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Abstract: There is a growing need to establish alternative approaches for mixture safety assessment 
of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based ap-
proaches, and the lack of established methods for using whole mixtures, a promising alternative is 
to use sufficiently similar mixtures; although, an established framework is lacking. In this study, 
several approaches are explored to form sufficiently similar mixtures. Multiple data streams includ-
ing environmental concentrations and empirically and predicted toxicity data for cancer and non-
cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers 
were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was 
created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated 
to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Cre-
osote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combina-
tion approach incorporating toxicity and abundance. Hazard characterization of these mixtures was 
performed using high-throughput screening in primary normal human bronchial epithelium 
(NHBE) and zebrafish. Differences in chemical composition and potency were observed between 
mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture 
in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal 
approach due its ability to prioritize chemicals with high exposure and hazard potential. 

Keywords: mixtures; chemical prioritization; polycyclic aromatic hydrocarbons; sufficiently similar 
mixtures; mixtures safety assessment 
 

1. Introduction 
1.1. Complexity of Studying Environmental Mixtures 

Toxicological studies have traditionally focused on studying one chemical at a time; 
however, people are exposed to complex mixtures of chemicals [1,2]. The US EPA, NIEHS, 
and NRC have recognized the need to assess chemical mixture exposures [3]. The compo-
sition and concentrations of environmental mixtures are constantly changing resulting in 
an unknown number of unique environmental mixtures [4,5]. For example, a group of just 
20 different chemicals would result in more than 1 million possible chemical combina-
tions. To simplify complex environmental mixtures for hazard characterization, ap-
proaches to prioritize chemicals in a mixture of interest have been identified. It is known 
that chemical combinations in an environmental mixture do not occur randomly [5]. En-
vironmental factors that can be used to prioritize mixtures include source of exposure (i.e., 
emission source), exposure concentrations, environmental fate, exposure population, bi-
omonitoring, and environmental medium (i.e., chemicals found in air) [6–11]. The poten-
tial for chemicals to cause biological effects has also been incorporated as a way to prior-
itize chemicals for hazard characterization. Criteria for effect-based prioritization include 
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similar mechanism of action, bioactivity, specific toxicological effects, target organs or hu-
man health risk [1,6,12–16]. More recent approaches have incorporated both exposure and 
potential to cause biological effects; providing a more holistic perspective on understand-
ing mixture toxicity [13,17]. 

1.1.1. Component-Based Approach 
Once a mixture of interest has been identified risk assessment of this mixture may be 

carried out using several different approaches. Mixtures risk assessment is most often car-
ried out using a component-based approach due to the lack of toxicity information on the 
mixture of interest [18]. Component-based approaches evaluate single chemicals rather 
than mixtures [19,20]. This approach incorporates available toxicity values of individual 
components and assumes additivity or toxicological similarity [18,21]. Limitations of the 
component-based approach include lack of toxicity information for identified components 
and inherent assumptions of the type of interaction occurring between chemicals in the 
mixture, which may not adequately predict toxicity of the whole mixture [22–24]. 

1.1.2. Whole Mixture Approach 
Although component-based approaches are useful when no mixture toxicity data are 

available, mixtures-based approaches are preferred [6,25,26]. Current mixtures-based ap-
proaches begin with collection of dose–response data for the mixture of interest for tox-
icity value derivation. One of the most common mixtures-based approaches is the whole 
mixture approach. The whole mixture approach includes collecting and testing a whole 
environmental extract or fractionating the extract by physicochemical properties and test-
ing in bioassays to identify which components of the mixture may be driving toxicity 
[27,28]. Limitations of the whole mixture or fractionation approach are that it can be ex-
pensive and laborious due to use of the whole sample extract and fractionation process 
[25,26]. This approach is also limited to chemicals that the researcher is able to be identify 
in the environmental sample, which could result in unidentified chemicals being the driv-
ers of toxicity in the mixture. To account for this, toxicant confirmation procedures are 
typically applied. This may involve creation of the mixture of identified compounds for 
bioassay screening or use of in silico models to identify components of the toxic fraction 
[27,29]. 

1.1.3. Sufficiently Similar or Representative Mixtures 
The formation of sufficiently similar or representative mixtures is another mixture 

approach that may be used in tandem with the whole mixture approach described above 
or on its own. Different types of mixtures may be formed depending on the research ques-
tion and selected prioritization approach. The U.S. EPA defines sufficiently similar mix-
tures as a mixture with chemical composition and proportions that are similar to an envi-
ronmental mixture of interest [23]. A representative mixture can be defined as a subset of 
prioritized chemicals that are representative of relevant co-exposures or similar biological 
effects, but not associated with a single environmental mixture. Screening of representa-
tive mixtures may serve as a way to prioritize mixtures for further toxicological investi-
gations, such as to investigate interactions between components within the mixture [30]. 
The sufficiently similar mixture approach uses toxicological data from a well-character-
ized, often simpler, mixture that can then be used to predict the toxicity of an untested 
mixture of interest [23,31]. 

In some cases, existing toxicity data for a mixture that is determined to be “suffi-
ciently similar” to a mixture of interest may be used. In other cases, a sufficiently similar 
mixture may be created. To create sufficiently similar or representative mixtures, the com-
ponents within the mixture must first be prioritized, however, composition may vary 
based on the prioritization approach [14,32]. Chemical components can be prioritized 
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based on environmental factors, biological effects or a combination approach that incor-
porates exposure and biological effects [6,17,33,34]. New approach methodologies 
(NAMs) incorporating multiple data streams have been implemented for chemical prior-
itization. These data streams may include toxicity data from in vivo, in vitro, or in silico 
models and/or exposure information [13,16,17,35]. 

Specific methods regarding what is defined as sufficient similarity remain to be a 
topic of discussion within the mixture community. According to EPA guidance this is 
based on the chemical composition and proportions in the mixture. Questions exist as to 
which components need to overlap between the mixture of interest and the sufficiently 
similar mixture. Based on chemical prioritization approach used, composition of the suf-
ficiently similar mixture may differ resulting in differences in biological effects. To ac-
count for this, comparison of chemical composition and toxicological data of the suffi-
ciently similar mixture and mixture of interest have been implemented. Although it is 
often the case that toxicological data do not exist for the mixture of interest to make direct 
comparisons to; resulting in reliance on comparison of chemical composition to deem suf-
ficient similarity. 

1.2. Exposure to Polycyclic Aromatic Hydrocarbons and Associated Health Effects 
Polycyclic aromatic hydrocarbons (PAHs) are a large class of organic compounds 

that consist of two or more fused rings [36–38]. They are a wide-spread environmental 
pollutant with natural or anthropogenic sources, and often exist as complex mixtures [39–
41]. Anthropogenic sources include, but are not limited to biomass burning, incomplete 
fossil fuel combustion, oil spills, or industrial processes [42,43]. PAHs are found in petro-
chemicals or can be emitted through natural processes such as volcanic eruptions or forest 
fires [43–45]. In this study, our sampling site consisted of multiple sources of exposure, 
including creosote and wildfire smoke resulting in a real-world complex mixture of PAHs. 

