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Abstract: Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth.
However, limited investigations considered the roles of parity and delivery on PFASs distributions
and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were
investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher
maternal ages who underwent cesarean section were associated with elevated PFASs burden, while
parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic
acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was signif-
icantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): −0.274,
−0.031, p = 0.014), 0.217 kg (95% CI: −0.385, −0.049, p = 0.012), and 0.137 kg (95% CI: −0.270, −0.003,
p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate
(PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27,
3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth.
In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly
associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95%
CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum,
which was influenced by maternal characteristics and significantly associated with several birth
outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.

Keywords: perfluoroalkyl substances; prenatal exposure; maternal determinants; birth weight; apgar
scores; preterm birth; mixture effects

1. Introduction

Perfluoroalkyl substances (PFASs) comprise a group of synthetic fluorinated chemicals
that have been widely used in cleaning products, textiles, adhesive food packaging, and
fire foam for decades [1–4]. Through water drinking, food consumption, and air inhalation,
PFASs chemicals are able to enter the human body, binding to serum albumin and then
distributed in the lungs, liver, and brain [5,6]. This is particularly problematic for pregnant
women and their newborns since they are vulnerable to exogenous exposure and PFASs are
“known to be toxic” [7]. Currently, increasing numbers of studies have detected PFASs in
the umbilical cord, maternal serum, placenta, meconium, and fecal samples [8–10], which
exerted health concerns for the long term.

Among the above matrix, PFASs in maternal serum are commonly used to reveal the
prenatal and in-uterus exposure because of the data feasibility and sample availability [11].
For expectant mothers, maternal age, body mass index (BMI), water drinking source,
and die features have been widely identified as predictors of PFASs exposure in maternal
serum [12–22]. Prior studies also suggested that longer breastfeeding duration might reduce
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PFASs burden in mothers [16]. A U.S. birth cohort further confirmed that women who
were parous, with a previous breastfeeding history, black race, or in alower income bracket
had significantly declined geometric mean concentrations of perfluorooctane sulfonate
(PFOS) and perfluorooctanoic acid (PFOA) [23]. Among all these possible determinants,
whether parity and delivery mode are associated with PFASs accumulation has not been
well documented so far.

For fetuses, chemical exposure during gestation periods could adversely affect child
and adult growth [14,24–26]. In-depth evidence related the fetal growth impairment of
reduced birth weight to multiple PFASs exposure [27–30]. A recent meta-analysis consider-
ing 46 epidemiological studies suggested that birth weight was inversely associated with
PFASs exposure, with effect sizes ranging from −181.2 g per ng/mL increase in perfluo-
roheptanesulfonate (PFHpS) to −24.3 g per ln (ng/mL) increase in perfluorodecaoic acid
(PFDA) [31]. Preterm birth was defined as <37 completed weeks’ gestation. Gestational
exposure to several PFASs compounds was associated with increased odds of preterm
birth [31–33], however, some prospective cohorts provided null association [34]. For fetal
growth considerations, reliance on birth weight and gestation age as the birth anthropo-
metric measurements precludes the determination of physical development associated
with PFASs exposure. The activity, pulse, grimace, appearance, and respiration (Apgar
score) has emerged as a standard evaluation method for assessing the physical condition
of a child, which is conducted 1 and 5 min after birth [35]. Currently, only two studies
have examined the effect of PFASs on infant Apgar scores but they showed inconsistent
directions [35,36]. Moreover, it is noteworthy that most previous studies in this field have
assessed the associations based on individual PFAS chemical exposure, which seems “in-
sufficient” for risk evaluations [32,37,38]. Considering the complex exposure patterns and
highly correlated compounds, the evidence regarding the joint effects of PFASs on birth
outcomes appears to be a sheer necessity in biomonitoring work.

Given the aforementioned data, this study monitored 14 PFASs in maternal serum
from 506 mother-infant pairs in Hangzhou, China. We aimed to (1) measure PFASs profiles
in maternal serum before delivery, (2) explore the potential sociodemographic predictors
of PFASs exposure, and (3) provide epidemiologic evidence on both joint and individual
associations between PFASs exposure and birth outcomes (continuous outcomes of birth
weight, Apgar 1 and Apgar 5 as well as the binary outcome of preterm birth).

