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Abstract: To estimate potential chemical risk, tools are needed to prioritize potential exposures for
chemicals with minimal data. Consumer product exposures are a key pathway, and variability in
consumer use patterns is an important factor. We designed Ex Priori, a flexible dashboard-type
screening-level exposure model, to rapidly visualize exposure rankings from consumer product use.
Ex Priori is Excel-based. Currently, it is parameterized for seven routes of exposure for 1108 chemicals
present in 228 consumer product types. It includes toxicokinetics considerations to estimate body
burden. It includes a simple framework for rapid modeling of broad changes in consumer use
patterns by product category. Ex Priori rapidly models changes in consumer user patterns during the
COVID-19 pandemic and instantly shows resulting changes in chemical exposure rankings by body
burden. Sensitivity analysis indicates that the model is sensitive to the air emissions rate of chemicals
from products. Ex Priori’s simple dashboard facilitates dynamic exploration of the effects of varying
consumer product use patterns on prioritization of chemicals based on potential exposures. Ex Priori
can be a useful modeling and visualization tool to both novice and experienced exposure modelers
and complement more computationally intensive population-based exposure models.

Keywords: high-throughput exposure modeling; consumer products; consumer habits and practices

1. Introduction

In modern society, exposure to a wide range of chemical substances through our
daily habits and routines is unavoidable. Indeed, an estimated 8 million chemicals are
commercially available [1], with more than 80,000 chemicals regulated under the Toxic
Substances Control Act [2]. The likelihood that a substance will cause an adverse health
effect depends not only on the chemical’s hazard or toxicity, but also on the exposure or
dose level. Recognizing this, the Frank R. Lautenberg Chemical for the 21st Century Act
reformed the Toxic Substances Control Act (TSCA) to require the evaluation and regulation
of chemical substances based on their human health and ecological risk potential. To meet
the requirements of TSCA, evaluation must be based on reliable values for both exposure
potential and hazard potential, since risk is a function of both. For many chemicals, much
of the risk uncertainty is tied to the paucity of sound exposure information [3]. In the
absence of exposure, risk calculations relying on default exposure values become highly
uncertain. To support this the U.S. Environmental Protection Agency (EPA)’s Chemical
Safety for Sustainability (CSS) research program has been developing new ways to evaluate
chemicals used in consumer products and articles. These new methods focus on identifying
potentially problematic chemicals before they reach the marketplace by estimating both
exposure and hazard potential.

Exposure assessment encompasses both external and internal components. External
exposure includes those scenarios in which a substance is released into the environment
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and reaches a human or ecosystem receptor. With far-field sources, the substance is most
often transported through the environment, and sometimes transformed, before reaching
the receptor. Often, far-field exposures are estimated and ranked using proxy information,
such as the amount of chemical produced per year and chemical properties that might affect
bioaccumulation and persistence [4]. However, the principal scenarios for many chemical
exposures often do not involve far-field sources. Indeed, many chemical exposures among
the general population follow the release of substances from near-field sources, such as
household and personal care products, furnishings, and building materials [3,5–9]. Esti-
mating these exposures relies on assumptions about how often products are used (activity
patterns and exposure interactions) and which products contain a given chemical [6]. Ac-
tivity patterns of behavior and product use may vary greatly among individuals, making
the ranking of chemical intakes complicated and uncertain [6].

The second important component of exposure is what happens to the chemical after it
enters the body. Traditionally, exposure estimates have focused on external dose, or the
amount of chemical that is ingested, inhaled, or applied to the skin. However, the potential
for toxicity is better represented by internal dose, which accounts for the absorption,
distribution, metabolism, and excretion (ADME) of the chemical in the body. For example,
for two chemicals with similar modes of action for toxicity, the chemical that is minimally
absorbed and completely eliminated in 24 h is less problematic than another chemical which
is readily absorbed and slowly eliminated [10,11]. Internal dose is also a useful metric
because it may be compared with any existing biomonitoring data for model validation.
However, ADME data, and particularly metabolism rates, have not been available for a
wide range of chemicals, so estimation of internal dose is difficult.

