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Abstract: This work comprehensively investigated the constituents, sources, and associated health
risks of ambient volatile organic compounds (VOCs) sampled during the autumn of 2020 in urban
Nanjing, a megacity in the densely populated Yangtze River Delta region in China. The total VOC
(TVOC, sum of 108 species) concentration was determined to be 29.04 ± 14.89 ppb, and it was
consisted of alkanes (36.9%), oxygenated VOCs (19.9%), halogens (19.1%), aromatics (9.9%), alkenes
(8.9%), alkynes (4.9%), and others (0.4%). The mean TVOC/NOx (ppbC/ppbv) ratio was only 3.32,
indicating the ozone control is overall VOC-limited. In terms of the ozone formation potential
(OFP), however, the largest contributor became aromatics (41.9%), followed by alkenes (27.6%),
and alkanes (16.9%); aromatics were also the dominant species in secondary organic aerosol (SOA)
formation, indicative of the critical importance of aromatics reduction to the coordinated control of
ozone and fine particulate matter (PM2.5). Mass ratios of ethylbenzene/xylene (E/X), isopentane/n-
−pentane (I/N), and toluene/benzene (T/B) ratios all pointed to the significant influence of traffic
on VOCs. Positive matrix factorization (PMF) revealed five sources showing that traffic was the
largest contributor (29.2%), particularly in the morning. A biogenic source, however, became the most
important source in the afternoon (31.3%). The calculated noncarcinogenic risk (NCR) and lifetime
carcinogenic risk (LCR) of the VOCs were low, but four species, acrolein, benzene, 1,2-dichloroethane,
and 1,2-dibromoethane, were found to possess risks exceeding the thresholds. Furthermore, we
conducted a multilinear regression to apportion the health risks to the PMF-resolved sources. Results
show that the biogenic source instead of traffic became the most prominent contributor to the TVOC
NCR and its contribution in the afternoon even outpaced the sum of all other sources. In summary,
our analysis reveals the priority of controls of aromatics and traffic/industrial emissions to the
efficient coreduction of O3 and PM2.5; our analysis also underscores that biogenic emissions should
be paid special attention if considering the direct health risks of VOCs.

Keywords: aromatics; positive matrix factorization; health risks; ozone formation potential;
biogenic source

1. Introduction

Volatile organic compounds (VOC) are an important group of compounds that can
greatly affect air quality and human health. Although on a global scale, VOC emissions
are dominated by natural/biogenic sources. In an urban region, anthropogenic sources
(such as fossil fuel combustion, biomass burning, chemical processing, solvent use, etc.)
are often more important [1]. High concentrations of total VOCs (TVOCs) have been
observed in several megacities in China, such as Beijing (89.29 ppb) [2], Shijiazhuang
(121.4 ppb) [3], Shanghai (94.14 ppb) [4], Guangzhou (129.2 ppb) [5], and Chengdu
(108.45 ppb) [6]. Stringent VOC emission control is currently a priority of air pollution reme-
diation measures imposed by the Chinese government, largely since VOCs are important
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precursors of both secondary fine particulate matter (PM2.5) and ozone—the two major pol-
lutants that lead to haze and photochemical smog, respectively. Especially, in general, VOCs
can participate in complex photochemical reactions and production of free radicals, which
promote the circulation of NOx and lead to the generation of tropospheric ozone [7]. Ozone
itself is also a greenhouse gas, so a rise in ground-level ozone concentration contributes
to global warming [8]. At the same time, since plants mainly absorb tropospheric ozone
through leaf stomata, the increase in ozone concentration can oxidize chlorophyll cells
and damage plant photosynthesis, affecting plant health [9,10]. Ozone can cause adverse
effects on the respiratory system, inducing breathing difficulties, airway inflammation [8],
asthma, emphysema, and chronic bronchitis [11,12]. Among the VOCs, alkanes, alkenes,
and aromatics are typically abundant VOC types in ambient air in China [13–16], yet the
contributions of different VOCs to ozone or secondary organic aerosol (SOA) formations
do not necessarily correspond to their relative abundances but are dependent upon their
reactivities. For example, aromatics are often not the dominant VOC type in terms of mass
concentration but might be dominant in ozone formation; similarly, aromatics, like toluene,
benzene, ethylbenzene, etc., can play an important role in SOA formation as well, despite
their low mass loadings [17–20].