2. Materials and Methods
2.1. Study Population, Birth Outcome Ascertainment and Sample Collection

Maternal-neonatal pairs were recruited, and prenatal maternal serum was collected at
the Women’s Hospital School of Medicine, Zhejiang University in Hangzhou, China from
October 2020 to September 2021. The eligible mothers were older than 20 y and excluded
from reporting serious medical treatment history, including neoplastic diseases, cardiovas-
cular diseases, renal failure, aortic surgery, chronic liver failure, gestational hypertension,
and other medical conditions [21]. The infants who met the research conditions were
singletons and had no congenital diseases. Consequently, the 506 birth cohort was finally
included in the survey. Demographic characteristics, including maternal age, prenatal
BMI, education, occupation, smoking, alcohol drinking, ethnicity, and parity were collected
from structured questionnaires and follow-up medical records. The gestational age was
determined based on the last menstrual period [39] and the information on gestational age
and mode of delivery was recorded at delivery (Table S1).

Birth weight (kg) and Apgar scores (Apgar-1 and Apgar-5) were collected from the
delivery records. The World Health Organization defines preterm birth as birth occurring
before 37 completed weeks of gestation [40].

Blood samples were collected at the hospital (with the permission of the Medical
Ethics Committee of Women’s Hospital, School of Medicine, Zhejiang University (IRB-
20200055-R), and written consent was obtained from each donor) and then centrifuged at
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4000 rpm for 20 min to separate and extract the serum. Finally, the serum was transferred
to a polypropylene tube and stored at −4 ◦C for further analysis.

2.2. Sample Extraction and Instrument Analysis

Native standards of perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic
acids (PFCAs), and corresponding isotopically labeled internal standards were supplied
by Wellington Laboratories (Guelph, ON, Canada). The ammonium hydroxide, high-
performance liquid chromatography-grade (HPLC-grade) methanol, and formic acid were
purchased from J&K Chemicals (Shanghai, China). A total of 14 PFASs and corresponding
internal standards are available in Table S2.

Solid-phase extraction was conducted to extract the PFASs from the serum samples.
The procedures are presented in detail in SI. All serum samples were spiked with isotopi-
cally labeled internal standards. Cartridges were activated after the precondition. Prepared
samples were subsequently passed through the cartridges, which were then washed [41]
(Woudneh et al., 2019). Ammonium hydroxide in methanol and methanol were used to
elute chemicals. The eluates were collected and evaporated until they were dry and then
rediluted in methanol [41,42]. The aforementioned extracts were vortex-mixed and then
transferred to polypropylene vials prior to analysis [10].

Compounds were separated using an Acquity UPLC BEH C18 column (2.1 mm × 50 mm,
1.7 µm, Waters, Dublin, Ireland). All 14 target compounds were analyzed on a UPLC-
tandem electrospray equipped with the Xevo TQ-Striple quadrupole mass spectrometry
system (Waters ACQUITY UPLC I-Class, Milford, MA, USA). The MS parameters of the
target analytes are listed in Table S3.

2.3. Quality Assurance and Quality Control

All laboratory utensils were polypropylene and moistened with Milli-Q water and
HPLC-grade methanol three times before use. To check for potential background contami-
nation between batches, procedure blanks for every 20 samples were included. The PFASs
in the present study were quantified using the internal-standard method. Calibration
consisted of native PFASs containing internal calibration. The process blank sample, matrix
spiked sample, and three groups of parallel samples were repeated twice for each group
for the quality control measures in the pretreatment process. The mean matrix spiked
recoveries ranged from 86.7% to 107%. The corresponding internal standard, correlation
coefficient, detection limit, quantification limit, and method detection limit of each target
compound are shown in Table S2. The limits of detection and quantification are defined as
the concentrations in the diluted standard solution in response to the signal-to-noise ratio
of 3 and 10.

2.4. Statistical Analysis

Descriptive statistical analyses, including the mean ± standard deviation (SD) and n
(%), were selected to express the demographic characteristics. All data were assessed for
normality and homogeneity via the Kolmogorov–Smirnov test and the Bartlett test [39].
PFASs concentrations were expressed as medians with interquartile ranges (IQR). The
PFASs concentrations showed skewed distributions; thus, the PFASs exposure was log10-
transformed before further analysis [43]. The Spearman correlation coefficient estimated
the correlations between individual PFASs compounds. Nonparametric Mann–Whitney U
testing and Kruskal–Wallis analysis were conducted to compare the concentrations of the
possible sociodemographic predictors employed to explore the effects of maternal factors
on PFASs distributions.