The uncertainties associated with these components of exposure estimation call for
an evaluation method that accounts for chemical-specific differences in ADME processes
and allows the user to investigate the effect of different assumptions about use and activity
patterns (e.g., “highly-exposed individual”, “general population”, or “occupational user”)
on the chemical rankings [9,11–14]. Accounting for these differences can allow the exposure
model to be tailored to individual user’s needs and allow for comparison with toxicity or
hazard data.

To this end we have developed Ex Priori (abbreviated form of “exposure prioriti-
zation”), an Excel-based dashboard-type chemical evaluation tool to estimate and rank
chemical exposure potential from a wide array of consumer products across exposure routes
based on internal dose. Ex Priori is designed to quickly provide a snapshot of exposure
potential based on internal dose, accounting for absorption and metabolic biotransforma-
tion. Because Ex Priori is designed to function with either user-supplied inputs or default
model inputs, it can quickly produce rankings that are flexible to changes in model inputs.
In this way, Ex Priori can be a useful modeling and visualization tool to both novice and
experienced exposure modelers. Ex Priori complements more computationally intensive
population-based exposure models, such as SHEDS-HT, EPA’s stochastic high-throughput
exposure model [6]. Ex Priori also complements more comprehensive life-cycle exposure
assessment models such as USETox [15,16] and RAIDAR [17–20]. Detailed models such as
these require more computational power; more extensive exposure data; and/or a deeper
understanding of exposure modeling, product uses, chemicals, use environments, and
populations. Because Ex Priori differs from traditional exposure screening tools by ranking
by internal dose rather than by intake, it can be compared with complementary data about
hazard or toxicity (i.e., in vitro high-throughput screening assays such as ToxCastTM [21],
or traditional in vivo data, using toxicokinetic modeling to convert applied dose to internal
dose), and potentially used to inform risk.

The presented research describes how the Ex Priori tool considers various routes of
exposure and introduces the inputs, exposure routes, and models used. Currently, the
Ex Priori tool ranks 1108 chemicals present in 228 separate consumer product categories
from highest to lowest exposure potential. As an adaptable systems framework, Ex Priori
synthesizes knowledge from various domains and has the ability to add more chemicals
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and products as information becomes available. A one-way sensitivity analysis explores
the most uncertain model inputs. Finally, the findings of this study and implications for
future research directions are discussed.

2. Materials and Methods

Ex Priori is intended to prioritize exposure potential of chemicals released into the
indoor environment from consumer product use. Ex Priori deterministically models poten-
tial exposures. To do this, Ex Priori uses product-specific data (Table S1), whereby product
composition data (mass fraction as grams chemical per gram product) are combined with
consumer habits and practices data (i.e., frequency of use for each consumer product,
the amount of product used each time, and the duration of each product use). Based
on these data, along with chemical-specific data describing physicochemical properties
(Tables S2 and S3), Ex Priori calculates total release of each chemical ingredient to air, floor
(dust), and skin. Then, using scenario/receptor specific data describing exposure scenario
and human exposure factors (Table S4), Ex Priori models chemical exposure via inhalation,
ingestion, and dermal routes. Ex Priori calculates the total absorbed dose across exposure
routes, and applies a simple toxicokinetic model to predict the amount of chemical re-
maining in the body 24 h after exposure. A schematic diagram of Ex Priori is presented
in Figure 1. Details of Ex Priori, including all model equations, are provided in the Sup-
plemental Material. Variables calculated by Ex Priori are described in Table S5. A brief
summary of Ex Priori is provided here.
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Figure 1. Apportionment of mass by exposure route in Ex Priori. Figure 1. Apportionment of mass by exposure route in Ex Priori.

