000 Workshop), Phuket, Thailand, 15–17 December 2007.

34. Jabeen, K.; Li, B.; Chen, Q.; Su, L.; Wu, C.; Hollert, H.; Shi, H. Effects of virgin microplastics on goldfish (Carassius auratus).
Chemosphere 2018, 213, 323–332. [CrossRef]

35. Naidoo, T.; Glassom, D. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant
concentrations of microplastic. Mar. Pollut. Bull. 2019, 145, 254–259. [CrossRef]

36. Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics
in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [CrossRef] [PubMed]

37. Critchell, K.; Hoogenboom, M.O. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish
(Acanthochromis polyacanthus). PLoS ONE 2018, 13, e0193308. [CrossRef] [PubMed]

38. Ahrendt, C.; Perez-Venegas, D.J.; Urbina, M.; Gonzalez, C.; Echeveste, P.; Aldana, M.; Pulgar, J.; Galban-Malagon, C. Microplastic
ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar. Pollut. Bull. 2020, 151, 110795. [CrossRef] [PubMed]

39. Hoss, D.E.; Settle, L.R. Ingestion of Plastics by Teleost Fishes. In Proceedings of the Second International Conference on Marine
Debris. NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC-154, Honolulu, HI, USA, 2–7 April 1989; pp. 693–709.

40. Cannon, S.M.E.; Lavers, J.L.; Figueiredo, B. Plastic ingestion by fish in the Southern Hemisphere: A baseline study and review of
methods. Mar. Pollut. Bull. 2016, 107, 286–291. [CrossRef] [PubMed]

41. Pinheiro, C.; Oliveira, U.; Vieira, M. Occurrence and impacts of microplastics in freshwater fish. J. Aquac. Mar. Biol. 2017, 5, 00138.
[CrossRef]

42. Liboiron, F.; Ammendolia, J.; Saturno, J.; Melvin, J.; Zahara, A.; Richard, N.; Liboiron, M. A zero percent plastic ingestion rate by
silver hake (Merluccius bilinearis) from the south coast of Newfoundland, Canada. Mar. Pollut. Bull. 2018, 131, 267–275. [CrossRef]

43. Kroon, F.J.; Motti, C.E.; Jensen, L.H.; Berry, K.L.E. Classification of marine microdebris: A review and case study on fish from the
Great Barrier Reef, Australia. Sci. Rep. 2018, 8, 16422. [CrossRef]

44. Markic, A.; Gaertner, J.-C.; Gaertner-Mazouni, N.; Koelmans, A.A. Plastic ingestion by marine fish in the wild. Crit. Rev. Env. Sci.
Tec. 2020, 50, 657–697. [CrossRef]

45. Wootton, N.; Reis-Santos, P.; Gillanders, B.M. Microplastic in fish—A global synthesis. Rev. Fish Biol. Fish. 2021, 31, 753–771.
[CrossRef]

46. Savoca, M.S.; McInturf, A.G.; Hazen, E.L. Plastic ingestion by marine fish is widespread and increasing. Glob. Chang. Biol. 2021,
27, 2188–2199. [CrossRef]

47. Garrido Gamarro, E.; Ryder, J.; Elvevoll, E.O.; Olsen, R.L. Microplastics in fish and shellfish—A threat to seafood safety? J. Aquat.
Food Prod. Technol. 2020, 29, 417–425. [CrossRef]

48. Provencher, J.F.; Bond, A.L.; Avery-Gomm, S.; Borrelle, S.B.; Rebolledo, E.L.B.; Hammer, S.; Kühn, S.; Lavers, J.L.; Mallory, M.L.;
Trevail, A. Quantifying ingested debris in marine megafauna: A review and recommendations for standardization. Anal. Methods
2017, 9, 1454–1469. [CrossRef]

49. Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [CrossRef] [PubMed]
50. Azizi, N.; Khoshnamvand, N.; Nasseri, S. The quantity and quality assessment of microplastics in the freshwater fishes: A

systematic review and meta-analysis. Reg. Stud. Mar. Sci. 2021, 47, 101955. [CrossRef]
51. Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.C.; Werorilangi, S.; Teh, S.J. Anthropogenic debris

in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340.
[CrossRef] [PubMed]

52. Ding, J.; Li, J.; Sun, C.; Jiang, F.; Ju, P.; Qu, L.; Zheng, Y.; He, C. Detection of microplastics in local marine organisms using a
multi-technology system. Anal. Methods 2019, 11, 78–87. [CrossRef]

53. Lee, J.; Lee, J.S.; Jang, Y.C.; Hong, S.Y.; Shim, W.J.; Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Kang, D.; et al. Distribution and
Size Relationships of Plastic Marine Debris on Beaches in South Korea. Arch. Env. Contam. Toxicol. 2015, 69, 288–298. [CrossRef]

54. GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; United Nations Environment
Programme: Nairobi, Kenya, 2019; p. 130.