Univariate and multivariate linear regression models were utilized to determine the
associations between the concentration of each PFAS compound and birth outcomes. For
continuous outcome variables of birth weight and Apgar scores, the results were expressed
as estimated changes in each unit per log-unit increase in PFASs in the maternal serum
(β and 95% confidence intervals (CI)). For the categorical dependent variable of preterm
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birth, binary logistic regression models were used to estimate the odds ratios (ORs) and
95% CI for preterm birth and PFASs exposures [32]. For the mixture analysis, a quantile-
based g-computation was performed to estimate the joint effects of PFASs in relation to
birth outcomes. This novel method combined weighted quantile sum regression and g-
computation [44,45], which produces estimates of the simultaneous effect on the overall
effects of an increase of exposure mixture by one quantile [46]. In this study, the quantile
was set to one quartile increase in log-PFAS concentrations, and each exposure is given its
weight and direction [19,46]. Potential covariates were chosen a priori [10,30,31,37,47,48]
and a directed acyclic graph (DAG) (Figure S1): maternal age (years), prenatal BMI, educa-
tion (below high school, college, postgraduates), occupation (employee, self-employment,
unemployment), smoking (yes or no), alcohol drinking (yes or no), ethnicity (Han or others),
delivery mode (spontaneous labor or cesarean birth) and parity (1, 2, ≥3). p < 0.05 was
regarded as statistically significant. All analyses were performed using SPSS (Version 22.0;
SPSS Inc., Chicago, IL, USA) and R (version 4.2.0) with the “qgcomp” package.

3. Results and Discussions
3.1. Demographic Characteristics of the Studied Population

The pregnant women included in the study were aged 31.3 (SD = 4.28) y on aver-
age at delivery. Prenatal BMI was 26.7 ± 3.16 kg/m2, with an average gestation age of
265 ± 28.3 d. About 41.3% were primiparous, and nearly 51.2% of mothers had sponta-
neous labor. Of the newborns, 52.9% were male. There were 89 neonates born with preterm
birth and the percentage was 17.6%. The average birth weight was 3.11 (SD = 0.75) kg
and the average neonatal Apgar-1 and Apgar-5 scores were 9.88 and 9.99, respectively.
Approximately 2.6% and 2.0% of newborns had Apgar-1 and Apgar-5 scores below 8. All
the demographic information is shown in Table S1.

3.2. PFASs Distributions in Maternal Serum

Fourteen PFASs homologs were analyzed in the maternal serum. Except for PFTeDA,
PFHxS, and PFHpS, all compounds exhibited high detection frequencies exceeding 80%.
As shown in Figure 1, PFOA was the most abundant PFASs, with the median concen-
tration of 13.6 ng/mL, followed by PFOS (4.32 ng/mL) > PFNA (1.66 ng/mL) > PFDA
(1.48 ng/mL) > PFUnDA (1.33 ng/mL) > PFHpA (0.625 ng/mL) > PFHxS (0.250 ng/mL) > PF-
TrDA (0.225 ng/mL) > PFDoA (0.200 ng/mL)> PFTeDA (0.050 ng/mL) ≈ PFDS, PFPeS,
PFNS (Table S4). As displayed in Table S5 and Figure 2, significant positive correlations
were found among several long-chain PFASs (C ≥ 8 i.e., PFDA, PFUnDA, PFOS, PFDoA,
PFNA, PFOA).

Compared with the previous studies in the past three years, the median PFOA concen-
trations were higher than those of Shenyang, China (3.27 ng/mL) [49], Odense, Denmark
(1.7 ng/mL) [50], and Hokkaido, Japan (2.0 ng/mL) [51]. The median PFOS concen-
trations in this study were comparable to those reported in New Jersey, United States
(median, 4.25 ng/mL) [2], slightly higher than that in Hokkaido, Japan (3.4 ng/mL) [51]
but lower than that in Hebei, China (7.3 ng/mL) [52] (Wang et al., 2018), Guangdong,
China (7.15 ng/mL) [27], Odense, Denmark (7.5 ng/mL) [50], and the United Kingdom
(13.8 ng/mL) [53]. For other homologs, PFNA (C9) had the third highest level, comprising
7.58% of the total PFASs. The median concentration of PFNA (1.66 ng/mL) was consider-
ably higher than that reported in Guangzhou, China (0.2 ng/mL) [39] and Beijing, China
(0.57 ng/mL) [54]. Different from PFOS and PFOA, PFNA had an elimination rate of
1–2 months and was preferentially stored in the liver [55]. As the major long-chain PFASs
(C9–C13), PFNA could have higher acute toxicity and bioaccumulation potential than
short-chain PFASs [56].
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3.3. Potential Roles of Maternal Determinants

Higher maternal age (>35 years) was significantly associated with higher concentra-
tions of PFOA, PFNA, PFDA, PFUnDA, PFOS, and PFPeS than those in the lower age
groups (p < 0.05) (Table 1). Our finding may be explained by older women having higher
cumulative PFAS exposure than other women; thus, older women may have had more
PFASs exposure than younger women. This difference was attributable to the biopersistence
and long elimination median half-lives of PFASs [21,57,58]. The concentrations of PFHpA,
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PFOA, and PFHxS in the highestbody mass index (BMI) group were elevated compared to
those in the other two groups, whereas women with pre-pregnancy BMI > 25 kg/m2 had
lower PFNA, PFUnDA, and PFHpS levels than did those with normal BMI (<25 kg/m2). In
this study, no significant associations between BMI and serum PFAS were noted. Lipophilic
persistent organic pollutants can usually accumulate and become enriched in adipose tissue,
which was described as the BMI of the mothers. However, mixed results were found for
PFASs mainly bound to albumin-positive, null, and inverse associations between BMI and
PFASs concentrations [21,59].