Product composition data are collected from the Consumer Product Chemical Profiles
database (CPCPdb) [22], a database of consumer product composition data derived from
Material Safety Data Sheets made publicly available from a major retailer in 2015. CPCPdb
contains information on 1797 chemicals found in 8921 consumer products. CPCPdb is part
of the larger Consumer Product Database (CPDat); details on data collection, curation,
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and quality assurance for CPDat are described by Dionisio and colleagues [23]. Ex Priori
uses 228 CPDat product categories, each describing a particular type of consumer product
(for example, Antifreeze, Laundry Detergent, Body Wash, Insect Repellent, etc.). Ex Priori
refers to these 228 CPDat product categories as “products”, envisioning each one as a single
generic product (even though it likely includes data for multiple brands and/or varieties).
For each product, Ex Priori uses CPDat product composition data consisting of the average
mass fraction of chemical ingredients (grams of chemical per gram of product, averaged
across brands/varieties within a product) [24]. In this way, Ex Priori models the average
version of each generic product. If CPDat data did not indicate that any brands/varieties
of a particular product contained a particular chemical, then the mass fraction of that
chemical in that product is assumed to be zero. However, if no brands/varieties of any
product contained a particular chemical—i.e., that chemical does not appear in CPDat as an
ingredient for any of the consumer products included in this analysis—then that chemical
was excluded from analysis altogether.

Consumer habits and practices data for each of the 228 CPDat “products” are har-
monized with SHEDS-HT as presented in Isaacs et al. [6] By default, Ex Priori uses data
reflecting the habits and practices of the average adult consumer. These habits and practices
data include frequency of product use (events per year); mass of product used (grams per
event); and duration of product use per event (minutes per event). These data are combined
to calculate the total mass of each product used in grams per year and the total duration of
product use in minutes per year. Then, these quantities are divided by 365 days per year,
to yield the average mass of each product used per day (grams per day) and the average
duration of product use per day (minutes per day), averaged over a full year.

Next, Ex Priori models chemical fate in the indoor environment: partitioning from the
product(s) into the exposure media of air, skin, floor, and indoor dust, as shown in Figure 1.
First, the mass of chemical that partitions into the air is calculated based on the mass of
product used, the mass fraction of chemical in the product, the duration of product use,
and a constant emissions rate estimated from the air-water partitioning coefficient. (See
Supplemental Material S1.4.1 for details; Ex Priori is limited in scope to liquid formulations
of consumer products, and is not applicable to solid articles.) Then, the remaining mass
of chemical is assumed to partition between the floor and the skin, according to product-
specific “floor factors” and “dermal factors”. The dermal factors are taken to be the percent
of product retained on the skin after washing as used in SHEDS-HT [6]; the floor factors
are generally taken as (100%—dermal factor). Then, the mass of chemical that partitions
from the floor to indoor dust is calculated based on the assumed loading of indoor dust on
the floor.

Then, Ex Priori models three key routes of human exposure: inhalation, dermal, and
ingestion (see Figure 1).

Inhalation exposure is divided into three sub-routes: airborne direct exposure via
inhalation of gases during product use, airborne indirect exposure via inhalation of gases
after product use, and airborne indirect exposure via inhalation of dust particles after
product use. See Supplemental Material (S1.4.1) for details.

Inhalation of gases (both during and after product use) is modeled using a two-zone
model, which assumes a smaller volume of air constituting a near-field “user bubble”
within a larger room (Figure S1) [25]. Air is exchanged between the user bubble and
the larger room at flow rate β (m3/hour), and air is exchanged between the larger room
and the outside with air exchange rate AER (changes/hour). Chemical is assumed to
be emitted from a liquid product into the user bubble during product use, at a constant
emission rate estimated using a steady-state assumption. An upper bound is placed on the
constant emission rate such that the air concentration in the user bubble does not exceed the
saturation concentration of the chemical in air. See Supplemental Material S3.3 for details.
This approach to estimating emission rate was selected as a compromise between the highly
conservative approach of assuming all chemical in the product is emitted into the air [26],
and attempting to predict scenario- and product-specific time-dependent emission rates,
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which have high data and computational requirements that make them infeasible for rapid
exposure modeling [27–38]. Inhalation of dust particles is modeled using the assumption
that chemical mass that falls to the floor after use mixes with the dust on the floor and
can then become resuspended and inhaled. Particle inhalation exposure is assumed to
involve dust particles less than 2.5 microns in diameter (PM2.5), which can penetrate deeply
into the lung. Absorption of inhaled chemical is estimated using the blood:air partition
coefficient estimated using the methodology of Buist, Wit-Bos [39].