Some VOCs are a great concern directly to human health. For instance, certain alde-
hydes, ketones, and amines can cause serious irritation to human respiratory mucosa,
eyes, and skin; long-term exposure to these VOCs can cause cancer and deformities, and
even endanger lives [21–24]. To be specific, formaldehyde is an important allergen in
ambient air, which can aggravate breathing difficulties and induce bronchial hypersen-
sitivity, regardless of whether there is a long-term smoking habit [25]. Health effects of
acetaldehyde include irritation of the skin, eyes, and mucous membranes, causing vomiting,
headache, and cancer risk [26,27]. Ketones, such as acetone, can cause acute poisoning
of the human body, fatigue, nausea, headache, and eye irritation; repeated contacts with
the skin can lead to degreasing and dermatitis [28]. Another chemical, 2-butanone, can
cause neurological symptoms (headaches, fatigue, and feelings of intoxication) in humans,
irritating the eyes, nose, and mucous membranes; renal congestion, mild renal necrosis,
and organ weight gain have been observed in laboratory animal studies [29]. Amines, such
as dimethylnitrosamine, dimethylnitrosamine, and acrylamide are possible strong carcino-
gens to humans [30]. Moreover, many VOCs have odorous properties, such as ethylamine,
trimethylamine, formaldehyde, styrene, and mercaptans [31,32]. The odor of some VOCs is
unpleasant and has a negative effect on people’s quality of life, in particular, the residents
of nearby emission sources [33]. The discomfort of the human body, attributed to odorous
gases, can lead to inefficient labor and damage to health, making people irritable, and
unfocused, and causing lowered judgment and reduced memory, etc. [34,35].

This work aims to elucidate the composition, sources, and health risks associated with
ambient VOCs in a representative densely populated city (Nanjing, in the Yangtze River
Delta region, China). Importantly, we quantify the source-specific health risks of VOCs
by linking the source profiles resolved from positive matrix factorization (PMF) with their
estimated carcinogenic and noncarcinogenic risks. Our findings are valuable for effective
VOCs control and the reduction of their health hazards in the future.

2. Experimental Methods
2.1. Sampling Site, Instrumentation, and Chemical Analysis

The sampling site was located in the Jiangning District of urban Nanjing, China
(118.818161◦ E, 31.917282◦ N) (Figure 1a), and VOC samples were acquired in the open
space on the rooftop of a 10-story building (~35 m above the ground). The site was
close to the arterial roads in the west and north (~250 m away, with high traffic flows),
and was surrounded by residential buildings, office buildings, industrial plants, and
schools. This site thus represents a typical urban environment with VOCs released from
multiple anthropogenic sources such as traffic, industrial, and residential activities. To
better understand the impact of possible industrial emissions, we marked the locations of
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nearby factories in Figure 1b. These factories include electronics, machinery manufacturing
and maintenance, plastic processing, printing, and painting, and the majority of them were
located in the east/northeast of the site.
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Figure 1. (a) Location of the sampling site (red dot) and its surroundings (red lines denote two
arterial roads); (b) Spatial distribution of industrial plants (colored by different types) around the site
(black star).

The sampling period was from 11 October to 12 November 2020. The VOCs were
sampled twice a day at ~9:00 a.m. and ~3:00 p.m. respectively, each lasting for one hour,
by using SUMMA canisters (6.0 L, Entech Instruments Inc., Simi Vally, CA, USA), and a
total of 60 valid samples were obtained. Before sampling, the canisters were cleaned by a
canister cleaner (3100D, Entech Instruments Inc., Simi Vally, CA, USA) at least 3 times and
then were pumped to vacuum (<50 mtorr) before use. The sampled VOCs were enriched
by a preconcentrator (7200, Entech Instruments Inc., Simi Vally, CA, USA) using the ECTD
(Extended Cold Trap Dehydration) technology to remove interferences from water and
carbon dioxide. The VOCs were then analyzed by a gas chromatography mass spectrom-
eter (GC-MS, 7890B/5977A, Agilent Technologies, Inc., Boulder, CO, USA) [36]. In total,
108 compounds were measured, including 30 alkanes, 34 halogens, 17 aromatics, 13 alkenes,
12 oxygenated volatile organic compounds (OVOCs), 1 alkyne, and 1 other compound.

The quality control and quality assurance of GC-MS mainly include the multipoint cali-
bration (using PMAS and TO-15 mixed standard gases, Sigma-Aldrich, St. Louis, MO, USA),
single-point calibration, and mass spectrometric tuning (using 4−bromofluorobenzene
(BFB) 1 µL (50 ng)). The procedure of the multipoint calibration was as follows: the stan-
dard gas was diluted to a 10 nmol/mol working standard by using a dynamic dilution
apparatus (4600D, Entech Instruments Inc., Simi Vally, CA, USA); a univariate linear re-
gression was used to create the calibration curve by inputting results from six standards
(20 mL, 50 mL, 100 mL, 200 mL, 400 mL, and 600 mL), and the correlation coefficients (r2) of
the regressions for all compounds were assured to be >0.99, with a response factor relative
standard deviation (RF RSD) of 6.1~26.8%. The detection limits of 108 VOCs ranged from
0.002 ppb to 0.050 ppb.