Parity played a significant role in PFASs exposure. Primiparous mothers tend to
have significantly higher levels of PFDoA and PFTrDA than multiparous ones (p < 0.05).
Nevertheless, PFOA, PFDA, PFUnDA, PFNA, PFOS, PFNS, and PFHxS exhibited a reverse
trend in that the concentrations were significantly higher in multiparous women than
in primiparas. It can be seen that parity was associated with higher concentrations of
seven PFASs but the differences between nulliparous and parous women became smaller
for PFOS, PFNS, PFOA, and PFHpS. In this study, we cannot draw the conclusion that
parity was a strong negative or positive predictor of maternal PFAS status for individual
differences between study subjects. However, a prior study has reported that a Swedish
birth cohort observed that parity was inversely associated with eight serum PFASs except
for PFOS, PFNA, and PFOA concentrations declined as parity increased [60]. Breastfeeding
and delivery were identified as the main pathways for PFASs excretion and the elimination
by lactation and placental transfer related to lowering PFASs exposure [58,61,62]. However,
some other studies suggested that the effects of lactation and childbirth have gradually
disappeared, and the PFASs levels have returned to the prenatal concentrations [63].

In addition, the current study firstly explored the association between delivery modes
and PFASs exposure. The concentrations of PFOA, PFDA, PFUnDA, PFOS, PFHxS, and
PFPeS were significantly higher in mothers who underwent cesarean section (C-section)
than in those who had spontaneous delivery. In this study, the majority of pregnant women
who delivered their babies via C-section were in the elderly group, who tend to accumulate
PFASs for a longer time. The poor contractile force and guiding extension tension of the
uterus of elderly pregnant women can easily prolong the delivery time, and the fetus
delivered via C-section also had the problem of excessive birth size.

3.4. Associations between PFASs Exposure and Birth Weight and Apgar Scores

Univariate linear regression results suggested that serum PFOA, PFOS, and PFNS
were inversely associated with birth weight (Table 2). Specifically, each logarithmic unit
increment in PFOA, PFOS, and PFNS was significantly related to the following reduced
birth weights, respectively: 0.153 kg (95% CI: −0.274, −0.031, p = 0.014), 0.217 kg (95%
CI: −0.385, −0.049 p =0.012), and 0.137 kg (95% CI: −0.270, −0.003 p = 0.044). When
adjusted for all covariates, the negative associations remained but were not significant
for PFOA: −0.110 kg (95%CI: −0.232, 0.012). Moreover, PFNA, PFUnDA, PFTeDA, and
PFHpS exhibited a negative correlation with birth weight in both models, although these
data were not significant. Given that PFASs had strong inter-correlations, we, therefore,
performed quantile-based g-computations to further explore the joint effects of PFASs on
birth outcomes. However, there was no significant association between the PFASs mixture
and birth weight (Figure S2a and Table 3). By weight in decreasing order, PFOS, PFNA,
PFHpS, PFOA, and PFNS had a negative influence on the total PFASs mixture estimate
on birth weight, while other PFASs exhibited positive effects (Figure 3). Birth weight can
be adversely affected by prenatal PFASs exposure in utero [64]. Previous epidemiological
evidence suggested higher PFASs (particularly PFOA and PFOS) exposure in relation
to lower birth weights in newborns [6,28,47,65]. Several mechanisms were proposed to
explain the negative correlation. Firstly, fetal reproductive hormones, such as estradiol,
total testosterone, and progesterone, could be affected by in utero exposure to PFOS and
PFOA, these substances could adversely affect fetal development [66]. Furthermore, PFASs
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exposure obstructed trophoblast cell proliferation, indicating a possible association between
prenatal PFASs exposure and adverse placentation [67].

Table 1. Effect of different demographic characteristics on the distribution of PFASs (ng/mL) in
maternal serum (Mean ± SD).