Dermal exposure consists of dermal direct exposure via absorption of product residue
on the skin, both during and after use. As mentioned above, product-specific “dermal
factors” determine the fraction of product retained on the skin after use; these represent
the fraction of product that remains on the skin after washing (if relevant), assuming
that washing is an integral part of product use. That post-washing fraction of product is
assumed to stay on the skin indefinitely after use; further wash-off is not modeled. See
Supplemental Material (S1.4.2) for details. Dermal absorption is predicted as a function of
molecular weight and octanol-water partitioning, according to the method of Weschler and
Nazaroff [40].

Ingestion exposure consists of indirect ingestion only, divided into three sub-routes:
ingestion indirect exposure via incidental ingestion of settled particles, ingestion indirect
exposure via hand-to-mouth transfer of chemical on the skin, and ingestion indirect expo-
sure via inhalation and subsequent ingestion of large resuspended particles deposited on
the floor. (Ex Priori does not model dietary exposures, e.g., from food contact materials).
See Supplemental Material (S1.4.3) for details. Oral absorption is predicted as a function of
the octanol-water partition coefficient and the polar surface area according to the model of
Linnankoski, Mäkelä [41].

Then, Ex Priori models toxicokinetics: how much of the absorbed dose is cleared
from the body after one day, ultimately predicting the body burden that remains 24 h after
exposure. See Supplemental Material (S1.5) for details. Half-lives are estimated as a function
of the octanol-water partitioning coefficient, based on a previously published regression
relation [42]. Finally, Ex Priori produces a list of chemicals ranked by the predicted body
burden remaining 24 h after exposure; see Supplemental Material (S1.6) for details.

Ex Priori uses four different groups of inputs: (1) product-specific inputs includ-
ing product composition data, habits and practices data, and dermal and floor factors;
(2) chemical-specific inputs including physicochemical properties estimated from structure
using the OPEn (Quantitative) Structure-activity/property Relationship App (OPERA)
model [43] and toxicokinetic parameters measured or estimated using other quantitative
structure-activity relationship (QSAR) models (see Supplemental Material S1.5 for details);
(3) receptor inputs describing human exposure factors such as inhalation rate, skin surface
area, and hand-to-mouth fraction; and (4) environmental inputs describing exposure factors
such as building ventilation rate, dust load, and room size. Input parameters are detailed in
Supplemental Material (S2), Tables S1–S4. The Ex Priori model spreadsheet is prepopulated
with default inputs for 1108 chemicals, 228 consumer product categories, one default use
scenario per product, one default human receptor, and one default indoor environment.

The 1108 chemicals with default chemical-specific inputs in Ex Priori consist of the
subset of CPDat chemicals that could be mapped to a structure on the CompTox Chemicals
Dashboard [44]. Some of these chemicals are mixtures or polymers; these were mapped
to a single representative structure, and such cases are flagged in the model output (see
Discussion). CPDat data indicating chemical occurrence in at least one product was required
in order to estimate chemical release from products. A structure was required in order
to allow QSAR predictions of physicochemical and toxicokinetic parameters. Chemicals
that either did not occur in any products in CPDat, or had no available structure on the
Comptox Chemicals Dashboard, were excluded from prioritization. Importantly, this list of
1108 chemicals is not intended to be an exhaustive list of all possible chemical exposures
from consumer products. If a chemical does not appear on the list of 1108, its exposure
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potential is not assumed to be zero. Rather, these are the 1108 chemicals with sufficient data
to allow Ex Priori to prioritize potential exposures.