Concentrations of other pollutants including O3 (Model 49i, Thermo Fisher, Waltham,
MA, USA), NOx (Model 42i, Thermo Fisher, Waltham, MA, USA ), CO (Model 48i, Thermo
Fisher, Waltham, MA, USA), SO2 (Model 43i, Thermo Fisher, Waltham, MA, USA), and
PM2.5 (XHQ500C, XianHe Co. Ltd., Shijiazhuang, China), and the meteorological data
(XHPM200E, XianHe Co. Ltd., Shijiazhuang, China) including temperature, relative hu-
midity, wind speed, wind direction, and PM2.5 were all obtained from the nearby national
environmental monitoring station (~50 m away).
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2.2. Data Analysis
2.2.1. Source Apportionment

PMF is a powerful and widely used tool to resolve distinct sources of pollutants based
on measured data without prior information regarding the source profiles [37–39]. This
study used the US EPA (Environmental Protection Agency) PMF 5.0 software kit [40–43]
for source apportionment of VOCs. The PMF algorithm decomposes the measured data
matrix into the product of two matrices (factor profiles and time series of the factors’
concentrations) plus a residual matrix. One advantage of PMF is that it carefully weighs
the measurement uncertainties, making its solution robust, meaningful, and reliable. In
this work, the uncertainty of a measured VOC was calculated by Equation (1):

Unc =

√
(Error Fraction × C)2 + (0.5 × MDL)2 (1)

where Error Fraction is chosen as 0.1 here, C is the concentration of a VOC (in ppb), and
MDL is the method detection limit of that VOC. Measured data below the MDL were
replaced by 1/2 MDL and corresponding uncertainties were set to 5/6 MDL. Some missing
data were substituted by the geometric mean of its neighborhood measured values with
an uncertainty of 4 times the uncertainty of the measured values. The data were then
classified into three categories according to their signal-to-noise (uncertainty) (S/N) ratios.
The data points with S/N ratio < 0.2 were classified as “bad” and were discarded; data
with S/N ratios of 0.2–2 were treated as “weak” and were down weighted by increasing
the corresponding uncertainties by three times; those with S/N ratios > 2 were regarded as
“strong” and were directly used in PMF analysis.

In addition, we also took into account the species which are recognized as specific
source markers. After the pretreatment, 35 VOCs were chosen, including 11 alkanes,
4 alkenes, 1 alkyne, 5 halogens, 8 aromatics, and 6 OVOCs. The PMF solutions were
considerably evaluated by exploring different numbers of factors, rotational ambiguity, and
bootstrapping (100 runs) for an estimation of the uncertainty of the solution, following the
standard protocol in the EPA PMF 5.0 operation manual. Finally, we selected the 5-factor
solution as the best result (see details in Section 3.3.2).

2.2.2. Calculation of Ozone Formation Potential (OFP) and Secondary Organic Aerosol
Formation Potential (SOAFP)

VOC reactivity is critical to the formation of ozone and SOA. A number of studies
focused on the mechanisms of ozone formation [44,45] and proposed different approaches
to quantify the OFPs of VOCs [46–48]. A widely used and simplified method is described
by Equation (2) [49]:

OFPi = [VOCi]× MIRi (2)

where OFPi (in µg/m3) refers to the OFP of VOCi; VOCi (in µg/m3) refers to the measured
concentration of VOCi, and MIRi is the value of maximum increment reactivity of VOCi. In
this study, the VOCs’ MIR values were adopted from those documented in Carter [50], and
are available for most VOCs (93 out of 108).

Similar to OFP, SOAFP quantifies the ability of a VOC to generate SOA [51–53], which
is shown in the following equation (details in Hui et al. [54]):

SOAFPi = [VOCi]× SOAPi (3)

where SOAFPi (µg/m3) is the SOAFP of VOCi, and SOAPi refers to the coefficient of
VOCi to form SOA. The SOAPi values used here were from Derwent et al. [55]. The
values are only available for 31 VOCs. Although the SOA formation depends on various
environmental factors, the use of SOAPi allows reasonable estimations of contributions
of individual precursors to SOA formation and demonstrates the relative importance of
these precursors [56].
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2.2.3. Health Risk Assessment

We performed a quantitative health risk assessment on the VOCs by using the method
recommended by the US EPA and the Exposure Factor Handbook of Chinese Population
(US EPA, 1989; Ministry of Ecology and Environment of China, 2013), which have been
widely used previously [57–59]. There are two health risk indicators: Lifetime carcinogenic
risk (LCR) and noncarcinogenic risk (NCR). The calculation equations for a certain VOC
are listed below:

EC =
(CA × ET × EF × ED)

AT
(4)

LCR = IUR × EC (5)

NCR =
EC

(RfC × 1000)
(6)

HI = ∑ HQi (7)

Here, EC is the exposure concentration (in µg/m3); CA is the ambient (measured) con-
centration (in µg/m3); ET is the exposure time (hours/day); EF is the exposure frequency
(days/year); ED is the years of exposure (years), and AT is the average time (hours). In
this study, EF is 365 d/year from the US EPA Integrated Risk Information System (IRIS),
ET is 3.7 h/day, ED is 74.8 years, and AT is therefore 74.8 × 365 × 24 h, all from the
Exposure Factor Handbook of Chinese Population (Adult) based on Ministry of Ecology
and Environment of China. IUR is the inhalation unit risk (in m3/µg), RfC is the reference
concentration (in mg/m3). The IUR and RfC values of different species were obtained from
the risk assessment information system (RAIS) developed by the University of Tennessee.
The values are compiled in Table S1 in the Supplementary Materials. We were able to
calculate LCR for 16 VOCs and NCR for 39 VOCs.