Humans can be exposed to PAHs through inhalation, ingestion or dermal exposure 
[36,46]. Individuals are primarily exposed through inhalation or ingestion [47–49]. PAHs 
are highly lipophilic compounds that easily pass through the biological membrane and 
are widely distributed in the body and are detectable in most human tissues [47]. Short-
term exposures have been reported to have impacts on the lung function of asthmatics 
and thrombotic effects for individuals with coronary artery disease [36]. There have also 
been associations between PAH metabolites and reduced lung function in individuals 
without underlying health conditions [47,49,50]. Additionally, the lung has been reported 
as a major target organ for PAH carcinogenicity with an increased risk of lung cancer with 
inhalation exposure [48,51]. A number of PAHs have been reported as being mutagenic 
or genotoxic, and they have also been shown to impact reproductive and immune function 
[47,52,53]. Prenatal exposure to PAHs has been shown to have effects on birth outcomes 
and developmental effects such as neurodevelopmental or behavioral problems [54–57]. 

1.3. Study Objectives 
Currently, there is no clear guidance regarding how to form sufficiently similar mix-

tures. To our knowledge, comparisons between exposure-based, effect-based, or combi-
nation approaches using the same environmental sample have not been explored. The first 
objective of this study is to compare mixture composition for exposure, effect and combi-
nation-based approaches. Incorporation of multiple data streams using real-world chem-
ical concentrations and toxicity data from in vivo and in silico models was implemented 
for chemical prioritization. The use of multiple data streams supplemented toxicity data 
gaps for PAHs and captured the diversity of biological impacts of PAHs. Availability of 
toxicity data for PAHs and differences in chemical prioritization for traditional versus 
non-traditional toxicity metrics were also explored. The second objective of this study is 
to compare differences in bioactivity and potency based on mixture composition. Com-
parisons were made using in vitro human bronchial epithelium and in vivo early life-stage 
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zebrafish. Incorporation of in vitro and in vivo model systems were utilized based on pre-
viously established methods for high-throughput chemical prioritization [30]. 

2. Materials and Methods 
2.1. Objective 1: Chemical Prioritization and Mixture Formation 
2.1.1. Sample Site, Field Sampling, and Analysis 

Environmental sampling occurred at a location in which wood preservation had his-
torically taken place using coal tar creosote. While sampling in the summer of 2017, a 
wildfire broke out approximately 121 km away and got as close as 88.5 km, which had 
significant impacts on air quality in the region [58]. The impact of the nearby wildfire in 
conjunction with existing contamination at the sampling site resulted in a complex mix-
ture of PAHs captured by stationary air samplers. Passive air sampling took place using 
air cages containing five low-density polyethylene strips [59]. Air samplers were placed 
at 5 separate locations along the shoreline of the site and deployed for 30 days [58]. One 
triplicate sampling site was also included for quality control purposes. Procedures used 
for conditioning, cleaning, sampling transport, and extraction, can be found elsewhere 
[59,60]. Sample extracts were concentrated down to 1 mL and spiked with an internal 
standard, perylene-d12. Sample aliquots were analyzed for 63 PAHs using an Agilent 
7890B gas chromatograph with an Agilent 7000C triple quadrupole mass spectrometer 
(Table S1) [61]. Air concentrations were then calculated from instrumental concentrations 
as previously described [58,62]. Air concentrations for persistent organic pollutants, such 
as PAHs, are known to be fairly uniform across co-located sampling locations [63]. There-
fore, an average of the estimated environmental concentrations for each detected com-
pound from the five sampling locations was used for mixture formations (Table S2). 

2.1.2. Collection of Toxicity Metrics 
Human health toxicity values for cancer and non-cancer endpoints were collected 

from federal and state databases (Table 1). Toxicity values were initially obtained from 
the Integrated Risk Information System (IRIS) database [64]. The U.S. Environmental Pro-
tection Agency’s software, Comptox Chemicals Dashboard was then used to obtain addi-
tional toxicity values [65]. Sources of toxicological information were prioritized based on 
the Environmental Protection Agency’s Office of Solid Waste and Emergency Response 
policy recommendations [66]. A quantitative structure activity relationship (QSAR) model 
called conditional toxicity value (CTV) was also used for chemicals lacking toxicity values 
[67]. Toxicity testing in zebrafish was conducted for the 63 PAHs that samples were ana-
lyzed for and benchmark concentrations values were calculated [68]. International 
Agency for Research on Cancer (IARC) cancer classification and different sources of po-
tency including relative potency factor (RPF) were also incorporated [69]. RPF was ob-
tained from the Integrated Risk Information System (IRIS) database and most conserva-
tive values were selected [64]. Toxic Equivalency Factor (TEF) was obtained from Sambu-
rova et al. which used RPF values from Nisbet and LaGoy to calculate values for 88 PAHs 
using structurally similar isomers [70,71] A full list of toxicity values for each PAH in this 
study can be found in Table S6. 

Table 1. Collected toxicity metrics, abbreviations and associated sources. 

Toxicity Metrics Abbreviation Sources * 

Reference Concentration RfC IRIS [64]; EPA Comptox Chemicals Dashboard [65]; CTV [67] 
Reference Dose RfD IRIS [64]; EPA Comptox Chemicals Dashboard [65]; CTV [67] 

Inhalation Unit Risk IUR California EPA [72]; EPA Comptox Chemicals Dashboard [65]; 
CTV [67] 

Oral Slope Factor OSF California EPA [72]; EPA Comptox Chemicals Dashboard [65]; 
CTV [67] 
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Cancer Potency Value CPV IRIS [64]; CTV [67] 
Relative Potency Factor RPF IRIS [64] 

Toxic Equivalency Factor TEF Samburova 2017 [70] 
IARC Classification IARC Class IARC [69] 

Zebrafish Benchmark Concentration Zfish BMC Shankar et al. 2019 [68] 
* Toxicity values were prioritized using the following criteria IRIS > EPA PPRTV > EPA > CalEPA > 
ATSDR > HEAST > Regional EPA > non-EPA. 

2.1.3. Chemical Prioritization 
A synthetic mixture of all detected PAHs was first created. Three different mixture 

formation approaches were then further explored. An exposure-based approach selected 
chemicals strictly based on chemical abundance. This mixture selected the top seven most 
abundant PAHs. A toxicity-based (Toxicity Mix) and combination approach (weighted-
toxicity mixture) were also explored. The toxicity-based approach incorporated chemical 
abundance, relative potency factors (RPF), cancer potency value (CPV), inhalation unit 
risk (IUR), reference concentration (RfC), oral slope factor (OSF), reference dose (RfD), 
and zebrafish benchmark concentration (BMC) to prioritize chemical components (Equa-
tion (1)). The weighted-toxicity mixture, which incorporated hazard and abundance, first 
calculated the proportion of each chemical in the simple PAH mixture using Equation (2). 
Toxicity metrics were then multiplied by the proportion of total to weight each metric by 
its chemical abundance using Equation (3). Toxicity metrics for weighted-toxicity mixture 
included toxic equivalency factors (TEF), inhalation unit risk (IUR), reference concentra-
tion (RfC), oral slope factor (OSF), reference dose (RfD), IARC classification, and zebrafish 
benchmark concentration (BMC) to prioritize chemical components. Toxicity metrics for 
both approaches were compiled into a spreadsheet with each toxicity metric in its own 
respective column. Chemicals were prioritized by sorting each weighted or unweighted 
toxicity metric from high to low hazard and given a rank 1 through 30, i.e., BMC values 
were sorted from low to high and the chemical with the lowest BMC value was given a 
ranking of 1. An average rank was then calculated by taking the average of the individual 
toxicity value rankings (Equation (1) or Equation (4)). The top seven ranking chemicals 
were then selected to be used in the sufficiently similar mixtures. 
Toxicity mix chemical prioritization approach 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑛𝑘 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑀𝑖𝑥 =  
𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑅𝑎𝑛𝑘 + 𝑅𝑃𝐹 𝑅𝑎𝑛𝑘 + 𝐶𝑃𝑉 𝑅𝑎𝑛𝑘+ 𝐼𝑈𝑅 𝑅𝑎𝑛𝑘 + 𝑅𝑓𝐶 𝑅𝑎𝑛𝑘 +𝑂𝑆𝐹 𝑅𝑎𝑛𝑘 + 𝑅𝑓𝐷 𝑅𝑎𝑛𝑘+ 𝑍𝑒𝑏𝑟𝑎𝑓𝑖𝑠ℎ 𝐵𝑀𝐶50 𝑅𝑎𝑛𝑘𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑠  