55. Fossi, M.C.; Romeo, T.; Baini, M.; Panti, C.; Marsili, L.; Campani, T.; Canese, S.; Galgani, F.; Druon, J.-N.; Airoldi, S. Plastic debris
occurrence, convergence areas and fin whales feeding ground in the Mediterranean marine protected area Pelagos sanctuary: A
modeling approach. Front. Mar. Sci. 2017, 4, 167. [CrossRef]

56. McNeish, R.E.; Kim, L.H.; Barrett, H.A.; Mason, S.A.; Kelly, J.J.; Hoellein, T.J. Microplastic in riverine fish is connected to species
traits. Sci. Rep. 2018, 8, 11639. [CrossRef]

57. Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface
waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [CrossRef]

58. Acharya, S.; Rumi, S.S.; Hu, Y.; Abidi, N. Microfibers from synthetic textiles as a major source of microplastics in the environment:
A review. Text. Res. J. 2021, 91, 2136–2156. [CrossRef]

59. Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. A novel, highly efficient method for the separation and quantifica-
tion of plastic particles in sediments of aquatic environments. Limnol. Oceanogr. Meth. 2012, 10, 524–537. [CrossRef]

60. Naji, A.; Nuri, M.; Amiri, P.; Niyogi, S. Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern
coast of the Persian Gulf. Mar. Pollut. Bull. 2019, 146, 305–311. [CrossRef] [PubMed]

http://doi.org/10.1016/j.chemosphere.2018.09.031
http://doi.org/10.1016/j.marpolbul.2019.02.037
http://doi.org/10.1021/acs.est.6b00183
http://www.ncbi.nlm.nih.gov/pubmed/26950772
http://doi.org/10.1371/journal.pone.0193308
http://www.ncbi.nlm.nih.gov/pubmed/29494635
http://doi.org/10.1016/j.marpolbul.2019.110795
http://www.ncbi.nlm.nih.gov/pubmed/32056590
http://doi.org/10.1016/j.marpolbul.2016.03.057
http://www.ncbi.nlm.nih.gov/pubmed/27058965
http://doi.org/10.15406/jamb.2017.05.00138
http://doi.org/10.1016/j.marpolbul.2018.04.007
http://doi.org/10.1038/s41598-018-34590-6
http://doi.org/10.1080/10643389.2019.1631990
http://doi.org/10.1007/s11160-021-09684-6
http://doi.org/10.1111/gcb.15533
http://doi.org/10.1080/10498850.2020.1739793
http://doi.org/10.1039/C6AY02419J
http://doi.org/10.1016/j.marpolbul.2014.12.041
http://www.ncbi.nlm.nih.gov/pubmed/25680883
http://doi.org/10.1016/j.rsma.2021.101955
http://doi.org/10.1038/srep14340
http://www.ncbi.nlm.nih.gov/pubmed/26399762
http://doi.org/10.1039/C8AY01974F
http://doi.org/10.1007/s00244-015-0208-x
http://doi.org/10.3389/fmars.2017.00167
http://doi.org/10.1038/s41598-018-29980-9
http://doi.org/10.1016/j.marpolbul.2013.10.007
http://doi.org/10.1177/0040517521991244
http://doi.org/10.4319/lom.2012.10.524
http://doi.org/10.1016/j.marpolbul.2019.06.033
http://www.ncbi.nlm.nih.gov/pubmed/31426160


Toxics 2022, 10, 186 17 of 22

61. Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in different tissues of fish and prawn
from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [CrossRef] [PubMed]

62. Abidli, S.; Akkari, N.; Lahbib, Y.; El Menif, N.T. First evaluation of microplastics in two commercial fish species from the lagoons
of Bizerte and Ghar El Melh (Northern Tunisia). Reg. Stud. Mar. Sci. 2021, 41, 101581. [CrossRef]

63. Abiñon, B.S.F.; Camporedondo, B.S.; Mercadal, E.M.B.; Olegario, K.M.R.; Palapar, E.M.H.; Ypil, C.W.R.; Tambuli, A.E.; Lomboy,
C.A.L.M.; Garces, J.J.C. Abundance and characteristics of microplastics in commercially sold fishes from Cebu Island, Philippines.
Int. J. Aquat. Biol. 2020, 8, 424–433. [CrossRef]

64. Agharokh, A.; S Taleshi, M.; Bibak, M.; Rasta, M.; Torabi Jafroudi, H.; Rubio Armesto, B. Assessing the relationship between the
abundance of microplastics in sediments, surface waters, and fish in the Iran southern shores. Environ. Sci. Pollut. Res. Int. 2021,
29, 18546–18558. [CrossRef]

65. Arias, A.H.; Ronda, A.C.; Oliva, A.L.; Marcovecchio, J.E. Evidence of Microplastic Ingestion by Fish from the Bahia Blanca Estuary
in Argentina, South America. Bull. Environ. Contam. Toxicol. 2019, 102, 750–756. [CrossRef]

66. Atamanalp, M.; Köktürk, M.; Parlak, V.; Ucar, A.; Arslan, G.; Alak, G. A new record for the presence of microplastics in dominant
fish species of the Karasu River Erzurum, Turkey. Environ. Sci. Pollut. Res. Int. 2021, 29, 7866–7876. [CrossRef]

67. Atamanalp, M.; Köktürk, M.; Uçar, A.; Duyar, H.A.; Özdemir, S.; Parlak, V.; Esenbuğa, N.; Alak, G. Microplastics in Tissues (Brain,
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