3. Results and Discussion
3.1. Overview of Air Pollutants and Meteorological Conditions

The time series of CO, NOx (NO and NO2), PM2.5, SO2, O3, different groups of
VOCs, and the meteorological parameters during the campaign are shown in Figure 2.
The wind was prevailing from the east and southeast (Figure S1). The average wind
speed was relatively low at 1.60 ± 0.81 m/s (±one standard deviation, same hereafter).
The RH level was moderate with a mean of 56.46 ± 15.62%, and the mean temperature
was 17.38 ± 2.89 ◦C. For PM2.5, over half of the days met with the Grade I of Chinese
ambient air quality standard (CAAQS-I) (<35 µg/m3), and the average mass loading was
32.21 ± 16.62 µg/m3. For the diurnal pattern, PM2.5 concentration was relatively low
during the 10:00 a.m.–6:00 p.m. range (except the peak at 9:00 a.m. likely owing to traffic
emissions), corresponding to atmospheric conditions that favor diffusion and evaporation
(higher temperature, lower RH, stronger wind as shown in Figure S2) [60,61]. O3 was the
opposite, relatively high during the daytime (8:00 a.m.–6:00 p.m.) (Figure S2). NOx and
CO peaked during the morning rush hours (6:00–9:00 a.m.) clearly as a result of enhanced
traffic activities, and then decreased, likely due to their consumptions for O3 production
and atmospheric dilution.

3.2. Chemical Characteristics of VOCs
3.2.1. Mass Concentration and Composition

During the campaign, the TVOC concentrations (sum of 108 species) ranged from
9.96 to 81.97 ppb (Figure 2), with an average of 29.04 ± 14.89 ppb. We further presented
the results in the morning and afternoon, respectively, in Figure 3a. The highest TVOC
concentration (81.97 ppb) appeared on the morning of 26 October, which was approximately
eight times the lowest one (9.97 ppb) on the afternoon of 3 November. In general, the
VOC level in the morning was significantly higher than that in the afternoon (on average
35.84 ppb vs. 22.24 ppb). This is in fact a common feature of ambient VOCs with a few
possibilities: One reason is due to enhanced VOC emissions in the morning from sources
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such as traffic, etc.; another reason is that low temperature, low wind speed and low
planetary boundary layer (PBL) height in the morning exacerbate the accumulation of
emitted VOCs. Finally, but importantly, strong solar radiation in the afternoon can lead to
strong photochemical loss of VOCs, therefore decreasing its ambient level [62].
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As shown in Figure 3b, on a mass average, the TVOC was consisted of 36.93% alkanes,
19.89% OVOCs, 19.06% halogens, 9.85% aromatics, and other minor species (8.90% alkenes,
4.95% alkyne, etc.). Compared with a previous study in Nanjing [19], alkanes remain the
most abundant VOCs, followed by OVOCs and halogens. In detail, the average concen-
trations of alkanes, alkenes, alkyne, aromatics, halogens, OVOCs, and other compounds
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were 10.72 ± 5.27 ppb, 2.58 ± 2.55 ppb, 1.43 ± 0.74 ppb, 2.86 ± 2.43 ppb, 5.53 ± 3.14 ppb,
5.77 ± 3.58 ppb, and 0.12 ± 0.16 ppb, respectively (Figure 3c). The concentrations of alka-
nes, alkenes, and aromatics were generally lower than earlier results in Nanjing [42,43,63].
Compared to a previous study conducted in a similar period in Nanjing [64], the TVOC
concentration is about half. Compared with results in other major cities in China (selected
studies that cover the five economically developed city clusters in China, as shown in
Table S2), the TVOC level here was also at a lower end, close to those in Guangzhou,
Wuhan and Liangyungang, but much lower than those in Shanghai, Beijing, and Chengdu.
Note the differences might be largely due to coverage of VOCs, sampling times, and envi-
ronments (urban or suburban). Nevertheless, this work covered a relatively wide range
of VOCs, therefore a low VOCs level indicates an improvement in VOC pollution in the
Yangtze River Delta region. Regarding the different VOC types, in most cases (Table S2),
alkanes were the most abundant one, with significant contributions from aromatics and
alkenes, similar across different cities.

3.2.2. Relationship with NOx

As is well known, O3 formation responds to VOCs and NOx levels nonlinearly, and
the VOCs/NOx ratio is critical to O3 control [65,66]. As already shown in Figure S2, NOx
concentration peaked in the morning due to elevated traffic activities, gradually went
down, and reached a minimum at ~2:00 p.m.; on the other hand, the diurnal trend of O3
was nearly opposite to that of NOx. Next, we showed the scatter plot of TVOCs versus NOx
in Figure 4a. VOCs and NOx concentrations correlated tightly with an r2 of 0.70, and high
O3 concentrations were typically accompanied by both low NOx and VOCs concentrations,
indicating clearly that the co-consumption of NOx and VOCs led to O3 generation. The
slope of TVOC versus NOx was only 3.32. Such a low VOCs/NOx (ppbC/ppbv) ratio
(much less than 8 [66]) means that O3 control is VOC-limited rather than NOx-limited. This
result agrees with another study in Nanjing [67]. Thus, the reduction of VOC emissions
should be more effective than NOx reduction in this region to O3 abatement.
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Furthermore, we calculated the VOCs/NOx ratios in the morning and afternoon,
respectively, in Figure 4b. As expected, the average value in the morning (3.31) was lower
than in the afternoon (average 4.11); but both values were still far below eight, meaning that
the consumption of NOx does not alter the O3 control regime. There was only one value
larger than eight, in the afternoon of 23 October, which was accompanied by extremely
low NOx (average 1.84 ppb), relatively high VOCs (32.84 ppbC), and O3 concentrations
(average 88.00 µg/m3).
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3.3. Contributions of VOCs to Ozone and SOA Formations
3.3.1. Contributions to OFP