(1)

Weighted-toxicity mix chemical prioritization approach 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 =  𝑀𝑎𝑠𝑠/𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑀𝑎𝑠𝑠/𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑀𝑖𝑥𝑡𝑢𝑟𝑒  (2)

Mass/Volume is equal to ng/m3. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 = 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 ∗ 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 (3)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑀𝑖𝑥 =  
𝐼𝐴𝑅𝐶 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑘 + 𝑇𝐸𝐹 𝑅𝑎𝑛𝑘+ 𝐼𝑈𝑅 𝑅𝑎𝑛𝑘 + 𝑅𝑓𝐶 𝑅𝑎𝑛𝑘+𝑂𝑆𝐹 𝑅𝑎𝑛𝑘 + 𝑅𝑓𝐷 𝑅𝑎𝑛𝑘+ 𝑍𝑒𝑏𝑟𝑎𝑓𝑖𝑠ℎ 𝐵𝑀𝐶50 𝑅𝑎𝑛𝑘𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑠  

(4) 



Toxics 2022, 10, 651 6 of 24 
 

 

2.1.4. Correlation of Toxicity Metric Rankings 
Correlations between toxicity value rankings for each chemical were compared in 

order to identify similarities in chemical rankings based on toxicity metric. Correlations 
between chemical rankings were investigated using “ggcorrplot” in R studio (version 
4.1.1) [73,74]. Significant correlations were defined with a p-value cut-off of 0.05. Correla-
tions were calculated using Pearson correlations for complete observations only. Correla-
tion plots were generated using a correlation matrix and a matrix of correlation p-values. 
Pairs of chemicals were labeled with their correlation coefficients. Values with a p-value 
greater than 0.05 were denoted with an X. 

2.1.5. Chemical Mixture Preparation 
Mixtures were created using environmental proportions from the average concentra-

tions described above. Chemicals in the mixture were scaled relative to the most abundant 
chemical based on respective environmental concentrations. Neat chemical standards 
were purchased and dissolved in ACS grade n-hexane or toluene and stored at 4 °C until 
use (Thermo Fisher Scientific, Waltham, MA, USA). An aliquot of each mixture was taken 
and spiked with a known concentration of analytical surrogates in order to quantify con-
centrations of target analytes in the mixture. Concentrations were confirmed on an Agilent 
7890B gas chromatograph with an Agilent 7000C triple quadrupole mass spectrometer 
using the same PAH analytical method for sample analysis [61]. Expected concentrations 
within 10% of reported concentrations met data quality objectives. Stock solutions for each 
mixture were solvent exchanged into ACS grade dimethyl sulfoxide (DMSO) and stored 
at room temperature (Thermo Fisher Scientific, Waltham, MA, USA). Table S3 details 
chemical name, CAS registry numbers, supplier information, and purity. 

2.2. Objective 2: Comparison of Mixture Toxicity 
2.2.1. Normal Human Bronchial Epithelium Maintenance 

Normal Human Bronchial Epithelial cells (NHBE) (passage 4; Lonza, Walkersville, 
MD, USA) were expanded in a culture flask in Pneumacult-Ex Plus media (STEMCELL 
Technologies, Vancouver, Canada) until 90% confluency was reached. Once confluency 
was reached, cells were washed with Dulbecco Phosphate Buffer Solution (Thermo Fisher 
Scientific, Waltham, MA, USA) trypsinized and seeded into black-walled 96-well plates at 
1.8 × 104 cells/well in 200 µL Pneumacult-Ex Plus media. Cells were maintained at 37 °C 
and 5% CO2 and media was changed every other day until 90% confluency was reached. 
Chemical stocks were diluted to 2% DMSO (v/v) with Pneumacult Ex media (STEMCELL 
Technologies, Vancouver, Canada). Cells were exposed for 24 h at 37 °C and 5% CO2. Ini-
tial range finding experiments were conducted with a seven-point dose response. Mixture 
concentrations were selected based on concentrations at which concentration-response 
curves could be generated and EC50 values could be calculated, or due to physical con-
straints such as limits of solubility. 

Lactate Dehydrogenase Assay 
Cytotoxicity was measured based on the release of lactate dehydrogenase (LDH) us-

ing the Cyquant Lactate Dehydrogenase Colorimetric Assay (Thermo Fischer Scientific, 
Waltham, MA, USA). After the exposure period was complete, an equal volume of cell 
media and LDH reagents were transferred to a clear 96-well plate and incubated away 
from light for 30 min. An equal volume of stop solution was then added, and absorbance 
was read at 490 nm and background was read at 680 nm using Synergy HTX plate Bio Tek 
plate reader (Winooski, VT, USA). Cytotoxicity was calculated by subtracting background 
from absorbance. Plates containing cells were then used for one of the remaining intracel-
lular assays. 

Cell Titer Glo Assay 



Toxics 2022, 10, 651 7 of 24 
 

 

Cell viability was measured based on quantification of ATP, which serves as an indi-
cator of metabolically active cells using Promega CellTiter-Glo Luminescent Cell Viability 
Assay (Madison, WI, USA). After the 24-h exposure period, the plate was brought to room 
temperature and an equal volume of the CellTiter-Glo reagent was added to each well. 
The plate was then protected from light using foil and placed on an orbital shaker at 10 
rpm for 15 min. Full-spectrum luminescence was immediately read using Synergy HTX 
plate Bio Tek plate reader (Winooski, VT, USA). 

Mitochondrial Membrane Potential (MMP) Assay 
Disruption of mitochondrial membrane potential following exposure to chemical 

treatments was measured using JC-10 Mitochondrial Membrane Potential Microplate As-
say (Abcam, Cambridge, UK). After the 24-h exposure, 50 µL of JC-10 dye loading solution 
was added to each well and incubated at room temperature for 30 min. An equal of vol-
ume of the assay buffer was then added to each well and fluorescent signals were read at 
490/525 nm and 540/590 nm using a Synergy HTX plate Bio Tek plate reader (Winooski, 
VT, USA). The 525 nm emission was then divided by the 590 nm emission to calculated 
MMP disruption. 

ROS-Glo Assay 
The presence of intracellular H2O2, a type of reactive oxygen species, was measured 

using Promega ROS-Glo Assay (Madison, WI, USA). At 18 h post-treatment, 20 µL of H2O2 
Substrate solution was added to each well and incubated at 37 °C and 5% CO2 for an ad-
ditional 6 h. 100 µL of the ROS-Glo Detection Solution was then added to each well and 
incubated at room temperature for 20 min, and full spectrum luminescence was read us-
ing Synergy HTX plate Bio Tek plate reader (Winooski, VT, USA). 

