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Abstract: This article focuses on a very peculiar habitat, the thin biofilm that covers the surface
of rocks, cobbles, sediment grains, leaf litter, and vegetation on a riverbed. Species composition
changes over time and depends on environmental conditions and perturbation of water quality.
It provides several ecosystem services, contributing to the biogeochemical fluxes and reducing
contamination by absorbing the pollutants. Biofilm into the Toce River (Ossola Valley, Piedmont,
Italy) was investigated to assess its capacity to accumulate the metals and macroions from the water
column. In this preliminary work, we investigated three sample points, in two different seasons.
The community composition of biofilm was determined via morphological analysis (diatoms and
non-diatoms algal community). We characterize the biofilm, a community of different organisms,
from different perspectives. In the biofilm, Hg was analyzed with an automated mercury analyzer,
other metals and macroions with inductively coupled plasma mass spectrometry (ICP-MS) (Al, As,
Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, and Zn), and the carotenoid and chlorophyll composition of
the photosynthetic organism with HPLC analysis for the primary producers. The results evidence
a seasonal pattern in metals and macroions levels in the biofilm, and a significant difference in the
biofilm community and in carotenoid composition, suggesting the utility of using the biofilm as an
additional bioindicator to monitor the water quality of the river.

Keywords: biofilm; water quality; oxidative stress; extruded polymeric substance; inductively
coupled plasma mass spectrometry; metals; mercury; arsenic

1. Introduction

Biofilm in rivers is an organized three-dimensional structure community of microor-
ganisms, bacteria, archaea, microalgae, fungi, protozoa, and even metazoa. Biofilm grows
on submerged solid substrates in aquatic environments, where the dynamic water flow
modifies its physical structure and functionality, generating a complex structure [1]. Photo-
synthetic processes are carried out by primary producers, microalgae, and cyanobacteria,
while biofilm-associated fungi, bacteria, and heterotrophic decomposers contribute to or-
ganic matter decomposition and circulation of essential nutrients in aquatic ecosystems [2,3].
Biofilms represent an important food resource for many invertebrates in freshwater ecosys-
tems, assuming an important role in the transfer of contaminants into the food chain [4].

In aquatic ecosystems, biofilms adsorb, retain, amplify, and transform organic sub-
stances and nutrients in the matrix, and extruded polymeric substances (EPSs) can stabilize
the structure [1]. EPSs include a wide range of different organic macromolecules, primarily
polysaccharides, between 40% and 90%, but also glycoproteins and lesser amounts of lipids,
nucleic acids, and proteins [5]. Biofilm has the capability to absorb contaminants through
multiple mechanisms, including electrostatic interactions, cation exchange, complexation,
and hydrophobic and micropore filling properties. The adsorption and degradation ca-
pacity of biofilms have been widely used for monitoring anthropogenic pollutants, such
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as heavy metals (e.g., copper, zinc, and cadmium), hydrophobic organic pollutants, and
emerging contaminants [6]. Heavy metal contamination is a major environmental issue in
river basins, and much work has been undertaken illustrating the origins, dispersal, and
fate of these contaminants. In addition to the traditional measurement of contamination
levels in sediments [7–10], many studies highlight the importance of biofilms as a medium
for the assessment of pollutants in freshwater environments. This type of investigation al-
lows the study of the spatial variability of contaminants and can provide more information
on the risk of river ecosystems, as biofilm is intensively grazed by aquatic organisms at a
higher trophic level [11–13].

This preliminary study aimed to integrate and improve pollution monitoring practices
using biofilm as a bioindicator. As a test case, we selected an area located along the
Toce River, in the Ossola Valley (Italian Central Alps), which is still heavily impacted
by industrial development. A large part of the Ossola Valley develops on high hills or
mountains, and its morphology is the result of the action of glaciers and erosion by rivers.
The control of water flow through dams, necessary to supply electricity, has reduced
periodic flooding but was unable to cancel the effects of intense rainfall, due to climate
change, which most frequently affects the whole Ossola Valley. During the industrialization
phase (1920–1990), the Ossola Valley area experienced its greatest economic growth, with
a strong impact on the environment, with consequences still present today. In the early
1900s and, in particular, between the two World Wars, small and large industries settled in
the area, especially chemical plants, attracted by the availability of low-cost electricity and
watercourses in which to discharge production residues. Among them, an industrial plant
operating from the First World War period was the main cause of chemical pollution in the
study area [14,15]. The industrial discharges were released into the Toce River, reaching up
to Lake Maggiore, one of the main Italian lakes. Therefore, the contamination had strong
implications for the biota of the whole lake basin and, potentially, for human health. A
large amount of data collected from 2000 until today in the framework of the monitoring
programs of the International Commission for the Protection of the Italian-Swiss Waters
(CIPAIS; www.cipais.org; accessed on 16 November 2022) [14,16] highlights the persistence
of some pollutants in sediments and biota of the Lake Maggiore and Toce River, such us
DDT and its derivatives (DDD and DDE), metals such as arsenic and mercury (Hg), PCB,
and dioxin. With regard to Hg contamination, data show that, even if the activity of the
chlor-alkali plant was drastically reduced in the late 1990s and finally stopped at the end
of 2017, Hg contamination persists in the sediments and biota of the aquatic ecosystem,
showing that active sources of Hg are still present, such as soil leaching and/or atmospheric
deposition [17]. Since 2017, soil restoration has been in progress in the industrial area.

