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Abstract: The transfer of young fecal microbiota has been found to significantly refresh the reproduc-
tive endocrine system and effectively ameliorate the toxicity of perfluorobutanesulfonate (PFBS) in
aged zebrafish recipients. However, the mechanisms underlying the antagonistic action of young fecal
microbiota against the reproductive endocrine toxicity of PFBS remain largely unknown. In this study,
the aged zebrafish were transplanted with feces from young donors and then exposed to PFBS for
14 days. After exposure, the shift in the transcriptomic fingerprint of the gonads was profiled by using
high-throughput sequencing, aiming to provide mechanistic clues into the interactive mode of action
between young fecal transplantation and PFBS’s innate toxicity. The results showed that the gene
transcription pattern associated with protein and lipid synthesis in the gonads of the aged individuals
was quite different from the young counterparts. It was intriguing that the transplantation of young
feces established a youth-like transcriptomic phenotype in the elderly recipients, thus attenuating the
functional decline and maintaining a healthy aging state of the gonads. A sex specificity response
was clearly observed. Compared to the aged females, more metabolic pathways (e.g., glycine, serine,
and threonine metabolism; glyoxylate and dicarboxylate metabolism; pyrimidine metabolism) were
significantly enriched in aged males receiving young feces transplants. PFBS dramatically altered the
transcriptome of aged testes, while a much milder effect was observable in aged ovaries. Accordingly,
a suite of biological processes related to germ cell proliferation were disrupted by PFBS in aged males,
including the ECM–receptor interaction, retinol metabolism, and folate biosynthesis. In aged ovaries
exposed to PFBS, mainly the fatty acid and arginine biosynthesis pathway was significantly affected.
However, these transcriptomic disorders caused by PFBS were largely mitigated in aged gonads
by transferring young feces. Overall, the present findings highlighted the potential of young fecal
transplantation to prevent the functional compromise of gonads resulting from aging and PFBS.

Keywords: aging; PFBS; young fecal transplantation; transcriptome; gonad

1. Introduction

Aging implies biological tissue damage and degeneration, defective self-repair, and
susceptibility to aging-related diseases, which may eventually lead to the declining viability
of the animals [1]. Aging-triggered changes in the organism are also accompanied by the
transition in the intrinsic gut microbial flora. It has been recognized that gut microbiota
gradually evolves alongside aging progression [2]. Aged gut microbiota is generally
characterized by dramatic fluctuations in the abundance, diversity, and metabolism of
intestinal microbes compared to young individuals, leading to pathogen enrichment [3].
The importance of the gut microbial ecosystem is increasingly appreciated, as it maintains
host health by regulating a battery of physiological activities such as energy metabolism,
immune response, and neural signaling [4,5]. Therefore, the intestinal microbial dysfunction
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resulting from aging can subsequently increase the intestinal permeability, which is a major
cause of chronic low-degree systemic inflammation and premature death of the host
animals [6]. There is a growing body of evidence that confirms the interplay between
aging and gut microbes; that is, while aging has physiological effects on the resident
microbiota, host–microbiota interactions similarly affect the rate and extent of aging [7].
As a central component to many age-related changes, the gut microbiota plays a critical
role in maintaining healthy aging condition [8]. A study of extremely old individuals
showed an increased abundance of Christensenella, Akkermansia, and Bifidobacterium in the
gut of experimenters, suggesting a potential impact of gut microbes on life extension [9].
Furthermore, the gut microbiome of centenarians contains microorganisms carrying genes
essential for secondary bile acid metabolism that imparts antimicrobial activity against
Gram-positive pathogens, underlining the role of gut microbes in reducing infections in
centenarians [10]. Collectively, the dynamic and modifiable nature of the gut microbiome
provides potential therapeutic targets to tailor intervention strategies to address the health
challenges associated with aging [11].