NHBE Quality Control and Statistics 
Treatment effects for each in vitro assay were investigated using values normalized 

to vehicle control and were expressed as “% control”. Cell media with 2% DMSO served 
as the vehicle control and was included on each plate. Menadione (200 µM), which has 
been shown to induce significant cytotoxicity in NHBE, was used as a positive control for 
LDH, CTG, and MMP. Coal Tar Extract (SRM 1597a), which has been shown to induce the 
formation of ROS in NHBE was used as the positive control for ROS-Glo. For CTG and 
MMP, plates were run in duplicate (n = 6/concentration). For LDH and ROS-Glo single 
plates were run (n = 4/concentration). Each assay was run at least twice to confirm results. 
A significance level was defined with a p-value cutoff of 0.05. Significant treatment effects 
were evaluated relative to vehicle control using one-way ANOVA with Dunnett’s post 
hoc test. 

2.2.2. Zebrafish Maintenance and Exposures 
Pathogen-free Tropical 5D wild-type adult zebrafish were housed at approximately 

1000 fish per 100 gallons at Sinnhuber Aquatic Research Laboratory (SARL) in accordance 
with the Institutional Animal Care and Use Committee protocols at Oregon State Univer-
sity (ACUP 2021-0227). Embryos were collected and prepared for exposures as previously 
described [75,76]. At five to six hours post fertilization (hpf), embryos were robotically 
loaded into each well of a 96 well plate containing 100 µL of embryo medium. Embryos 
were statically exposed until 120 h post fertilization. Range finding experiments were con-
ducted with a maximum tested concentration of 600 µM at 1% DMSO for each mixture 
except Toxicity Mix, which had a maximum concentration of 100 µM (n = 12/concentra-
tion). For definitive testing, the maximum tested concentration for Toxicity Mix was 75 
µM and 600 µM for other mixtures with triplicate plates (n = 36/concentration). 

Morphological Assay 
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Zebrafish were screened for thirteen morphological endpoints at 24 and 120 hpf. At 
24 hpf, embryos were assessed for mortality and spontaneous movement (Table S4) [77]. 
At 120 h post fertilization, embryos were assessed for eleven endpoints which cover range 
of developmental effects and mortality (Table S4). Images of endpoints measured can be 
found at the following: https://github.com/Tanguay-Lab/Bioinformatic_and_Toxicologi-
cal_Resources/tree/main/Files/Zebrafish_Phenotype_Atlas (accessed on 10 October 2022). 
Evaluation of morphological endpoints was conducted by a formally trained and experi-
enced staff member under a dissecting microscope. Zebrafish data were acquired by the 
zebrafish acquisition analysis program (ZAAP) which collects developmental endpoints 
as binary data. To assess the effect of each mixture on zebrafish morphology, percent in-
cidence of morphological abnormalities was calculated across triplicate plates (n = 36/con-
centration). The percent incidence of any morphological effects or mortality observed in 
zebrafish was calculated and reported as “% incidence any effect” or “% incidence mor-
tality”. Raw counts for each morphological endpoint can be found in Table S5. 

Zebrafish Quality Control and Statistics 
Negative control wells, DMSO/embryo medium (n = 12) were included on each plate. 

A positive control (ethyl parathion) plate consisting of a 7-point concentration curve from 
4.5–31 uM with n = 12 embryos per concentration was run for daily quality assurance of 
animal responses. The negative controls had to have ≤20% mortality and morbidity, and 
the positive control plate had to exhibit an EC50 of 19.3 ± 4 µM. Significant morphological 
effects were assessed in R (version 4.1.2) [78]. Each binary endpoint was recorded for each 
well as a series of Bernoulli trials (n = 32) as previously described [79]. Binary information 
was used to evaluate for confounding well, plate, and chemical effects across controls and 
determine if outliers exist. Outliers were defined as having an incidence greater than three 
standard deviations from the mean. Significance thresholds for each mixture-endpoint 
pair were computed based on background incidence for negative control. Fisher’s exact 
test was used to make comparisons to control, and Bonferroni correction was used to ac-
count for family-wise error rate (p < 0.01). 

2.2.3. Curve fitting and Point of Departure Calculations 
Best fit model selection for concentration response curve fit was conducted using the 

drc package in R studio (version 4.1.1) [73]. Best fit models were selected by comparing 
Akaike information criterion (AIC) scores of six different continuous models included in the 
drc package. For endpoints which no curve could be fit, points of departure were expressed 
as the lowest effect level (LEL). NHBE MMP and CTG and zebrafish any effect and mortality 
data showed log-logistic four parameter model, as the model of best fit. Concentration re-
sponse curves were generated and the concentration at which 50% effect (EC50) or mortality 
(LC50) was observed were calculated using GraphPad/Prism (version 6) [80]. 

3. Results 
3.1. Objective 1: Chemical Prioritization and Mixture Formation 
3.1.1. Availability of Toxicity Metrics and Mixture Composition 

A complex chemical mixture with sources from creosote and wildfire smoke was 
simplified for hazard identification by prioritizing the most abundant chemical class in 
the mixture, which were PAHs. 30 PAHs were detected and included in a synthetic mix-
ture called Creosote-Fire Mix. PAHs that made up over 97% of the mixture are shown in 
Figure 1A. An exposure-based approach, toxicity-based, and combination approach (ex-
posure and toxicity) were explored to further simplify this complex mixture of PAHs. The 
exposure-based approach prioritized chemical components by selecting the most abun-
dant chemicals in the Creosote-Fire Mix. The top 7 chemicals which made up over 97% of 
the Creosote-Fire Mix were chosen to create the Abundance Mix (Figure 1B). Naphthalene, 
acenaphthene, 2-methylnaphthalene, 1-methylnaphthalene, fluorene, phenanthrene, and 
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2-ethylnaphthalene were prioritized. For consistency, the top 7 ranking chemicals were 
also selected for the toxicity-based and combination approach. 

 
Figure 1. Chemical Composition of Mixtures. Chemicals greater than 3% v/v in the mixture are 
shown in colored sections. Colors and area of color correspond to a given chemical and the %v/v of 
that chemical in its respective mixture. Anything less than 3% v/v is listed below its respective mix-
ture figure. (A) 30 chemicals identified above detection limits out of 63 PAHs air samples were an-
alyzed for. (B) Chemicals prioritized strictly based on abundance, top seven PAHs that made up 
over 97% v/v in Creosote-Fire Mixture were selected. (C) Chemicals prioritized using empirically 
derived and predicted toxicity metrics. (D) Chemicals prioritized by weighting empirical and pre-
dicted toxicity metrics with chemical concentrations. 1 Full list of chemical composition in each mix-
ture can be found in Tables S9 and S10. * 2-ethylnaphthalene was not included in Abundance Mix 
due to unavailability of the standard during synthesis of this mixture. 

The toxicity-based (Toxicity Mix) and combination (Weighted-Toxicity Mix) ap-
proach both incorporated available toxicity information. Of the 30 PAHs, RfD or RfC was 
available for a total of 10 (Table 1; Table S6). For cancer-related toxicity values, a total of 
six OSF or IUR values were available, and 18 IARC classifications were available. RPF 
values were available for seven of the 30 PAHs [81]. For Weighted-Toxicity Mix TEF val-
ues were available for all 30 PAHs. Zebrafish benchmark concentrations were available 
for 14 of the 30 PAHs. 