Considering that for efficient monitoring programs in contaminated areas, the integra-
tion of data obtained with different techniques is useful, we present a preliminary work
aimed at investigating the possibility of using biofilm as a potential integrative bioindicator
to assess the contamination levels and distribution in the surface water of the contaminated
area around the chemical plant located along the Toce River.

2. Materials and Methods
2.1. Study Area

This research was carried out in Ossola Valley located in Piedmont, Italian central Alps,
which borders the Pennine and Lepontine Alps, Switzerland, and Lake Maggiore. The Toce
River, an Alpine river, stretches the length of the Ossola Valley flowing into Lake Maggiore
for 84 km, and the catchment area is about 1784 km2 [18]. We collected biofilm at three
selected sampling points: a point located north of the chemical plant, one located south of
the plant, and a third point located at the mouth of the Toce River, where it flows into Lake
Maggiore. The studied sites coordinates are reported in Table 1 and shown in Figure 1.

www.cipais.org
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Table 1. Site coordinates.

Site Location Longitude Latitude

1 Villadossola 08◦16′59.04′′ E 46◦04′35.31′′ N
2 Bosco Tenso 08◦19′57.47′′ E 45◦59′38.59′′ N
3 Ornavasso 08◦25′05.18′′ E 45◦58′35.32′′ N
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Figure 1. Study area and sites of the biofilm sampled in the Toce River (Ossola Valley).

2.2. Biofilm Collection and Samples Preparation

Biofilm samples were collected following the European standard protocol [19] for the
benthic diatoms from rivers. At each site, a 50 m long river stretch was investigated, and
biofilm was collected at 4 points from the natural hard surface, i.e., cobbles and stones,
completely submerged at a depth of 20–30 cm from 4 locations around the river. Cobbles
and stones were moved from the riverbed, and the surface was scraped from each stone,
placed into a falcon filled with river water, and kept in a cool dry place. In the laboratory, the
samples were centrifuged at 3500 rpm, and aliquots of the pellets were frozen, freeze-dried,
or dried at 50 ◦C for two days as indicated below.

2.3. Diatoms Identification

The samples for diatom identification were treated with hot hydrogen peroxide and
hydrochloric acid following standard procedures [20] and finally mounted using Naphrax
(Brunel Microscopes Ltd., Chippenham, UK) on permanent slides for species identification
(Zeiss Axiolab, magnification 1000×). Taxonomic identification was based on Krammer
and Lange-Bertalot [21], Lange-Bertalot [22], Krammer [23–25], Lange-Bertalot et al. [26],
and Cantonati et al. [27] integrated with the paper on the Achnanthidium minutissimum
species complex by Potapova and Hamilton [28]. For each sample, a minimum of 400 valves
were identified using a Zeiss Axiolab microscope (Gottingen, Germania), and results were
expressed as relative abundances (%). Subsequently, the α-diversity and heterogeneity
of the diatomic communities for each sampling site were evaluated on the basis of the
Shannon index [29] and Evenness [30], respectively.
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The ecological status was assessed via calculation of the Intercalibration Common
Metrics Index ICMi [31], which is calculated as the mean of the ecological quality ratio
(EQR) of two existing indices, IPS [32] and TI [33].

2.4. Community Taxonomic Composition

Sub-samples from each site were also preserved with Lugol’s Iodine [19]; the reagents
were all of analytical grade by VWR (Milan, Italy). Taxonomic composition of the non-
diatom community was analyzed under a Leica inverted microscope (Leica Srl, Milan,
Italy). Sedimentation chambers were filled with diluted sediment samples and evaluated
at 400×–1000×magnification following the Üthermol method [34] and Lund [35]. Further,
an aliquot from each sample was used for the identification of algae (except for diatoms),
in temporary slides at 1000×magnification under lightfield, darkfield, and phase contrast
microscopy techniques to characterize them morphologically. Image analyses were also
used to perform identification to the lowest taxonomical level (species or genus).