Perfluorobutanesulfonate (PFBS), a 4-carbon chain (C4) compound of full fluorination,
is considered a safer alternative to perfluorooctanesulfonate (PFOS) because of a much
shorter serum elimination half-life (25.8 days) than PFOS (4.8 years) [12]. However, the in-
tensive use of PFBS and the transformation of its precursors inevitably cause environmental
pollution [13]. Typically, in a survey of 79 cities in China, the median PFBS concentration in
drinking water (1.21 ng/L) was consistently higher than those of PFOS (0.25 ng/L) and
perfluorooctanoic acid (PFOA, 0.74 ng/L) [14]. Between 2009 and 2017, a significant 24-fold
increase in PFBS concentration from 0.872 to 21.2 µg/L was noted in the groundwater near
a fluorochemical industrial park in China [15]. Via multiple exposure routes (e.g., drinking
water, food, and respiration), animals and humans are increasingly exposed to PFBS, as
exemplified by the detection of PFBS in >95% of samples from Chinese women [16]. After
entry into the organisms, PFBS-like persistent toxic contaminants cause dramatic fluctu-
ations in the stability and resilience of the intestinal microbiota, thereby compromising
the physiological health of the hosts [17,18]. It is a harsh fact that exposure to the detri-
mental effects caused by PFBS pollution may be implicated in the aging processes and
further contribute to the onset and progression of age-related diseases [19]. Accumulating
evidence has demonstrated that exposure to environmentally relevant concentrations of
PFBS (100 µg/L) for 14 days dramatically disrupted the glucose and lipid metabolism as
well as impacted the visual function in aged zebrafish [20–22]. Furthermore, PFBS also
caused potent disturbances in sex endocrine homeostasis and follicular development in the
aged [23].

In the context of the increasing sufferings from environmental pollution and multiple
diseases, strategies to reestablish a normal gut by transferring feces from healthy individu-
als to the diseased recipient gut are being embraced in the field of healthy aging, including
the treatment of inflammatory bowel disease, obesity, and diabetes [24–26]. Furthermore,
our previous study found that transferring fecal microbiota from young donors into aged
zebrafish recipients significantly refreshed the reproductive endocrine system and effec-
tively ameliorated the adverse effects of PFBS [23]. However, the underlying mechanisms
about the antagonistic action of young fecal microbiota against the reproductive endocrine
disruptive toxicity of PFBS remain largely unknown. In this follow-up study, aged zebrafish
(Danio rerio) were transplanted with feces from the young and then exposed to PFBS for
14 days. High-throughput transcriptomic sequencing was used here as a powerful tool to
screen differentially expressed gene (DEG) profiles under the single or dual stress of young
fecal transplants and PFBS. With the incorporation of various bioinformatics analyses, dis-
turbances in biological pathways closely related to the functions of gonads were mapped
to reveal the mechanisms of interaction between young fecal transplants and PFBS on an
aged reproductive system.
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2. Materials and Methods
2.1. Chemicals

PFBS was purchased from Tokyo Chemical Industry (purity >98%; CAS: 375-73-5).
A stock solution of PFBS (105 mg/L) was prepared in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St. Louis, MO, USA). The other chemicals used in this study were of analyti-
cal grade.

2.2. Fish Maintenance and Exposure

Young zebrafish of 4 months of age and old zebrafish of 3 years of age were cultured
in a semi-static system at 28 ± 0.5 ◦C on a 14/10 h day/night cycle. At the end of the
two weeks of domestication, the aged zebrafish were fed the food supplemented with
5% w/w of freeze-dried feces from young donors for two weeks. Afterwards, the aged
fish were exposed to 100 µg/L of PFBS for another two weeks, along with a continuous
administration of young feces. The exposure dose of PFBS was selected according to
previously reported worst-case concentrations in water samples (21.2 µg/L) [15], as well
as the dose that was capable of impairing the reproductive endocrine balance in aged
zebrafish (100 µg/L) [23]. The experiment consisted of four groups of the aged (aged-
control group, aged-feces group, aged-PFBS group, and aged-combined group) and a
positive control group of the young counterparts. A scheme of experimental design is
presented in Figure 1A. Each group consisted of three replicate tanks (n = 3), and 20 males
and 20 females were randomly assigned to 20 L of medium per tank. All tanks received
an equal amount of DMSO (<0.001% v/v). The exposure solutions were changed daily to
maintain proper water quality and chemical concentrations. After exposure, zebrafish were
anesthetized in 0.03% MS222 (Sigma-Aldrich) and dissected on ice to obtain the gonads,
which were then snap-frozen in liquid nitrogen and stored at −80 ◦C for subsequent
transcriptional analysis. All the animal procedures were approved by the Animal Research
and Ethics Committee of the Institute of Hydrobiology of the Chinese Academy of Sciences
(Approval ID: IHB/ll/2022051).

2.3. High-Throughput Transcriptomic Sequencing
2.3.1. Total RNA Isolation and Illumina Sequencing

The gonads of five random females or males in each tank were pooled together as
one replicate, and each exposure group included three replicates (n = 3 per group). Total
RNA was extracted from the testes and ovaries using Trizol® reagent (Invitrogen, Carlsbad,
CA, USA). After constructing the cDNA libraries, the Agilent 2100 bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) and qRT-PCR were used to check the insert size and
effective concentrations of the libraries. Then, the library preparations were sequenced on
the Illumina Novaseq platform and 150 bp paired-end reads were generated.