Toxicity Mix, which largely considered toxicity values in its prioritization procedure, 
without weighting by chemical abundance (Equation (1)), solely consisted of chemicals in 
the lower 3% of the Creosote-Fire Mix. This mixture was comprised of less abundant 
chemicals with greater empirical and QSAR predicted toxicity (Figure 1C). Retene, was 

A. *B. C. D. 
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the most abundant components in the mixture, followed by benzo(a)fluorene, 
benzo(b)fluorene, benzo(c)fluorene, triphenylene, and benzo(ghi)perylene. The combina-
tion approach considered both hazard and exposure for each chemical in its prioritization 
approach, by scaling toxicity metrics by chemical concentrations (Equations (2)–(4); Table 
S7). This mixture, Weighted-Toxicity Mix, prioritized highly abundant chemicals in the 
Creosote-Fire Mix including acenaphthene, 2-methylnaphthalene, and fluorene (Figure 
1D). Less abundant, but more potent, chemicals were also prioritized including 2-
methylphenanthrene, fluoranthene, benzo(j)fluoranthene, and benzo(e)pyrene. 

3.1.2. Comparison of Toxicity Metrics 
Comparison between empirically derived and QSAR predicted values showed cer-

tain toxicity values were better predicted than others (Figure 2). Generally, empirically 
derived values for RfD and RfC were within the same magnitude of predicted values. IUR 
predicted and empirically derived values were within the same magnitude of each other. 
OSF appeared to have the largest difference between empirically derived and predicted 
values with higher molecular weight PAHs tending to have higher, more toxic estimates. 

 
Figure 2. Comparison of Empirically Derived vs. QSAR Predicted Toxicity Values. Predicted RfD 
and RfC values were within the same magnitude as empirically derived values. IUR predictions 
were also within the same magnitude as empirical values. OSF had the largest difference between 
empirical and predicted values, which seemed to be associated with increasing molecular weight. 
*—empirically derived values. Reference Dose (RfD); Reference Concentration (RfC); Oral Slope 
Factor (OSF); Inhalation Unit Risk (IUR). 

Correlations of chemical rankings were investigated to identify similarities or differ-
ences between chemical prioritization of the different toxicity metrics (Table S8). For the 
toxicity-based approach (Toxicity Mix) significant positive correlations were observed be-
tween most toxicity metrics, except for RPF. RfC and RfD had the strongest correlation of 
0.98 followed by CPV and OSF with a value of 0.94 (Figure 3A). A moderate correlation was 
observed between zebrafish BMC and RfD with a p-value of 0.07. Correlations were sepa-
rated into non-cancer or cancer-based metrics. For the combination approach (Weighted-



Toxics 2022, 10, 651 11 of 24 
 

 

Toxicity Mix), significant correlations were observed between all toxicity metric rankings 
(Figure 3B). Like Toxicity Mix metrics, positive correlations were observed between two 
distinct groups. Cancer-relevant toxicity values IUR/OSF and TEF were positively corre-
lated with each other. Non-cancer toxicity metrics were also positively correlated with each 
other. This included IARC classification, Zebrafish BMC, RfD and RfC. Significant negative 
correlations were observed overall between non-cancer and cancer-based metrics. 

 
Figure 3. Correlations of Toxicity Metrics. (A) Correlation matrix of rankings for toxicity metrics 
used for Toxicity Mix. (B) Correlation matrix of toxicity metric rankings for Weighted-Toxicity Mix. 
Each square is labeled with correlation coefficient. Anything with an X was not significant. Signifi-
cance cut-off was p < 0.05 using Pearson correlation coefficient. Correlations were conducted for 
each chemical only for complete observations. 

3.2. Objective 2: Comparison of Mixture Toxicity 
3.2.1. NHBE Bioactivity Screening and Mixture Potency 

Toxicity Mix, Weighted-Toxicity Mix and Abundance Mix were bioactive for mito-
chondrial membrane potential and cell viability (Figures 4 and 5). Bioactivity was also 
observed for Toxicity Mix and Abundance Mix for ROS generation (Figure S1). For release 
of LDH, significant bioactivity was observed for Weighted-Toxicity Mix and Abundance 
Mix (Figure S2; Table S11). Toxicity Mix was the most potent mixture with tested concen-
trations ranging from 20 to 140 µM for MMP and cell viability. Significant concentrations 
for MMP and cell viability ranged from 40 to 140 µM and respective EC50 values of 50.5 
µM (±4.6) and 31.9 µM (±2.1). For ROS generation a curve was not able to be fit, however 
Toxicity Mix had a LEL of 20 µM. Weighted-Toxicity Mix was the second most potent 
mixture, with concentrations ranging from 300 to 900 µM for MMP and cell viability. Sig-
nificant concentrations for MMP ranged from 600 to 900 µM with an EC50 value of 572 µM 
(±31). For cell viability, significant concentrations ranged from 800 to 900 µM with an EC50 

value of 753 µM (±28). For release of LDH an EC50 value of 798 µM (±60.5) was observed. 
Of the bioactive mixtures, Abundance Mix was the least potent mixture with bioactive 
concentrations ranging from 500 to 4000 µM. For MMP, significant concentrations ranged 
from 1600 to 4000 µM with an EC50 value of 1402 µM (±47). Significant concentrations for 
cell viability ranged from 3000 to 4000 µM with an EC50 value of 1920 µM (±158). For re-
lease of LDH, Abundance Mix had an EC50 value of 2095 µM (±380). For ROS generation a 
LEL of 500 µM was observed. 
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Figure 4. Concentration-Response Curves for Mitochondrial Membrane Potential in NHBE. Curves 
are in order of decreasing potency based on predicted EC50 values. (A) Toxicity Mix was the most 
potent mixture with an EC50 of 50.5 µM. (B) Weighted-Toxicity Mix was the second most potent 
mixture with an EC50 of 572 µM. (C) Abundance Mix was the least potent mixture with EC50 of 1402 
µM. (D) Creosote-Fire Mix did not elicit significant bioactivity compared to control, no EC50 was 
calculated. Concentrations significantly different from control are denoted with an asterisk (*). p < 
0.05 *; p < 0.01 **; p < 0.001 ***. 

 
Figure 5. Concentration-Response Curves for Cell Viability in NHBE. Curves are in order from high 
to low potency based on predicted EC50 values. (A) Toxicity Mix was the most potent mixture with 
an EC50 of 31.9 µM. (B) Weighted-Toxicity Mix was the second most potent mixture with an EC50 of 
753 µM. (C) Abundance Mix was the least potent mixture with EC50 of 1920 µM. (D) Creosote-Fire 
Mix had significant bioactivity for two highest doses, however, no EC50 was calculated. Concentra-
tions significantly different from control are denoted with an asterisk (*). p < 0.05 *; p < 0.01 **; p < 
0.001 ***. 
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3.2.2. Zebrafish Bioactivity Screening and Mixture Potency 
In zebrafish, mortality and the suite of morphological endpoints summarized as ‘any 

effect’ were investigated. Toxicity Mix was the most potent, and only mixture with statisti-
cally significant bioactivity, at test concentrations ranging from 1 to 75 µM (Table S12). Tox-
icity Mix had significant effects for mortality starting at 50 µM with an EC50 value of 41.2 µM 
(±2.4) (Figure 6A). For ‘any effect’, significant effects were observed starting at 25 µM with 
an EC50 value of 12.8 µM (±1.5) and were mainly associated with craniofacial defects or ede-
mas (Figure 6B). Due to the observed differences in potency between Toxicity Mix and the 
other mixtures in NHBE, a second round of screening was conducted for Weighted-Toxicity 
Mix, Abundance Mix and Creosote-Fire Mix at higher concentrations (200 to 600 µM). How-
ever, no significant bioactivity or concentration-response effects were observed (Figure S3). 