The average total OFP of all samples was calculated to be 140.27 ± 3.81 µg/m3.
Compared with results from other major cities in China, it is close to those in Changzhi
(145.80 µg/m3) [68], and Zhengzhou (183.00 µg/m3) [57], much lower than those in Shang-
hai (249.70 µg/m3) [69], Chuzhou (273.25 µg/m3) [51], Guangzhou (800.00 µg/m3) [70],
and much higher than those in Huaian (97.35 µg/m3) [51] and Chengdu (74.50 µg/m3) [71].
Figure 5a further shows the time series of calculated OFP during morning and afternoon
respectively. The largest OFP of 479.59 µg/m3 was on the morning of 26 October, and
the lowest one was 35.30 µg/m3 on the afternoon of 3 November. On average, OFP in
the morning (190.19 ± 111.92 µg/m3) was more than two times that in the afternoon
(90.36 ± 50.59 µg/m3); as a comparison, the average TVOC concentration in the morning
was 1.6 times that in the afternoon.
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Figure 5b illustrates the top ten VOCs in terms of OFP. Ethylene, m/p xylene, and
toluene had large OFP values of 20.67 µg/m3, 20.46 µg/m3, and 15.33 µg/m3, respectively.
Note their mass contributions to TVOC were only 2.6%, 3.1%, and 4.5%, but contribu-
tions to total OFP were 14.7%, 14.6%, and 10.9%, respectively. The three species are in
fact frequently reported to be the ones with the largest OFP in many other regions of
China. Other compounds in Figure 5b were propylene, o-xylene, ethyl acetate, ethylben-
zene, isopentane, propane, and n-butane with OFP values of 11.12 µg/m3, 7.17 µg/m3,
3.83 µg/m3 3.80 µg/m3, 3.64 µg/m3, 3.18 µg/m3, and 3.15 µg/m3, and contributions of
7.9%, 5.1%, 2.7%, 2.7%, 2.6%, 2.3%, and 2.2%, respectively. Specifically, propane was the
single most abundant species (7.61%) in terms of mass, yet its contribution to OFP was
much lower (2.27%) due to its small MIR value. Overall, these ten VOCs accounted for
34.78% of the TVOC concentration but occupied 65.84% of the TVOC OFP. Regarding VOC
categories, as shown in Figure 5c, aromatics accounted for the largest portion (41.9%) of
OFP, followed by alkenes (27.6%) and alkanes (16.9%). This is contrasting to their mass
contributions (Figure 3c), where aromatics, alkenes, and alkanes accounted for 9.9%, 8.9%,
and 36.9% of TVOC, respectively. These findings collectively suggest the priority of VOC
control to ozone formation should focus on the top ten species in Figure 5b as well as
the aromatics.

3.3.2. Contributions to SOAFP

Similar to OFP, we also calculated the SOAFP of different VOCs. The top ten species of
SOAFP are presented in Figure 6a, namely, toluene (383.33 ± 358.16 µg/m3),
benzene (159.87 ± 107.00 µg/m3), ethylbenzene (139.59 ± 141.78 µg/m3), styrene
(94.95 ± 113.12 µg/m3), o-xylene (89.61 ± 96.04 µg/m3), dodecane (31.47 ± 36.77 µg/m3),
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m-ethyltoluene (19.86 ± 17.07 µg/m3), o-ethyltoluene (11.56 ± 10.13 µg/m3), p-ethyltoluene
(11.12 ± 12.04 µg/m3), and 1,2,4-trimethylbenzene (5.54 ± 4.95 µg/m3). The average to-
tal SOAFP was 976.96 ± 69.91 µg/m3, higher than those in Beijing (767.40 µg/m3) and
Xuchang (860.00 µg/m3) [72], much lower than that in Wuhan (1661–4542 µg/m3) [54], and
close to that in Chengdu (>930.00 µg/m3) [73]. Similar to that of OFP, the mean SOAFP
value was also notably higher in the morning than in the afternoon (1333.55 ± 898.63 vs.
620.37 ± 393.26 µg/m3).
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The largest SOAFP contributor was toluene (39.24%), though its mass contribution to
TVOC was only 4.49%. The mass concentration of the top ten species occupied only 11.53%
of TVOC mass, but their contribution to SOAFP was 96.36%. It should be noted that the
available SOAPi values are quite limited (only 31 compounds) compared to available MIR
values (93 compounds). Among the 31 species, most of them are aromatic compounds,
thereby the contribution to total SOAFP was overwhelmingly dominated by aromatics
(94.34%), while contributions from other VOC types were very minor (4.43% from alkenes,
0.88% from alkanes, and 0.32% from OVOCs). Nevertheless, despite this limitation and
uncertainty, this result points out the effectiveness of the control of aromatics to PM2.5
reduction (by reducing SOA formation). Together with the results in Figure 6b, our analysis
reveals that aromatics are the common key species to the coordinated control of both PM2.5
and O3.