2.3.2. Bioinformatics Analyses

The raw data obtained from sequencing were filtered to remove reads with sequencing
junctions and those with low sequencing quality to ensure the credibility of the following
data analyses. Indexes of the D. rerio reference genome were constructed using HISAT2
v2.0.5, and paired-end clean reads were compared to the reference genome. The thresholds
for DEGs in the four groups (aged-feces with transplantation of young feces, aged-PFBS
with PFBS exposure, aged-combined with both transplantation of young feces and PFBS
exposure, and positive control young zebrafish) relative to the aged-control group were
set at p < 0.05 and |log2 (fold change)| > 1. Common and unique genes among exposure
groups were shown by Venn diagrams, and the direction and magnitude of changes in
DEGs were compared by heat maps. Principal component analysis (PCA) was performed
by PAST software based on the variance–covariance matrix of DEGs for each treatment
group [27]. Gene Ontology (GO) enrichment analysis of DEGs was implemented, and
statistical enrichment of DEGs in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway was analyzed using the cluster profile R package [28]. Protein–Protein Interaction
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(PPI) analysis of DEGs was performed by extracting the list of target genes from the
STRING database to construct the network. Three models (D1, D2, and D3) simultaneously
produced subnetworks, while only model D1 was considered in this study, which allowed
no missing genes [29].
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Figure 1. Experimental design (A) and a summary of the differential genes in the gonads of zebrafish
after exposure to PFBS (0 and 100 µg/L) with or without the transplantation of young donor feces.
The number of differential genes of significantly increased or decreased abundance in male (B) and
female (C) zebrafish. A Venn diagram showing the common or unique genes among exposure groups
in the male (D) and female (E). Values are presented as means of three replicates (n = 3). -, without; +,
with. The two different shapes of the boxes indicate old and young fish, respectively (A).
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2.4. Quantitative Real-Time PCR Assays (qRT-PCR)

Alterations in gene transcriptions were determined by using qRT-PCR assays accord-
ing to previous protocols [23]. Gonads from five zebrafish of the same sex were pooled
together as one replicate (n = 3). Total RNA from gonads was extracted using Trizol®

reagent (Invitrogen) and reversely transcribed to cDNA with 1 µg of total RNA. Reverse
transcription steps were performed according to the instructions of the commercial kit
(Yeasen Biotech Co., Ltd., Shanghai, China). The transcriptional assay and analysis of target
genes were performed by SYBR GreenKits (Yeasen Biotech Co., Ltd.) and CFX 384 Touch
Real-Time PCR (Bio-Rad, Munich, Germany), respectively. Primer sequences for the genes
were designed using the online Primer 3 software (http://frodo.wi.mit.edu/) (accessed on
10 May 2022) (Table S1). Given the transcriptional stability, ribosomal protein L8 (rpl8) was
used as the reference gene and the relative gene transcript levels were calculated according
to the 2−∆∆CT method.

2.5. Statistical Analyses

The values in this study are expressed as mean ± standard deviation (SD). The
Shapiro–Wilk test and Levene’s test were used to verify the normality and homogeneity
of the variances, respectively. Differences between groups were determined using a one-
way analysis of variance (ANOVA) followed by the post hoc Tukey multiple comparison.
Pearson’s linear fit and correlation methods were used to verify the consistency between
RNA-seq and qPCR results. SPSS v22.0 (IBM Corporation, Armonk, NY, USA) and Origin
2022 (OriginLab Corporation, Northampton, MA, USA) were used for statistical analyses
and image generation, respectively. Differences were considered statistically significant
when p < 0.05.

3. Results and Discussion
3.1. Transcriptomic Sequencing Quality

Transcriptome sequencing yielded a total of 1,337,653,074 raw reads (664,826,490
and 672,826,584 reads from ovary and testis, respectively). After eliminating primer and
adapter sequences and filtering out low-quality reads, Illumina deep sequencing of the
ovary and testis left approximately 6 G of clean bases each, with a 94% efficiency rate
(Tables S2 and S3).