 
Figure 6. Concentration-Response Curves for Mortality and Any Effect in Zebrafish. (A) Percent 
incidence of Zebrafish mortality and predicted LC50 and (B) Percent incidence of any effect and pre-
dicted EC50 value. Toxicity Mix was the only mixture with significant bioactivity in zebrafish. Any 
concentration at or above binomial significance threshold are denoted with an asterisk (*). 

4. Discussion 
4.1. Chemical Prioritization Appraoches 

There are many available approaches to create sufficiently similar mixtures. How 
these mixtures are formed can significantly impact chemical composition and toxicity re-
sults [32]. Prioritization of individual chemicals for mixture toxicity testing have been fo-
cused on the exposure or biological effects of chemicals. Exposure-based prioritization is 
most used to form sufficiently similar mixtures. After prioritization of chemicals, propor-
tions in the mixtures are based on median or average environmental exposure concentra-
tions from multiple samples [10,33,82]. Biological effect-based studies have prioritized 
chemicals most commonly for representative mixture formations [1,6,13–15]. These stud-
ies are often not based on real-world environmental mixtures and are designed to inves-
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tigate specific interactions between chemicals when combined in a mixture. Chemical pro-
portions within the mixture are formed based on effective concentration levels from 
screening individual components or existing toxicity information [34,83]. Some studies 
have incorporated environmental and toxicological information for chemical prioritiza-
tion for mixture toxicity testing [13,17,84]. For mixtures formed in these studies chemicals 
were retained at their environmental proportions. 

In this study, three different approaches based on the methodology described above 
were used to form sufficiently similar mixtures from the same complex mixture of interest. 
Comparisons between chemical composition and observed biological effects based on 
mixture formation were made. Complex mixtures of organic and inorganic chemicals re-
lated to contamination from historic use of creosote and wildfire smoke impact have been 
reported [85–89]. In order to simplify this complex environmental mixture, samples were 
analyzed for PAHs due to their high prevalence from exposure sources at the sampling 
site [44,45,90]. Traditionally, environmental studies have used the 16 priority PAHs estab-
lished by U.S. EPA in the 1970s as the standard for investigations [91,92]. This consists of 
unsubstituted PAHs that were prioritized based on availability of analytical standards, 
occurrence in the environment, and known toxicity [93]. However, PAHs are a class of 
over 100 different chemicals [94]. In this study, samples were analyzed for a total of 63 
unsubstituted and alkylated PAHs, with approximately 20 being alkylated PAHs. The 
presence of unsubstituted PAHs and the associated toxicity have been widely studied [12]. 
However, there has been less emphasis on alkylated PAHs despite evidence that alkyl 
PAHs may possess toxicity that surpasses their parent compounds [92]. Of the 30 PAHs 
identified in the environmental samples, 13 of them were alkylated PAHs. Three of the 
PAHs that accounted for 97% of the total concentration of the Creosote-Fire Mix were 
alkyl PAHs. However, additional published and unpublished studies at this site using an 
alkylated PAH-specific method identified a high abundance of alkyl PAHs [58]. This sug-
gests that alkyl PAHs may be underrepresented in our 30 PAH mixture due to the chem-
ical analysis method used for this sample. 

4.2. Comparison and Availability of Toxicity Values 
Due to the large availability of toxicity information for individual chemicals from in 

vitro, in vivo, or in silico models, recent studies have begun integrating multiple lines of 
evidence to prioritize chemicals of interest [12,13,17,35]. During collection of toxicity val-
ues for this study, a major data gap regarding available toxicity information for PAHs was 
identified. The use of this approach for Toxicity Mix and Weighted-Toxicity Mix allowed 
for a more holistic view of the chemicals without being limited based on available toxicity 
information or specific biological endpoints. RfD had the largest number of available em-
pirically derived toxicity values, which only accounted for 30% of the PAHs in the Creo-
sote-Fire Mix. To fill these data gaps, a QSAR model which predicted toxicity values based 
on empirically derived toxicity values was incorporated. Overall, this model could predict 
toxicity values within the same magnitude of empirically derived values for the non-can-
cer toxicity values (RfD/RfC). There was less certainty in the estimate for cancer-based 
toxicity values, with increasing distance in the magnitude of empirically derived vs. pre-
dicted values with increasing molecular weight. A relationship between molecular weight 
and carcinogenicity has been established, which may explain the QSAR model predicting 
higher OSF values for higher molecular weight PAHs [95,96]. Further investigation into 
the chemicals used to build this model showed that of the 886 chemicals used in the model 
approximately 19 were PAHs. Of the 19 PAHs, only four were alkylated PAHs [67]. This 
tool provided incredibly useful information to address missing toxicity values that were 
essential for the workflow of this study. However, these findings highlight an important 
area of additional research that is needed for PAHs, or more broadly polycyclic aromatic 
compounds (PACs). Additional toxicity information on a more structurally diverse set of 
PACs, may not only help supplement the prioritization of hazardous PACs at a contami-
nated site, but can also improve predictive models such as the one used in this study. 
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Overall, this study observed a general lack of toxicity information particularly for substi-
tuted PAHs, such as alkylated PAHs [12]. This has also been identified as a research pri-
ority by the National Toxicology Program. 

Correlations between how toxicity metrics prioritized individual PAHs were ex-
plored. The Toxicity Mix and Weighted-Toxicity Mix were formed using an iterative pro-
cess. Some toxicity metrics used for Toxicity Mix were changed for the prioritization of 
components for Weighted-Toxicity Mix. Information provided by CPV and OSF were seen 
to be redundant, which can be seen by the high correlation coefficient (Figure 3A). Further 
investigation of this did show the same value was reported for some compounds. CPV is 
the California EPA’s version of OSF which explains why the same values were observed 
for some chemicals [67]. Additionally, RPF was replaced with TEF due to the lack of in-
formation for the PAHs in our mixture from RPF. TEF values were able to provide toxicity 
information for all the PAHs in the complex mixture. However, we observed that many 
of the PAHs in our mixture had the same value for TEF resulting in a larger influence of 
chemical concentration when toxicity metrics were weighted (Table S6). IARC Classifica-
tion was also included to expand toxicity information used for chemical prioritization. 
IARC Classifications were available for 18 of the 30 PAHs in the Creosote-Fire Mix, five 
of these were classified as Group 2B carcinogens by IARC, or possibly carcinogenic to 
humans. 

For both Toxicity Mix and Weighted-Toxicity Mix approaches, traditional non-cancer 
toxicity values, RfC and RfD, and cancer-based toxicity values, OSF and IUR, were signif-
icantly correlated with each other. Since these toxicity values are derived similarly, but for 
different routes of exposure, strong correlations between the two metrics were expected 
[97]. IARC class also had strong correlations with RfD. Most of the chemicals detected in 
our environmental sample were class 2B or 3, possibly carcinogenic to humans or not clas-
sifiable as carcinogens to humans [69]. Because these chemicals had low carcinogenic po-
tential, this may explain why they were more closely related to rankings from non-cancer 
metrics rather than cancer-based values. Significant or moderately significant correlations 
were also observed between zebrafish BMC ranking and traditional toxicity values, 
RfC/RfD. These results provide insight into the utility of using high-throughput, non-
mammalian invertebrate models for general hazard assessment of chemicals. 