3.4. Sources of VOCs
3.4.1. Diagnostic Ratios

The mass ratios of some specific VOCs can act as indicators of specific sources of
VOCs. These diagnostic ratios include ethylbenzene/xylene (E/X), isopentane/n-pentane
(I/N), and toluene/benzene (T/B) ratios. The E/X ratio can indicate photochemical age,
as ethylbenzene and xylene have the same origin, yet the reaction rate constant of xylene
against hydroxyl radical is three times that of ethylbenzene [74]. Therefore, a high E/X
ratio would signify a high aging degree as the photochemical loss of xylene is much
faster than that of ethylbenzene under the same conditions. Here, the E/X ratio was only
0.58 ± 0.17 (ppb/ppb). Compared with the value of 1.28 ± 0.36 on polluted days and
1.20 ± 0.21 on clean days in Wuhan [54], our result demonstrates the observed VOCs were
relatively fresh and thus closely linked with local emissions.

Since reaction rate constants of isopentane and n-pentane against the hydroxyl radical
are close [75], and they are often coemitted, the I/N ratios determined directly from different
sources are therefore used to infer these sources for ambient VOCs [76], such as natural
gas (0.82–0.89), liquefied petroleum gas (2.2–3.8), automobile emissions (1.5–3.0), and
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liquid gasoline and fuel volatilization (1.8–4.6) [76,77]. The I/N ratio was measured to be
1.50 ± 0.30 (ppb/ppb) in this study, indicating that VOCs in this site were heavily influenced
by automobile (traffic) emissions. The T/B ratio can be used to probe the influence of traffic
emissions also; generally, a T/B ratio of less than two means a significant influence from
traffic, and a larger value would imply less traffic and more influence from other sources.
For instance, a previous study shows that the T/B ratio is about 10 if the air is in the
vicinity of strong industrial emissions [78]. The T/B ratio was only 2.02 ± 1.49 (ppb/ppb)
in this study, suggesting again the large impact from traffic, similar to an earlier study that
reports a T/B ratio of 1.5~3.0 in the VOCs affected by urban traffic [79]. Schauer et al. [80]
report a T/B ratio of 1.79 for emissions directly from a gasoline vehicle bench test (and
a tolune/ethylbenzene ratio of 5.10, compared to that of 3.67 ± 1.41 in this study). In
summary, both I/N and T/B ratios demonstrates that the ambient VOCs in the site were
greatly affected by traffic emissions.

3.4.2. Source Apportionment

The PMF analysis separated five VOCs sources, and their profiles are illustrated in
Figure 7. The first factor contained relatively high fractions of ethane, ethylene, propane,
propylene, acetylene, etc. Acetylene is often used as a tracer of automobile exhaust, C3-C5
alkenes, and alkanes are also abundant in traffic emissions as a result of the incomplete
combustion of gasoline/diesel [81,82]. Therefore, this factor is clearly associated with
traffic. The second factor was significantly rich in 2-methylpentane, 3-methylpentane,
methyl tert-butyl ether, and n-hexane, with contributions of 31.61%, 41.05%, 51.19%, and
45.15% to their total concentrations, respectively. The chemicals 2-methylpentane and
3-methylpentane are closely related to gasoline evaporation [83]. Methyl tert-butyl ether
is a known gasoline additive, working as an antiknock additive, and is often regarded as
a marker of gasoline-related emissions [39]. Other species from oil/gasoline, including
isopentane, n-pentane [84], styrene, and trimethylbenzene [85], were present in this factor
as well. The factor is thus denoted as oil/gas evaporation.
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Major species in the third factor were benzene, isopropyl alcohol, and ethyl acetate,
and numerous researchers have shown that paints and solvents can emit large amounts
of these aromatics [86–90]. Moreover, isopropyl alcohol and ethyl acetate are common
organic solvents [91], while contributions of this factor to these two species (69.94% and
59.09%) were much higher than in other factors, thus the third factor was very likely from
solvent use. Contributions of isoprene, acetone, acrolein, some aldehydes, and ketones
from the fourth factor were particularly high. Since isoprene is a well-known tracer of
biogenic emissions, and acetone can be emitted from plants too [92,93], this factor was
indicative of a biogenic (natural) source. For the last factor, the most plentiful compound
was chloromethane (contributing 71.65% to the species), which occupied 21.92% mass of the
factor. Meanwhile, contributions from this factor to dichloromethane and trichloromethane
were also significant, reaching 19.80% and 22.60%, respectively. These compounds are
commonly found in industrial solvents and raw materials [94]. In light of the number of
plants (such as plastic processing) located near the sampling site, this factor was denoted
as industry.