PFHpA PFOA PFNA PFDA PFUnDA PFDoA PFTrDA

Maternal age

<30 0.045 ± 0.756 0.957 ± 0.526 0.140 ± 0.374 0.163 ± 0.399 0.091 ± 0.419 0.711 ± 0.410 0.648 ± 0.578

30–35 0.142 ± 0.763 0.963 ± 0.561 0.212 ± 0.366 0.192 ± 0.374 0.174 ± 0.446 0.675 ± 0.411 0.644 ± 0.642

>35 0.259 ± 0.757 1.22 ± 0.415 0.299 ± 0.364 0.340 ± 0.455 0.368 ± 0.420 0.578 ± 0.372 0.634 ± 0.514

p 0.123 0.000 ** 0.003 * 0.003 * 0.000 ** 0.043 * 0.986

Prenatal BMI

<25 0.068 ± 0.726 0.938 ± 0.569 0.217 ± 0.335 0.237 ± 0.354 0.196 ± 0.414 0.650 ± 0.393 0.607 ± 0.555

25–30 0.125 ± 0.773 1.023 ± 0.510 0.190 ± 0.393 0.179 ± 0.406 0.171 ± 0.455 0.687 ± 0.405 0.667 ± 0.629

>30 0.279 ± 0.765 1.098 ± 0.508 0.191 ± 0.388 0.220 ± 0.482 0.136 ± 0.452 0.678 ± 0.446 0.655 ± 0.580

p 0.181 0.071 0.758 0.335 0.614 0.663 0.760

Mode of delivery

Spontaneous labor 0.057 ± 0.748 0.850 ± 0.543 0.171 ± 0.368 0.136 ± 0.360 0.109 ± 0.415 0.712 ± 0.412 0.656 ± 0.594

cesarean birth 0.176 ± 0.769 1.14 ± 0.487 0.221 ± 0.375 0.264 ± 0.428 0.229 ± 0.453 0.640 ± 0.399 0.633 ± 0.599

p 0.110 0.000 ** 0.136 0.000 ** 0.002 * 0.050 * 0.679

Parity

1 0.101 ± 0.762 1.01 ± 0.505 0.121 ± 0.368 0.134 ± 0.393 0.088 ± 0.432 0.726 ± 0.396 0.719 ± 0.619

2 0.167 ± 0.769 0.953 ± 0.584 0.211 ± 0.401 0.197 ± 0.390 0.176 ± 0.450 0.658 ± 0.382 0.626 ± 0.600

≥3 0.124 ± 0.758 1.04 ± 0.517 0.295 ± 0.325 0.316 ± 0.406 0.296 ± 0.415 0.610 ± 0.437 0.550 ± 0.544

p 0.772 0.002 * 0.000 ** 0.000 ** 0.000 ** 0.028 * 0.037 *

PFTeDA PFOS PFNS PFHxS PFPeS PFHpS PFDS

Maternal age

<30 1.21 ± 0.510 0.563 ± 0.336 1.18 ± 0.569 0.485 ± 0.722 1.23 ± 0.358 1.19 ± 0.478 1.28 ± 0.348

30–35 1.13 ± 0.527 0.671 ± 0.387 1.19 ± 0.542 0.503 ± 0.749 1.19 ± 0.453 1.08 ± 0.568 1.25 ± 0.369

>35 1.07 ± 0.537 0.803 ± 0.366 1.19 ± 0.416 0.696 ± 0.736 1.32 ± 0.325 0.95 ± 0.453 1.34 ± 0.321

p 0.215 0.000 ** 0.972 0.129 0.049 * 0.006 ** 0.201

Prenatal BMI

<25 1.14 ± 0.530 0.660 ± 0.372 1.18 ± 0.530 0.411 ± 0.728 1.24 ± 0.351 1.19 ± 0.519 1.28 ± 0.320

25–30 1.15 ± 0.499 0.643 ± 0.377 1.19 ± 0.543 0.581 ± 0.730 1.19 ± 0.437 1.02 ± 0.528 1.26 ± 0.392

>30 1.14 ± 0.596 0.656 ± 0.370 1.19 ± 0.521 0.579 ± 0.745 1.29 ± 0.353 1.15 ± 0.468 1.32 ± 0.288

p 0.221 0.767 0.985 0.546 0.067 0.133 0.501

Mode of delivery

Spontaneous labor 1.22 ± 0.487 0.586 ± 0.360 1.23 ± 0.508 0.365 ± 0.725 1.17 ± 0.413 1.16 ± 0.479 1.25 ± 0.336

cesarean birth 1.10 ± 0.541 0.705 ± 0.374 1.15 ± 0.550 0.675 ± 0.721 1.27 ± 0.380 1.05 ± 0.548 1.30 ± 0.368

p 0.044 * 0.000 ** 0.099 0.000 ** 0.004 * 0.057 0.101

Parity

1 1.19 ± 0.525 0.612 ± 0.365 1.12 ± 0.580 0.547 ± 0.737 1.21 ± 0.379 1.13 ± 0.522 1.27 ± 0.346