2.5. Quantification of Carotenoids and Chlorophylls in Biofilm

The carotenoids were extracted from the freeze biofilm using acetone 90%. Spectropho-
tometric evaluation of chlorophylls a and pheophytin was performed following the method
reported by Steinman and Lamberti [36]. The reagents were all of analytical grade by VWR
(Milan, Italy). The data from each experiment represent the mean (± standard deviation,
SD) of three replicates.

HPLC analysis, on the same extracts, was performed with a Thermo Fisher Scientific
(Waltham, MA, USA) “UltiMate LC System” composed of a UV/VIS detector, and a
Photodiode Array BioLC detector [37]; reagents were HPLC Lichrosolv by VWR (Milan,
Italy). The detailed method is in Supplementary materials Method M1.

2.6. Quantification of Metals and Macroions in Biofilm

For the determination of elements of interest (As, Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn,
Ni, P, Pb, Zn), aliquots of 150 mg of dried biofilm samples were digested by a microwave
digestor system (Anton Paar MULTIWAVE-ECO) in Teflon tubes filled with 10 mL of 65%
of nitric acid by employing a one-step temperature ramp (the temperature is increased to
180 ◦C in 20 min and maintained for 10 min). After 20′ of cooling time, the mineralized
samples were transferred to polypropylene test tubes, and the final volume was registered.
Then samples were properly diluted (1:100) with 1.3 M of nitric acid in MILLI-Q water,
and the concentration of elements was measured via inductively coupled plasma mass
spectrometry (BRUKER Aurora-M90 ICP-MS). To check the nebulization performance, an
aliquot of 2 mgL−1 of an internal standard solution (72Ge, 89Y, 159Tb) was added to the
samples and to the calibration curve to give a final concentration of 20 µgL−1.

Typical polyatomic analysis interferences were removed using CRI (Collision-Reaction-
Interface) with an H2 flow of 70 mLmin−1 flown through a skimmer cone [38]. All reagents
were of analytical grade by VWR (Milan, Italy). The data from each experiment represent
the mean (± standard deviation, SD) of three replicates.

2.7. Determination of Hg in Biofilm

Freeze-dried biofilm was homogenized using a Retsch MM2000 ball mill (Retsch
Technology GmbH, Haan, Germany). Total Hg concentration in the biofilm was determined
via thermal decomposition, amalgamation, and atomic absorption spectrometry according
to the US-EPA method 7473 [39], using an automated mercury analyzer (AMA-254, FKV
Srl, Bergamo, Italy). The instrument detection limit is 0.01 ng Hg, while the working
range is 0.05 to 600 ng Hg. The limit of quantification (LOQ), calculated as ten times the
standard deviation of the blank and considering a sample mass (plant tissue) of 25 mg, is
0.009 mg kg−1.

For accuracy evaluation, the certified reference material BCR-CRM061 aquatic moss
powder (Community Bureau of Reference, Institute for Reference Materials and Measure-
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ments, Geel, Belgium) was analyzed (reference value = 0.23 ± 0.02 mg kg−1), obtaining
a mean recovery of 103.8 ± 1.1% (n = 3) of certified values. Precision was checked via
triplicate analysis and percent coefficient of variation, calculated as the ratio of the standard
deviation to the mean of the three analyses of each sample *100, was ≤ 7%, except for the
sample collected at Site 1 in October (36%), which was difficult to homogenize.

3. Results
3.1. Biofilm Characterization
3.1.1. Diatoms Identification

A total of 89 species, belonging to 36 genera, were identified in the three sites in March
and October, to the highest taxonomic resolution possible; only 5 of them had a relative
abundance greater than 10% (dominant species) and 9 greater than 5% but less than or equal
to 10% (sub-dominant species). The most abundant genera were Nitzschia (15), Achnan-
thidium and Navicula (8 each), Fragilaria and Gomphonema (7 each), Encyonema and
Cocconeis (5 each), while all other genera were represented by less than 5 taxa. About 19%
of the taxa identified are included in the Red List [40]: in most cases, these are species whose
abundance and frequency are estimated to be decreasing, but species defined as “in danger
of extinction” were also present (approximately 3%) (Table S1 (Supplementary material)).