4.3. Comparison of Mixture Composition and Toxicity 
The goal of the exposure-based approach was to prioritize the most abundant chem-

icals in the Creosote-Fire Mix. The most abundant chemicals were chosen by selecting 
chemicals that made up over 97% of the total concentration of the mixture. This resulted 
in seven PAHs being selected. The composition of Abundance Mix consisted mostly of 
priority PAHs except for the alkylated naphthalenes: 1-methyl- and 2-methylnaphthalene. 
Bioactivity screening of this mixture in NHBE identified impacts of Abundance Mix on 
mitochondrial membrane potential, cell viability, release of LDH, and ROS generation at 
high concentrations, with EC50 values of 1402, 1920, 2097 µM, and an LEL of 500 µM, re-
spectively. This highlights the relatively low potency of this mixture regarding cytotoxi-
city. Additionally, no bioactivity was observed in vivo in early life-stage zebrafish. Similar 
mixture formation approaches have shown little bioactivity particularly at environmen-
tally relevant concentrations [98,99]. However, the composition of the mixture and expo-
sure concentrations are stronger predictors of biological activity than approach. Our study 
implemented a range of doses in order to capture a significant biological effect which has 
been recommended for mixture studies [14]. Considering the toxicity of individual chem-
icals within this mixture, these results are fairly consistent with previous studies with no 
notable impacts on cytotoxic endpoints in a number of in vitro studies for naphthalene, 1- 
or 2-methylnaphthalene [65,91,100]. Studies investigating cytotoxicity of acenaphthene, 
phenanthrene and fluorene have conflicting results regarding impacts for cytotoxic end-
points [100]. While most in vitro studies noted no significant impacts for naphthalene and 
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1- and 2-methynaphthalene, rodent assays have identified these chemicals as having im-
pacts on the lung [101–103]. Naphthalene is also classified as a possible carcinogen in hu-
mans [69]. 

The toxicity-based approach was intended to select the most hazardous components 
in the Creosote-Fire Mix. Toxicity Mix was formed using chemical abundance, empirically 
derived and QSAR predicted toxicity values, zebrafish screening data, and relative po-
tency factors. Incorporation of this toxicity information enabled the prioritization of seven 
components of most concern in the Creosote-Fire Mix based on available data. This was 
confirmed during bioactivity screening with Toxicity Mix being the most potent mixture 
with respective EC50 values in NHBE of 31.9 and 50.5 µM, and an LEL of 20 µM for mito-
chondrial membrane potential, cell viability, and ROS generation. Toxicity Mix was also 
the only mixture to elicit significant biological effects in zebrafish. The toxicity results for 
this mixture are consistent based on available studies for individual chemicals in Toxicity 
Mix. Retene, benzo[c]fluorene, benzo(e)pyrene, and benzo[ghi]perylene have all been re-
ported to have impacts on cytotoxic endpoints and have mutagenic properties 
[91,100,104–106]. Specifically, benzo[c]fluorene has been reported to induce tumor for-
mation in mice. Traditional toxicity-based mixtures have typically focused on specific bi-
ological endpoints when prioritizing chemical components for the mixture of interest 
[34,83]. In this study, we incorporated a more holistic view of toxicity including infor-
mation for cancer and non-cancer endpoints and chemical abundance as individual 
measures for prioritization. This approach utilizing database and QSAR-predicted tox-
icity values enabled rapid chemical prioritization in our mixture of interest and provided 
an alternative way to prioritize chemicals without generating new toxicity data. 

The combination approach used to form Weighted-Toxicity Mix was intended to pri-
oritize high abundance and high hazard chemicals in the Creosote-Fire Mix. Scaling tox-
icity values by environmental concentrations for chemical prioritization for mixture tox-
icity studies has not been widely implemented. However, the importance of prioritizing 
chemicals by both exposure and biological hazard is recognized by the exposure science 
and toxicology community [6,13,17]. Weighted-Toxicity Mix was formed using weighted 
empirically derived and QSAR predicted toxicity values, zebrafish screening data, IARC 
cancer classification, and toxic equivalency factors. Using this approach, chemicals high 
in abundance and hazard were prioritized. Acenaphthene, fluorene and 2-methylnaph-
thalene were the most abundant chemicals in Weighted Toxicity Mix, which were also 
prioritized using the exposure-based approach. Some differences were observed between 
components prioritized by toxicity-based and combination approaches likely due to the 
scaling of the toxicity metrics and incorporation of additional toxicity information for this 
approach. One chemical, benzo[e]pyrene was included in both mixtures. Weighted-Tox-
icity Mix was the second most potent mixture, however EC50 values were much higher 
than those observed in the Toxicity Mix. Respective EC50 values for Weighted-Toxicity 
Mix were 572, 753, and 773 µM for mitochondrial membrane potential, cell viability, and 
release of LDH. These results are consistent with observed effects noted previously with 
little bioactivity related to acenaphthene, fluorene, 2-methylnaphthalene, and benzo[j]flu-
oranthene. However, higher potency may be due to the addition of the lower concentra-
tion chemicals 2-methylphenanthrene, benzo(e)pyrene, and fluoranthene which have 
been reported as being bioactive for cytotoxic endpoints in in vitro studies 
[91,100,104,107]. 
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4.4. Mixture Formation Implications and Potential Mixture Interactions 
Overall, similarities and differences were observed in chemical composition, bioac-

tivity, and potency based on mixture formation approach. When only considering abun-
dance for chemical prioritization (Abundance Mix), chemicals which were found at the 
highest observed concentrations in our mixture of interest were prioritized. This mixture 
was the least potent of the other mixtures, and only elicited an effect at high test concen-
trations. When prioritizing components almost solely based on toxicity information (Tox-
icity Mix), chemicals at relatively low environmental concentrations were prioritized. Alt-
hough these chemicals are present at lower environmental concentrations, lower concen-
trations of these chemicals induced an effect. Additionally, this mixture consisted entirely 
of non-priority PAHs, further highlighting the need for alternative methods to assess tox-
icity of understudied chemicals in environmental investigations. Identification of these 
non-priority PAHs in the Toxicity Mix, as potential drivers of toxicity, supports the need 
for further investigation into this mixture, as potential interactions could contribute to 
higher potency and therefore greater toxicity. 