2 1.14 ± 0.520 0.644 ± 0.376 1.19 ± 0.563 0.347 ± 0.714 1.20 ± 0.393 1.18 ± 0.450 1.31 ± 0.340

≥3 1.10 ± 0.525 0.713 ± 0.375 1.27 ± 0.407 0.678 ± 0.733 1.26 ± 0.434 0.968 ± 0.562 1.25 ± 0.377

p 0.447 0.041 * 0.046 * 0.003 ** 0.408 0.008 ** 0.371

Note: Nonparametric Mann-Whitney U testing and Kruskal-Wallis analysis were conducted to compare the
concentrations of PFASs between different groups of sociodemographic predictors, * p < 0.05; ** p < 0.01.
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Table 2. Multivariable linear regression analyses of serum PFASs in relation to birth weight and
Apgar scores.

Birth Weight Apgar-1 Apgar-5

Compounds β (95% CI) p β (95% CI) p β (95% CI) p

PFHpA
Univariate a 0.072 (−0.025, 0.169) 0.145 0.079 (0.015, 0.142) 0.016 * 0.004 (−0.013, 0.022) 0.629

Fully adjusted b 0.091 (−0.002, 0.183) 0.056 0.065 (0.002, 0.129) 0.044 * 0.002 (−0.016, 0.020) 0.841
PFOA

Univariate a −0.153 (−0.274, −0.031) 0.014 * 0.049 (−0.128, 0.029) 0.215 −0.001 (−0021, 0.020) 0.960
Fully adjusted b −0.110 (−0.232, 0.012) 0.077 −0.006 (−0.086, 0.075) 0.887 0.001 (−0.021, 0.024) 0.902

PFNA
Univariate a −0.076 (−0.252, 0.100) 0.395 −0.007 (−0.119, 0.105) 0.907 −0.007 (−0.037, 0.023) 0.653

Fully adjusted b −0.021 (−0.191, 0.149) 0.807 −0.032 (−0.144, 0.081) 0.582 −0.012 (−0.043, 0.019) 0.463
PFDA

Univariate a −0.051 (−0.214, 0.113) 0.544 0.005 (−0.099, 0.110) 0.918 0.007 (−0.021, 0.035) 0.631
Fully adjusted b 0.034 (−0.125, 0.194) 0.674 0.010 (−0.096, 0.116) 0.855 0.004 (−0.025, 0.033) 0.772

PFUnDA
Univariate a −0.084 (−0.232, 0.064) 0.266 0.034 (−0.061, 0.128) 0.483 0.010 (−0.015, 0.035) 0.425

Fully adjusted b −0.017 (−0.163, 0.128) 0.814 0.028 (−0.068, 0.124) 0.571 0.008 (−0.018, 0.035) 0.535
PFDoA

Univariate a 0.004 (−0.161, 0.168) 0.964 0.039 (−0.063, 0.141) 0.455 0.028 (0.000, 0.056) 0.054
Fully adjusted b 0.068 (−0.089, 0.225) 0.396 0.027 (−0.074, 0.129) 0.597 0.027 (−0.002, 0.055) 0.068

PFTrDA
Univariate a 0.009 (−0.108, 0.125) 0.885 0.001 (−0.074, 0.076) 0.976 −0.021 (−0.032, 0.008) 0.249

Fully adjusted b 0.023 (−0.088, 0.134) 0.684 −0.017 (−0.091, 0.057) 0.654 −0.014 (−0.034, 0.007) 0.182
PFTeDA

Univariate a −0.088 (−0.260, 0.084) 0.314 −0.054 (−0.167, 0.059) 0.347 −0.004 (−0.026, 0.017) 0.677
Fully adjusted b −0.069 (−0.240, 0.101) 0.425 −0.049 (−0.160, 0.063) 0.389 −0.004 (−0.026, 0.017) 0.702

PFHxS
Univariate a 0.123 (0.024, 0.223) 0.015 * 0.057 (−0.008, 0.121) 0.087 0.008 (−0.006, 0.022) 0.258

Fully adjusted b 0.108 (0.012, 0.204) 0.028 * 0.040 (−0.024, 0.105) 0.221 −0.006 (−0.008, 0.021) 0.378
PFPeS

Univariate a 0.226 (0.053, 0.398) 0.010 * 0.139 (0.027, 0.251) 0.015 * 0.024 (−0.008, 0.056) 0.137
Fully adjusted b 0.171 (0.008, 0.333) 0.039 * 0.117 (0.006, 0.228) 0.039 * 0.023 (−0.009, 0.056) 0.153

PFHpS
Univariate a −0.018 (0.174, 0.138) 0.824 0.069 (−0.036, 0.174) 0.194 0.009 (−0.020, 0.039) 0.528