As shown in Figure 8, the average mass contributions of traffic, oil/gas evaporation,
solvent use, biogenic source, and industry were 29.2%, 14.1%, 22.2%, 20.8%, and 13.7%,
respectively. Traffic and solvent use appeared to be the top two VOCs sources, which can
be explained by the nearby busy traffic activities as well as densely distributed plastic pro-
cessing/printing/packaging plants. VOCs from the other two sources, oil/gas evaporation,
and industry, were actually relevant with traffic and industrial activities too. In addition to
the anthropogenic sources, natural VOC emissions should not be ignored too. Compared
to Wuhan in 2021, the contribution of solvent use (22.2% vs. 11.6%) is significantly high,
whereas those of oil and gas evaporation (14.1% vs. 14.2%) and traffic (29.2% vs. 22.5%) are
at similar levels; Compared with that in Xinxiang in 2021, traffic contribution is relatively
high (29.2% vs. 14.0%), the industry contribution is lower (13.7% vs. 30.0%), and that
of solvent use is similar (22.2% vs. 25.0%). Compared to a previous study in Nanjing in
2018, contributions from traffic (29.2% vs. 23.0%), solvent use (22.2% vs. 12.0%), and oil
and gas evaporation (14.1% vs. 10.0%) were relatively high, and that of industry (13.7%
vs. 30.0%) was low [63,95,96]. This result suggests the necessity of the reinforcement of
stringent control of industrial emissions (such as the usage of new green solvents and new
technology) in addition to traffic emission control (such as the usage of electronic vehicles).
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The relative contributions of different sources in the morning and afternoon samples
are shown in Figure 8b,c. It is found that the roles of traffic and solvent use were more
significant in the morning than in the afternoon (31.1% vs. 23.2% for the traffic, 26.1% vs.
15.4% for the solvent use), while the biogenic source become the largest contributor in the
afternoon (33.3%) from the smallest one in the morning (12.7%).

3.5. Health Risks of VOCs
3.5.1. Calculations of LCR and NCR

Both LCR and NCR values were calculated for the measured VOCs. The recommended
safety thresholds of LCR and NCR are 1 × 10−6 and 1 for adults, respectively [57]. As
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shown in Figure 9, based on the campaign average concentrations, only one compound
(acrolein, 2.36), exceeded the NCR threshold, and only two compounds (benzene and
1,2-dichloroethane, 2.07 × 10−6 and 13.15 × 10−6) exceeded the LCR threshold. LCR values
of 1,2-dibromoethane, naphthalene, and 1,1,2-Trichloroethane for a few samples were above
the threshold. As shown in Table S2, compared with previous results in other cities such
as Langfang [97], Beijing [98], and Zhengzhou [57], the average NCR of VOCs (sum of all
calculated NCR divided by the number of calculated VOCs) in this study (2.69 × 10−5) was
a little higher than those in Langfang (2.54 × 10−5) and Beijing(1.58 × 10−5), but lower than
that in Zhengzhou (5.28 × 10−5), while the average LCR value (2.49) was lower than those
determined in these cities, except in Langfang (5.17). In particular, acrolein was found to
have a high NCR (1.60~4.90) in these cities as well due to its very strict RfC value.
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Although our calculation results demonstrate that the overall health risks of VOCs
were low, it should be noted that for a large portion of VOCs measured here, the IUR
or RfC values are lacking. Therefore, their health risks are not calculated, and thus are
unknown. Health risks of some certain species, including acrolein, 1,2-dichloroethane,
1,2-dibromoethane, benzene, naphthalene, and 1,1,2-Trichloroethane should be paid atten-
tion and targeted reduction of these species is needed.