3.2. Summary of DEGs

The DEGs were filtered and summarized relative to the aged-control group (Figure 1).
Compared to the control, most testicular DEGs were significantly upregulated in the four
exposure groups, especially in the aged-PFBS group (i.e., 1095 genes upregulated and
195 genes downregulated) (Figure 1B), supporting that PFBS could drastically disrupt the
transcriptional activity in aged testes [23]. In contrast, the aged-combined group found the
fewest changes in gene transcriptions with only 574 upregulated and 116 downregulated
(Figure 1B), thus providing preliminary evidence that fecal transplantation from young
donors mitigated the transcriptomic toxicity of PFBS in aging testis [23]. In addition, a
distinct pattern of the transcriptome was noted in the gonads between the young and the
elderly in characteristics of the large number of DEGs (Figure 1B,C). This is not surprising,
because aging will result in the systemic functional turnover of multiple tissues [30]. The
Venn diagram demonstrated that each group possessed a large proportion of unique genes
(Figure 1D,E), pointing to the differential mechanisms of action.

http://frodo.wi.mit.edu/
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Heat map clustering further confirmed the unique distribution of genes in each group
with regard to the changes in trend and magnitude (Figure 2). The PCA plots grouped
replicate samples along the x and y axes according to the list of DEGs (Figure 3). All the
four groups including young, aged-feces, aged-PFBS, and aged-combined groups were
separated away from the aged-control group in both males and females, indicating the
variation in transcriptomic fingerprint as functions of age, young feces transplantation,
and PFBS. It was notable that sample clusters from the young and aged-combined groups
were overlapped to certain degree (Figure 3A,B), further highlighting that, regardless
of PFBS intoxication, young fecal transplantation efficiently refreshed the reproductive
activities and formed a young-like phenotype of the gonadal transcriptome in the aged
recipients [23]. Consistent with the present findings, a fecal microbiota transplant from
young mice donors was previously found to transform the gut microbial community of
aged mice into a youth-like ecosystem [31].
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Figure 2. A heatmap showing the overall changes in differential genes among exposure groups
in male (A) and female (B) zebrafish. Red and green colors stand for increased and decreased
changes, respectively, compared to the aged−control abundance. Color intensity is proportional to
the changing magnitude. Values are presented as means of three replicates (n = 3).
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Figure 3. Principal component analysis (PCA) in male (A) and female (B) zebrafish, with the input of
differential genes based on the variance–covariance matrix.
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3.3. GO, KEGG, and PPI Analyses Based on DEGs

Transcriptions of representative DEGs were also validated by using qRT-PCR assays
(Table S4). There was a good consistency of gene transcriptional changes between qRT-PCR
and RNA-seq assays, verifying the reliability of the transcriptomics analyses (Figure 4). By
uploading the list of DEGs, alterations in biological functions in gonads were identified
based on a suite of bioinformatics analyses. During aging, changes in the composition
and function of gut microbiota trigger a decline in normal intestinal epithelial barrier func-
tion, which, in turn, fundamentally disrupts the balance of host physiological health and
metabolism activities [32]. In the present study, a complex gene interactive network was
established for the young males relative to the aged control, verifying the comprehensive
distinction between the young and the elderly in system biology (Figure S1). Further-
more, among the GO terms of young males, the most representative biological process
was integrated as protein refolding, with particular molecular function involving protein
synthesis, such as heat shock protein (HSP) binding, unfolded protein binding, protein
folding chaperone, and misfolded protein binding (Figure 5A). The outstanding metabolic
capacity of the young allows ready maintenance of the stability of the correct protein
topography and degrades the unwanted or misfolded proteins [33]. However, in aging and
age-related diseases, the imbalance in protein homeostasis leads to the accumulation of
misfolded proteins, eventually inducing cellular dysfunction and apoptosis [34]. In addi-
tion to contributing to the folding and function of fragile or misfold-prone proteins, HSPs
have an important role in the regulation of cellular redox homeostasis [35]. It is well known
that persistent redox imbalance inevitably leads to further aging and related diseases [36].
Consistently, biosynthesis of unsaturated fatty acids was the main KEGG pathway for the
enrichment of DEGs in young males (Figure 6A). Accumulative findings have suggested
that increasing unsaturated fatty acid biosynthesis or preventing its catabolism can improve
animal models’ metabolic health and longevity [37]. Interestingly, the KEGG pathway
in young females was enriched with more pathways, mainly including lipid metabolism
(i.e., primary bile acid biosynthesis, sphingolipid metabolism, and peroxisome) as well as
cell proliferation, differentiation, and migration (e.g., cell adhesion molecules (CAMs) and
hedgehog signaling pathway) (Figure 6B). A strong link between aging and alterations in
the ovarian microenvironment has been demonstrated [38]. A larger number of follicles
and fewer apoptotic cells are generally found in young mice compared to the aged [31].
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with or without the transplantation of young donor feces. Color intensity is proportional to the
enrichment significance (adjusted p value). The circular area represents the number of inclusive
genes.
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Figure 6. KEGG pathways of significant enrichment in male (A) and female (B) zebrafish gonads
after exposure to PFBS (0 and 100 µg/L) with or without the transplantation of young donor feces.
Color intensity is proportional to the enrichment significance (p value). The circular area represents
the rich factor.
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The present study further found that substantial changes in aging gonads were caused
by young fecal transplantation or/and PFBS exposure. Previous studies have highlighted
the efficacy of fecal transplants from young donors on shaping the developmental rhythm
of gametes in the gonads of aged zebrafish recipients [23]. Based on DEGs, the PPI analysis
showed that young fecal transplants typically affected the retinol metabolism pathway in
both sexes (Figure S1B,C). The KEGG enrichment pathway demonstrated that transplanta-
tion of feces from the young altered various metabolic pathways in the elderly (Figure 6),
thereby validating the therapeutic potential of manipulating gut microbes to enhance sys-
temic metabolism and then restore healthy aging. Consistently, a recent study has shown
that fecal transplantation could reverse the high bone turnover of senile osteoporosis
and alleviate aging-related bone loss [39]. In addition, compared to aged females, young
fecal transplants were able to re-shape more metabolic pathways in aged males, includ-
ing glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism;
pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; cysteine and me-
thionine metabolism; drug metabolism (Figure 6). The symbiotic gut microbiota is critical
in the production and regulation of sex hormones, interacting in a concordant manner
via the estrobolome [40]. A previous study reported that the enhanced steroid hormone
biosynthesis induced by young fecal transplants increased the release of sex hormones [41].
The inherent differences in sex hormone levels between males and females, in turn, confer
differences in the composition and abundance of gut microbes [42], which may explain the
sex-dependent differences in the efficacy of gut microbiota-based manipulation measures.