Fully adjusted b −0.014 (−0.162, 0.133) 0.849 0.080 (−0.023, 0.184) 0.129 0.011 (−0.019, 0.041) 0.460
PFOS

Univariate a −0.217 (−0.385, −0.049) 0.012 * 0.008 (−0.104, 0.120) 0.883 0.006 (−0.024, 0.036) 0.678
Fully adjusted b 0.037 (−0.071, 0.145) 0.498 0.073 (−0.043, 0.189) 0.217 0.018 (−0.014, 0.050) 0.272

PFNS
Univariate a −0.137 (−0.270, −0.003) 0.044 * −0.024 (−0.107, 0.059) 0.569 −0.011 (−0.028, 0.006) 0.192

Fully adjusted b 0.045 (−0.037, 0.126) 0.284 0.018 (−0.066, 0.102) 0.673 −0.005 (−0.023, 0.012) 0.549
PFDS

Univariate a −0.104 (−0.234, 0.026) 0.117 −0.007 (−0.089, 0.075) 0.863 −0.008 (−0.025, 0.008) 0.326
Fully adjusted b 0.171 (−0.018, 0.361) 0.076 0.014 (−0.121, 0.149) 0.836 −0.001 (−0.040, 0.037) 0.951

a The estimate was described as β (95% CI) derived from one quantile increase in overall PFASs mixture. b The
estimates were described as OR (95% CI) derived from one quantile increase in overall PFASs mixture. * p < 0.05
was regarded as statistically significant.

With regard to Apgar scores (activity, pulse, grimace, appearance, and respiration), in
the fully adjusted models, per logarithmic unit increase in PFHpA and PFHpS exposure
was associated with increased Apgar-1 scores of 0.065 (95% CI: 0.002, 0.129, p = 0.044) and
0.117 (95% CI: 0.006, 0.228, p = 0.039). Quantile g-computation model indicated that increas-
ing all PFASs in the mixture by one quartile was significant with a 0.324 increase in Apgar-1
(95% CI: 0.068, 0.579, p = 0.013) (Figure S2b). However, no significant association was found
between PFASs and Apgar-5, neither individual nor joint exposure (Figure S2c). To date,
only two studies have thus far investigated the associations between PFASs exposure and
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Apgar scores. A birth cohort reported a decrease in the mean Apgar score in logarithm-
transformed PFOA concentrations (β: −1.37, 95% CI: −2.42 to −0.32) [35]. Another birth
cohort study from Denmark indicated that the odds ratios for Apgar score <10 were 1.20
(95% CI: 0.67, 2.14) and 1.14 (95% CI: 0.57, 2.25) for higher PFOS and PFOA exposures [36].
These two studies draw the conclusion that PFOS and PFOA could enhance the probability
of score reduction, but it is not the case in this study. It was noteworthy, as two shorter
chain PFASs than C8-PFASs, PFHpA and PFHpS were thought to be less bioaccumulative
and have comparably lower toxicity profiles. Positive associations were previously found
for PFHpA, PFOA, PFHpS, and PFOS and lower respiratory tract infections (LRTI) [68].
Findings from the Shenyang birth cohort indicated that PFHpA was the important con-
tributor (45.0%) among the PFASs mixture to the decrease of thyroid stimulating hormone
(TSH) levels of newborns [49]. A negative association between PFHpA and luteinizing
hormone (LH) and free androgen index (FAI) was also previously confirmed [69]. Since
there is no previous information discussing the effects of PFHpA and PFHpS on the Apgar
scores, and they were not a major contributor to total PFASs concentrations in maternal
serum, the reproductive toxicity of whether these two short-chain PFASs exerted the health
effects on the fetal growth remains uncertain.

Table 3. Estimates and 95% CIs for quantile-based g-computation of PFASs on birth outcomes.

PFAS Mixture Estimates 95% CI p Value

birth weight a 0.096 −0.170, 0.363 0.479
Apgar-1 a 0.324 0.068, 0.579 0.013 *
Apgar-5 a 0.128 −0.083, 0.399 0.234

preterm birth b 0.356 0.149, 0.845 0.019*
Note: The models were adjusted for maternal age, prenatal BMI, education, occupation, smoking, alcohol drinking,
ethnicity, delivery mode and parity. a The estimate was described as β (95% CI) derived from one quantile increase
in overall PFASs mixture. b The estimate was described as OR (95% CI) derived from one quantile increase in
overall PFASs mixture. * p < 0.05 was regarded as statistically significant.
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3.5. PFASs Exposure in Relation to Preterm Birth