3.5.2. Source-Specific Health Risks

In order to link the health risks of VOCs with their specific emission sources, we
performed a multilinear regression (MLR) between the calculated LCR or NCR and the
PMF-resolved factors. This PMF-MLR method worked poorly on TVOC LCR (r2 of
0.14 between reconstructed and calculated values) but quite well on TVOC NCR (r2 of
0.67 and can explain ~91.2% of total NCR). The TVOC NCR can then be reasonably sep-
arated into contributions of the five sources, e.g., 23.5% from traffic, 16.1% from oil/gas
evaporation, 3.1% from solvent use, 36.3% from biogenic source, 12.2% from industry and
8.8% from an unidentified source (denoted as other) (Figure 10). Notably, biogenic source
outweighed traffic, becoming the largest contributor to the TVOC NCR.
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Figure 11 shows the source contributions to NCR in the morning and afternoon
samples, respectively. It can be seen that the contributions varied greatly on different days,
indicating the complexity of the health risks of VOCs. On average, the NCR of morning
samples was mainly from traffic (30.3%), oil/gas evaporation (21.2%), and biogenic source
(21.2%). The contributions of afternoon samples were quite different and it was dominated
by biogenic emissions (51.4%), with much fewer contributions from traffic (16.6%) and
oil/gas evaporation (11.1%). The main reason may be because of the reduced traffic
activities and emissions from oil/gas evaporation in the afternoon. On the other hand, the
enhanced biogenic emissions due to increased temperatures and strong solar radiations
might elevate the emission ratios of biogenic VOCs from plants, etc. [99]. It is worth to
mention that the morning/afternoon difference in the contribution from biogenic sources
to TVOC NCR (51.4% vs. 21.2%) was much larger than its morning/afternoon difference of
mass contribution (33.3% vs. 12.7%), highlighting the importance of biogenic emissions to
the health risks of VOCs, in particular in the afternoon.
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In addition, we performed an MLR analysis on the compounds that exceeded the LCR
or NCR limits, including benzene, 1,2-dichloroethane, 1,2-dibromoethane, and acrolein
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(shown in Figure S3). The regression was not satisfied with 1,2-dibromoethane, with an r2 of
only 0.12 between its reconstructed and calculated LCR values. Therefore it was not further
discussed. The regressions of the other three compounds were good (r2 of 0.89, 0.94, and
0.79, respectively). The relative contributions of the five sources to the health risks of these
three species are thus presented in Figure 12. The LCR of benzene was mainly contributed
to by traffic (33.3%) and biogenic source (30.3%), while the LCR of 1,2-dichloroethane was
dominated by biogenic source (30.1%), traffic (25.4%), and solvent use (20.1%). Unlike
benzene and 1,2-dichloroethane, the MLR analysis of acrolein resolved an unexplained
portion of ~10%; aside from this unknown factor, the top two contributors were biogenic
source (35.9%) and traffic (23.6%).
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Figure 12. Relative contributions of the PMF-resolved sources to (a) LCR of benzene, (b) LCR of
1,2-dichloroethane, and (c) NCR of acrolein.

Similarly, the source contributions to LCR and NCR of the aforementioned three
species in morning and afternoon samples are shown in Figure S4. The contribution of
biogenic source for all three compounds was remarkably higher in the afternoon than
in the morning (44.4% vs. 16.2% for LCR of benzene, 44.6% vs. 15.7% for LCR of
1,2-dichloroethane, 50.8% vs. 21.1% for NCR of acrolein). For the morning samples,
contributions from traffic (33.9%) and oil/gas evaporation (23.9%) were remarkably high,
again underscoring the importance of vehicle-related activities to the LCR of benzene,
while solvent use should also be noted for the NCR of 1,2-dichloroethane (27.0%). This
result highlights the necessity of targeted control of anthropogenic sources including traffic,
oil/gas evaporation, and solvent use to the reduction of health risks of specific VOCs, while
control of natural biogenic emissions should also be considered.

4. Conclusions

In this study, ambient concentrations of 108 VOCs were determined in urban Nan-
jing during the autumn of 2020. The mean TVOC concentration was 29.04 ± 14.89 ppb,
which was relatively low compared with measurement results in other cities. The aver-
age concentration was much higher in the morning than in the afternoon (35.84 ppb vs.
22.24 ppb). Alkanes (36.9%), OVOCs (19.9%), and halogens (19.1%) were the three major
VOCs types. The VOCs/NOx (ppbC/ppbv) ratio was on average 3.31 in the morning and
4.11 in the afternoon, demonstrating that ozone control is VOC-limited throughout the day.
In contrast, aromatics became the most important VOC group in OFP (41.9%), as well as
in SOAFP (94.3%), strongly suggesting that a preference for aromatics control can benefit
both ozone and PM2.5 reductions.

Diagnostic ratios of E/X, I/N, and T/B all point to the large influence of traffic on
VOCs in this site. Further PMF analysis did separate five sources with traffic as the largest
contributor (29.2%); solvent use (22.2%), biogenic source (20.8%), oil/gas evaporation
(14.1%), and industry (13.7%) were the other four sources. Traffic and solvent use, how-
ever, were less important, and biogenic source instead became the largest contributor
(33.3%) in the afternoon. Moreover, we calculated the LCR and NCR of measured VOCs
and found that the overall health risks were low, except for a few compounds including
acrolein, benzene, 1,2-dichloroethane, and 1,2-dibromoethane. The PMF-MLR analysis
successfully apportioned the TVOC NCR to individual sources. It is interesting to find
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that a biogenic source rather than traffic became the most important source to the TVOCs’
NCR and its contribution to the afternoon samples dominated over the sum of all other
sources. In summary, our findings reveal the importance of controlling aromatics as well as
traffic/industrial emissions to the coordinated reduction of PM2.5 and O3. In addition, we
want to highlight that biogenic emissions should be paid attention to in the future when
considering the direct health risks of VOCs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics10120722/s1, Figure S1: Wind rose plot during the sampling period;
Figure S2: Diurnal patterns of the meteorological parameters and major air pollutants;
Figure S3: Scatter plots of calculated LCR/NCR values versus reconstructed values from PMF-MLR
analysis; Figure S4: Relative contributions of different sources to the LCR/NCR of compounds exceeding
thresholds; Table S1: The available parameters for NCR and LCR assessment of VOCs and the results of
this work, with selected results from other cities in China [57,97,98]; Table S2: Selected studies of VOCs
measurements in the five economically developed regions in China [13–16,41,54,73,88,93,100–104].
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