The most common diatoms were achnanthoid taxa (mainly Achnanthidium minutissimum
and Achnanthidium subatomus), Diatoma mesodon, Encyonema minutum, Navicula cryptotenella,
and nitzschioid taxa (mainly Nitzschia dissipata, Nitzschia fonticola and Nitzschia heufleriana).
A. minutissimum and A. subatomus were also the most abundant taxa, as they reached a
relative abundance of > 30 % in several samples. Both samples collected at Site 3 and sample
collected in autumn from Site 1 in were also rich in nitzschioid taxa (relative abundance > 20%).
Autumn samples also showed higher diversity than spring samples, and some frustules (1.5%)
appeared with the teratogenic morphotype. Evenness was similar in Site 2 and Site 3 but higher
at Site 1. The assessment of the quality status based on the application of the Intercalibration
Common Metrics Index (ICMi) is reported in Table 2. The index attributed a high ecological
class to all samples taken in spring and to the one collected in autumn at Site 2, a moderate
quality at Site 1, and a poor quality to the autumn sample from Site 3.

Table 2. Assessment of the ecological status of the Toce River, based on biofilm diatom community.

March October
Index Ref. * Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

IPS 19.6 17.2 17.8 16.6 12.8 17.4 11.4
TI 1.2 1.8 1.5 1.8 2.48 1.8 2.83

RQE_IPS 0.8776 0.9082 0.8469 0.6531 0.8878 0.5816
RQE_TI 0.7857 0.8929 0.7857 0.5429 0.7857 0.4179

ICMi 0.8316 0.9005 0.8163 0.5980 0.8367 0.4997
Ecological Quality high High high moderate high poor

* Ref: reference value attributed to the rivers belonging to the “Alpine siliceous macrotype”.

3.1.2. Biofilm Taxonomic Identification of Non-Diatom Algal Community

Algae taxa composition of non-diatom community was obtained by microscope evalu-
ation of samples collected at the three sites studied in March and October. A total of 46 taxa
of the non-diatom algal community were identified, mainly formed by Cyanobacteria and
Chlorophyta at the sampled stations. Cyanobacteria were well represented by chroocco-
cales and filamentous genera. The most abundant group found was the Cyanobacteria,
with 22 taxa and 14 genera, followed by Chlorophyta, with 20 taxa and 17 genera (Table S2).
The most representative species among Cyanobacteria was Aphanothece minutissima, found
in all sampling stations both in March and in October, together with Chamaesiphon and
Leptolyngbya genera. The chroococcalean species Bacularia cfr. gracilis was found only at
Site 2 in October. Chlorophyta sensu lato was dominant, with 10 orders mostly represented
by 6 genera of Sphaeropleales and 3 genera of Desmidiales and Ulotrichales.
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The green algae Pediastrum boryanum and desmidiales Closterium dianae and
Tetraselmis cordiformis were found only at Site 2 in October 2019. Chryptophyceae, Xantho-
phyceae, Euglenophyceae, and Chrysophyta were represented by one taxon each. Site 2
was the richest with 28 species in March and 26 in October, followed by Site 3 with 16
species in March, Site 1, and Site 3 both with 12, respectively, in March and October, while
Site 1 resulted in the poorest in species with 10 in October. The Amoebozoa represented by
Galeripora discoides and Euglypha crenulate species were found at site 1 in October. Figure 2
reports the total number of taxa observed in each sample site in March and October; the
full list of the identified taxa is reported in Table S2.
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3.2. Quantification of Carotenoids and Chlorophyll in the Biofilm

The spectrophotometric quantifications of the chlorophylls, their degradation products,
the pheophytin, and carotenoids of the biofilm are shown in Figure 3. In March, the
environmental conditions, temperature, light and nutrients in the Toce River develop the
optimal conditions for the diatoms (fucoxanthin), pioneer organisms, as evidenced in
Figure 3. The total content of pigments (chlorophyll and carotenoid) in the biofilm at the
three sites was very similar, and the only difference was that site 2 showed less pheophytin,
the first product of chlorophyll degradation, which means lesser cellular degradation, or a
higher cellular turnover. In October, the production of the pigments was much lower, lesser
than in March; the behavior was typically in a pre-alpine area, where the water temperature
and especially the active photosynthetic irradiance decreased.