Binary logistic regressions were performed to present the associations between each
PFASs compound exposure and preterm birth. As Figure 4 demonstrated, the odds of
preterm birth was 2.17 fold (95% CI: 1.27, 3.71, p = 0.004) and 1.59 fold (95% CI: 1.01, 2.50,
p = 0.043) greater per log-ng/mL of PFOA and PFNS concentration in maternal serum.
This was in accordance with numerous studies, for example, elevated odds of preterm
birth were found in association with higher maternal PFOA, PFBA, and PFNA from a
family-based birth cohort study in coastal China [33]. Similar results have been reported in
Guangzhou with a significant 2.03-fold (95% CI: 1.24, 3.32) higher odds of preterm birth
per log-ng/mL PFOS in maternal serum [27]. A nearly 2-fold increase in preterm risks
was observed for the higher quartiles of PFOA and PFOS exposure birth from a Danish
National Birth Cohort of 3535 mother-infant pairs, higher PFNA, PFHpS, and PFDA also
led to the elevated risks of preterm birth [70]. Nevertheless, some of the literature showed
contradictory evidence. No significant associations were observed between PFASs and
overall spontaneous or indicated preterm birth in 2849 maternal-neonatal pairs in Shanghai,
China [34]. Two findings suggested no elevated preterm risk was induced by low PFASs
maternal exposure [71,72]. A threshold effect of PFASs at less than 2 ng/mL was less likely
to increase preterm risk [72].
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Figure 4. Odds ratios (ORs) [95% confidence interval (CI)] for preterm birth by serum concentrations
of PFASs in logistic regression analyses. Notes: preterm birth risk was estimated for continuous
log-transformed PFASs concentrations in serum; The model was adjusted for maternal age, prenatal
BMI, education, occupation, smoking, alcohol drinking, ethnicity, delivery mode and parity.

Besides, in this study, the associations were reversed for PFPeS (OR = 0.360, 95%
CI: 0.175, 0.740, p = 0.005) and PFDS (OR = 0.371, 95% CI: 0.161, 0.851, p = 0.019), which
inhibited the preterm development. The inverse associations were unexpected and we
did not find directly comparable results from other studies. Moreover, the joint exposure
model indicated an overall inverse dose-response relationship that increasing all PFASs
in the mixture by one quartile was similarly associated with a modest reduction in the
preterm incidence (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019) (Figure S2d). PFOS, PFOA,
and PFNA tended to increase the odds of preterm birth, while others, especially the PFDS
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and PFPeS, exerted a protective influence in the total PFAS mixture estimate on preterm
birth (Figure 4). To date, only two studies considered the combined effect that PFASs were
significantly positively associated with the risk of preterm birth, which was consistent
within the single exposure analysis [33,48]. It should be noted that comparing our results
with these previous studies was challenging due to the incomparable exposure levels, study
population, and diversity in the sample matrix. Especially when we collected the maternal
serum before delivery as the biomonitoring target. Given concerns about effective dose and
reverse causality on the part of this manuscript, whether these PFASs congeners had higher
placental transfer efficiency than PFOS and PFOA, which result in the underestimated
association with maternal serum concentrations should be further clarified.

4. Conclusions

PFASs were widely distributed in the maternal serum, with PFOA, PFOS, and PFHpA
the most abundant PFASs. Maternal age, BMI, parity and delivery mode were considered
as influencing factors of the PFASs burden. Multivariate linear regression suggested that
prenatal exposure to PFOA, PFOS, and PFNS significantly reduced neonatal birth weight.
PFHpA and PFHpS exposure was associated with increased Apgar-1 scores. PFOA and
PFNS were identified as risk factors to preterm birth.

There are some limitations in the present study including the mixed conclusions
with the deficiency of both maternal and neonatal evaluation biomarkers. We brought
new insights regarding the occurrence of PFASs in humans and Apgar scores. However,
we cannot draw the conclusion that PFASs improve the neonatal development on the
Apgar since PFHpA and PFHpS were not major components in the total PFASs exposure.
Moreover, the plancenta transfer for PFASs from mothers to fetus is not investigated in
this study. In this respect, overarching investigations of the active transport mechanism,
prenatal exposure, and reproductive risks of PFASs with a larger sample size are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10110650/s1. Figure S1: Directed acyclic graph for selection of
covariates; Figure S2: Effect of mixed exposure of PFASs on birth outcomes; Table S1: General Char-
acteristics of the Study Population; Table S2: Internal Surrogate Standard Spiked, Limits of detection
(LOD) and Limit of quantification (LOQ) for Target Analytes in Serum Samples; Table S3: MS Param-
eters of Target Analytes;Table S4: Levels of PFASs (ng/mL) in Maternal Serum; Table S5: Correlation
Analysis of PFASs Compounds in Serum. Ref. [73] is cited in the supplementary materials.
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