PFBS exposure is capable of disrupting gamete differentiation, proliferation, and
maturation in the gonads, consequently resulting in reproductive toxicity [43]. Specifically,
PFBS single exposure of the aged males in this study had apparent effects on biological
functions relevant to cell development, including the integral component of the membrane
and intrinsic component of the membrane (Figure 5A). The predominantly enriched KEGG
pathways (i.e., ECM–receptor interaction, retinol metabolism, and folate metabolism)
further emphasized the disruption of cell proliferation by PFBS in the aged male (Figure 6A).
Mechanistically, the ECM–receptor interaction signaling pathway can affect germ cell
migration by enhancing cell adhesion [44]. An important bioactive metabolite along the
retinol metabolism pathway is retinoic acid (RA), which is deemed an essential regulatory
compound in meiosis during spermatogenesis [45]. Disturbances in RA synthesis kinetics
may disrupt the spermatogenic process, thus affecting the reproductive success. Previous
studies have confirmed that PFBS exposure significantly depleted the spermatogonia
reserve in the aged testis [23]. In addition, the B vitamin folic acid is also required by various
metabolic functions, such as DNA replication, repair, and methylation, carbohydrate
metabolism, and synthesis of nucleotides and vitamins [46]. In contrast, toxic action of
PFBS in aged ovaries was mainly implicated in the microtubule-associated complex and
intervention with fatty acid biosynthesis and arginine biosynthesis signaling pathways
(Figures 5B and 6B). It is known that disruption of the microtubule-based cytoskeleton
will lead to the shedding of germ cells [47]. As a component of lipids, fatty acids are key
components of all biological membrane structures, while abnormal fatty acid synthesis may
disorganize the membrane structural integrity and expansion during cell proliferation and
division [48]. Similarly, our previous study confirmed that oocyte development was blocked
by PFBS in the aging female ovary, thereby reducing egg growth and production [23].

It was intriguing to note that the co-exposure paradigm had a milder influence on the
aged than PFBS, further confirming the efficacy of young fecal transplants to mitigate the
hazardous effects of environmental xenobiotics. Various biological processes that are related
to reproduction and testicular development were significantly modulated by the combined
exposure, including the cellular actin cytoskeleton (Figure 5A), thiamine metabolism for
energy, neuroactive ligand–receptor interaction (Figure 6A), and gamma hexachlorocyclo-
hexane degradation (Figure 7A). A different set of pathways were significantly enriched
in aged females from the combined group, comprising pentose and glucuronate inter-
conversions, mitophagy, and apoptosis (Figure 6B). It is recognized that mitophagy and
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apoptosis can promote longevity in part by removing defective mitochondria or cells that
accumulate during the aging process [49]. In addition, PPI network construction verified a
profound effect of co-exposure on retinol metabolism in aged ovaries (Figure 7B). Retinol is
documented to possess an anti-stress effect on the ovary and subsequently contribute to
follicle cell proliferation and development [50]. The intake of moderate amounts of retinol
can aid ovarian recovery and significantly improve reproductive efficiency [51].
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