The last approach, which incorporated hazard and abundance (Weighted-Toxicity 
Mix), by scaling toxicity information with environmental concentrations, resulted in pri-
oritization of chemicals at higher concentrations and chemicals at lower concentrations, 
but of higher hazard. There was overlap with the highly abundant chemicals in this mix-
ture and Abundance Mix. However, biological activity and potency cannot be predicted 
by composition alone [24]. Due to the overlap between chemical components and propor-
tions in Abundance Mix and Weighted-Toxicity Mix similarities in potency between the 
two mixtures may have been expected. However, the EC50 of cytotoxic endpoints for 
Weighted-Toxicity Mix were approximately half of those observed with the Abundance 
Mix. Therefore, it is expected that the less abundant, more potent chemicals, are driving 
the observed toxicity in this mixture. Specifically, interactions between less abundant 
chemicals may be occurring. Studies have shown that when added to complex mixtures 
or combined with known carcinogens fluoranthene and benzo[e]pyrene have been shown 
to increase toxicity [108,109]. Alternatively, a decrease in toxicity has also been observed 
when fluoranthene and benzo[e]pyrene were combined with other combinations of PAHs 
or complex mixtures [108,110]. In the case of Weighted-Toxicity Mix, it is believed that the 
addition of fluoranthene and benzo[e]pyrene may increase the mixture’s toxicity. Inter-
estingly, while all sufficiently similar mixtures demonstrated some bioactivity in vitro, the 
Creosote-Fire Mixture did not have any notable toxicity. The low potency of this mixture 
for the endpoints in this study may be attributed to constraints regarding test concentra-
tion due to the complexity of the mixture. Due to the high number of chemical components 
in this mixture we were constrained by limits of solubility and were not able to test at 
concentrations as high as the Abundance Mix, which accounted for a significant portion 
of the total concentration of Creosote-Fire Mix. Additionally, low potency could also be 
due to unknown mixture interactions that could be occurring between individual chemi-
cals in this mixture. As previously noted, differences in toxicity have been observed when 
PAHs have been combined into complex mixtures. Studies have shown when mutagenic 
compounds were exposed with complex mixtures a decrease in potency was observed 
which may be a result of competitive inhibition preventing the formation of reactive me-
tabolites [110–112]. Similar results have also shown decreasing mutagenic activity with 
increasing mixture complexity of PAHs [113]. Although increase in potency has also been 
observed [111,112]. While there are no known carcinogens in this study, it is possible that 
some of the more potent chemicals, such as those in the Toxicity Mix that have been shown 
to have mutagenic properties, may have reduced potency when combined with other 
PAHs in the Creosote-Fire Mix due to interactions with these other chemicals. Mixture 
interactions that may be occurring within these mixtures highlight the complexity of mix-
tures and the different interactions that may occur depending on the composition of the 
mixture [113]. 
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5. Conclusions 
Currently, there is no guidance as to which components need to be in common be-

tween the sufficiently similar and mixture of interest. This lack of guidance results in sev-
eral different approaches to form sufficiently similar mixture that may cause differences 
in toxicity screening results. This study explored different approaches to form sufficiently 
similar mixtures to make comparisons between chemical composition, bioactivity, and 
potency of mixtures based on the approach. The toxicity-based and novel combination 
approach used multiple lines of evidence to fill data gaps for existing toxicity data and 
account for a wide array of biological activity of PAHs. Through this process significant 
data gaps regarding available toxicity information for PAHs was identified. To address 
these data gaps, in silico models were used, however, gaps in toxicity information im-
pacted the accuracy of in silico predicted toxicity values. Toxicity information for alkyl-
ated PAHs was particularly sparse highlighting the need for more toxicity studies on this 
subset of PAHs. Comparison of high-throughput screening in zebrafish did show similar 
prioritization of chemicals in this study with traditional non-cancer toxicity values, which 
highlights the value of zebrafish for prioritization of PAHs that may be further investi-
gated for the derivation of toxicity values. 

The results from this study provide useful information regarding potential ap-
proaches used for simplifying complex mixtures for hazard characterization. Results 
demonstrated the combination approach as the ideal approach due its ability to prioritize 
chemicals with high exposure and hazard potential. In this study, direct toxicological 
comparisons were not able to be made between the complex mixture and the simple mix-
tures to evaluate for sufficient similarity from a biological standpoint. Future studies 
could further investigate the utility of this weighted approach against a more well-char-
acterized complex mixture (i.e., a standard reference mixture) rather than the real-world 
mixture with unknown toxicity used in this study. Results showed Toxicity Mix was the 
most potent mixture, although the chemicals in this mixture are understudied. These re-
sults warrant further investigations into the toxicity of the chemicals in Toxicity Mix. Ad-
ditionally, differences in potency between the Abundance and Weighted-Toxicity Mix, 
regardless of the significant overlap in chemical composition, were observed. These re-
sults also suggest future studies could investigate the individual chemicals in Weighted-
Toxicity Mix to identify which chemicals may be contributing to the higher potency of this 
mixture. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/toxics10110651/s1, Table S1: List of polycyclic aromatic hy-
drocarbon CAS#’s, detection limits, and physicochemical properties in analytical method used to 
quantify environmental samples and sufficiently similar mixtures in order of retention time. Table 
S2: PAH concentrations (ng/m3) for each site and mean and standard deviation. Table S3: List of 
chemicals used to create sufficiently similar mixtures, purity, and supplier. Table S4: Key to terato-
genic super endpoint abbreviations with definitions. Table S5: ncidence (%) of effect for 13 zebrafish 
morphological endpoints for Abundance Mix (Abun. Mix), Creosote-Fire Mix (SC Mix), Toxicity 
Mix (Tox Mix) and Weighted Toxicity Mix (WA-Tox Mix) and for A.) 0–75 µM and B.) 0–600 µM 
test concentrations (conc). Abbreviations for each morphological endpoint can be found in Table S4. 
Table S6:  Key to teratogenic super endpoint abbreviations with definitions. Table S5: ncidence (%) 
of effect for 13 zebrafish morphological endpoints for Abundance Mix (Abun. Mix), Creosote-Fire 
Mix (SC Mix), Toxicity Mix (Tox Mix) and Weighted Toxicity Mix (WA-Tox Mix) and for A.) 0–75 
µM and B.) 0–600 µM test concentrations (conc). Abbreviations for each morphological endpoint 
can be found in Table S4. Table S6: List of collected toxicity metrics for the detected PAHs in the 
environmental sample and associated sources for each toxicity metric. Empirically derived values 
are in bold for Cancer Potency Value (CPV), Inhalation Unit Risk (IUR), Reference Concentration 
(RfC), Oral Slope Factor (OSF), and Reference Dose (RfD). Table S7: Rankings of chemicals for indi-
vidual toxicity metrics for Toxicity Mixture. Table S8: Ranking of chemicals for individual toxicity 
metrics for Weighted-Toxicity Mixture. Table S9: Percentage of chemicals in each sufficiently similar 
mixture. Table S10: Percentage of chemicals in 30 PAH mixture (Creosote-Fire Mixture). Table S11: 
Bioassay results in 2D NHBE expressed as average percent response relative to vehicle control +/- 
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standard deviation. Average concentrations calculated for total of n=6 from two duplicate plates for 
MMP and CTG. Average concentrations for total n = 4 from a single plate for ROS-Glo and LDH. 
Concentration not tested for a given assay were denoted by NA. Table S12: % Incidence of zebrafish 
endpoints any effect and mortality at 120 hours post fertilization (hpf). Average % incidence from 3 
replicate plates with n = 12 on each plate for a total n = 36. Each mixture had its own set of controls 
for each plate. Figure S1: Concentration-Response Curves for Release of LDH in NHBE. Plots are in 
order of decreasing potency based on predicted EC50 values. Concentrations significantly different 
from control are denoted with an asterisk (*). p < 0.05 *; p < 0.01 **; p < 0.001 *** Figure S2: ROS 
generation in NHBE and associated lowest effect levels (LEL). LEL defined as the lowest concentra-
tion significant from control. Concentrations significantly different from control are denoted with 
an asterisk (*). p < 0.05 *; p < 0.01 **; p < 0.001 ***  Figure S3: Concentration response plots for 
zebrafish morphology screening for the positive control (Parathion), Abundance Mix (Abun. Mix), 
Creosote-Fire Mix (SC Mix), Toxicity Mix (Tox Mix) and Weighted Toxicity Mix (WA-Tox Mix) and 
for A.) 0–75 µM and B.) 0-600 µM test concentrations. Morphological effects above the binomial 
significance threshold are denoted with a red circle. Each red circle represents an individual hit for 
that morphological effect. Reference [114] is cited in the supplementary materials. 
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