HPLC characterization allowed carotenoid molecule identification in the biofilms
(Figure 4). The carotenoids are useful bioindicators of algal taxa [37,41]. Fucoxanthin
dominate all samples in March and October in all sites, as confirmed by the microscope
identification; diatoms were the principal phytobentonic organisms in the biofilm, which
represents a good ecological quality in the mountain streams in March, Table 2. In March,
the Site 2 (Bosco Tenso) biofilm was rich in ketocarotenoids, zeaxanthin and echinenone
(carotenoids of cyanobacteria), lutein and violaxanthin (carotenoids of chlorophytes), and
alloxanthin (carotenoid of cryptophytes), confirmed also by non-diatom taxa identification
(Figure 2). In October, at Site 2, lutein (chlorophytes) and ketocarotenoids (cyanobacteria)
were in competition with diatoms. In October, at site 3, an increase in lutein (chlorophytes)
and ketocarotenoids and zeaxanthin (cyanobacteria) was observed.
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3.3. Quantification of Metals and Macroions in the Biofilm
3.3.1. ICP-MS Quantification in Biofilm Samples

Macroelements measured in the biofilms were in the range of g kg−1 in March and
in October at the three sites (Figure 5). In October, the amount of aluminum and iron was
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higher than in March, but with the same trend, it means that the water transported more
elements. The behavior of the microelements was different. In March, chromium, nickel,
and copper were higher at Site 1 than at Site 2 and Site 3. In October, the behavior changed
and the total amount of microelements increased, but the amount of nickel increased at
Site 2 and that of chromium at Site 3. Arsenic and lead were present but almost constant in
March and in October. Barium, manganese, and zinc showed the same behavior in March
and in October in the three sites.
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3.3.2. Hg in the Biofilm

Total Hg measured in the biofilm ranged from 50 ngg−1 to 200 ngg−1 dry weight
(Figure 6). Site 1 was located upstream of the industrial site of the chlor-alkali plant, but
as evidenced in a previous paper on the dispersion of Hg in Ossola Valley [17], Hg can
be transported by the wind also to the north, and from the Toce River to the south. The
complex equilibrium of Hg in the different environmental compartments (air, water, and
soil) leads to a distribution and deposition everywhere, even far from the primary sources
of pollution.
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4. Discussion

Data reported in this preliminary work are intended to present a case study, to support
the evidence and the importance of investigating the role of biofilm as an additional
bioindicator. Even if diatoms are the dominant species in the phytobentonic component,
the three sites show significant differences that are particularly evident in the month of
October. Site 2, Bosco Tenso, in March and October presents a peculiar behavior, high
ecological quality of diatoms, and higher biodiversity within the algal community as shown
by a more diverse carotenoid composition, compared to Site 1 and Site 3. At the same
time, biofilm showed higher Hg content in March, while a higher concentration of nickel,
chromium, aluminum, and iron was shown in October, being located downstream of the
polluted industrial area. Relatively higher Hg concentration might be responsible for the
accumulation of ketocarotenoid at this site. Diatoms [5,42] and cyanobacteria [43,44] can
produce, with metals, or higher ions molecules EPS, a useful protection system that allows
bacteria to adapt more easily to environmental changes. This external matrix protects
organisms by binding water, and with electrostatic interactions, binding metals, macroions,
and nutrients, which are used by different organisms when needed or left outside the cells
without damage from oxidative stress [1].

This study also evidenced the relevance of studying the biofilm not only for the
identification of the taxa present but also as a bioindicator of accumulation of metals and
macroions in water. In the case of the Toce River, significant concentrations of some microele-
ments may be expected because of the presence in the watershed of mafic–ultramafic
rocks rich in nickel and chromium [45] and arsenopyrite rich in arsenic [8]. However,
biofilm analysis can be used as an effects approach to assess the bioavailability of these
metals for the aquatic biota. Biofilm could also be useful in studying the accumulation
of PFASs and other emerging contaminants or microplastics, as reported by the recent
literature [6,46]. Pollutants dispersed in water, soil, and air aerosol that fall back into the
water and are transported by the stream can be trapped into the polymeric matrix of the
biofilm: measuring them can help us to improve our knowledge of their environmental
dispersion.

5. Conclusions

Results reported in this preliminary case study on the Toce River evidence the strong
seasonal pattern of metals’ and macroions’ distribution in water and highlight the im-
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portance of investigating the role of biofilm as an additional bioindicator to enhance the
water quality monitoring program in the river. A more detailed monitoring plan, based
on monthly analysis, would clarify the distribution pattern of pollutants in the area and
improve our knowledge of the adaptive responses of primary producers in the biofilm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10120791/s1, Method M1: Quantification of carotenoids
and chlorophylls in biofilm; Table S1: List of diatomic species; Table S2: List of non-diatom taxa.
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