Where possible, Ex Priori default inputs have been harmonized with existing EPA data
and higher-tier exposure modeling efforts; sources for default input values are described
in the Supplemental Material, Tables S1–S4. Where scenario-specific data are known or
required, the user can overwrite any default input variables by editing the corresponding
cell in the Excel spreadsheet.

2.1. Product-Category Weights

By default, Ex Priori models the baseline exposure scenario of an average adult con-
sumer, including average consumer habits and practices. However, consumer habits and
practices vary—often in ways that affect exposure for entire product categories. Changes in
consumer habits and practices may give rise to larger public health questions about chem-
ical exposures. For example, during the COVID-19 pandemic, consumers are spending
more time inside the home [45]. They have reduced their use of personal care products: in
2020 vs. 2019, Americans spent 18% less money on personal care products [46], and spent
10% less time on grooming [45]. However, consumers have increased their use of cleaning
and home maintenance products: in 2020 vs. 2019, Americans spent 9% more money on
“housekeeping supplies” [46], spent 30% more time on lawn and garden care, and spent
12% more time on housekeeping [45]. These changes in consumer habits and practices raise
a public health question: how do chemical exposures change in this pandemic scenario of
habits and practices?

In order to rapidly model changes in habits and practices, Ex Priori groups the
228 CPDat products into nine product categories: Arts and Crafts, Auto Products, Home
Maintenance, Home Office, Inside the Home, Landscape/Yard, Personal Care, Pesticides,
and Pet Care. (For example, the “Personal Care” product category includes CPDat products
such as Body Wash, Bar Soap, Shaving Cream, Hairspray, Deodorant, etc.) For each of
these product categories, Ex Priori assigns a product-category weight, which scales the
default (average) daily use for all products within a category with one click. Conceptually,
this weight can represent a change in amount, frequency, and/or duration of use for all
products in a category. The product-category weights conceptually assume that consumers
uniformly increase or decrease product use for all products in a category. The weight
values typically reflect order-of-magnitude level changes in product use, in keeping with
the prioritization-level nature of Ex Priori. For example, a weight of 0.1 reflects low-normal
use of products in a category; a weight of 10 represents high-normal use; a weight of
100 represents very heavy use, e.g., that of a hobbyist.

To model the reduced use of personal care products in the COVID-19 pandemic
situation described above, the “Personal Care” product category weight was set to 0.5,
reflecting an assumption that consumer use of personal-care products has been cut in half.
To model the increased use of cleaning and DIY products and the increased time spent
inside the home, the “Home Maintenance,” “Inside the Home,” and “Landscape/Yard”
product category weights were all set to 10, reflecting an assumption that consumer use of
these product categories has increased by an order of magnitude. These product category
weights are intended only as an illustrative order-of-magnitude approximation of the
changes in consumer use suggested by the data cited above [45,46]. To return to the
baseline scenario of the average adult consumer, all product-category weights can be reset
to 1.

With each change to a product-category weight, Ex Priori will instantly recalculate
potential exposures and produce a new chemical ranking for the new exposure scenario. By
adjusting Ex Priori controls for different scenarios, all 1108 consumer product ingredients
are simultaneously reprioritized on anticipated body-burden, enabling a fast representation
of day-to-day personal multi-chemical exposures from consumer products for varying
exposure scenarios.
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To illustrate the power of product category weights to rapidly answer a public health
question about chemical exposure, Ex Priori was run twice: once with the default scenario
of the average adult consumer (all weights set to 1), and once for a pandemic scenario
(with the Personal Care product-category weight set to 0.5 and “Inside the Home”, “Home
Maintenance”, and “Landscape/Yard” product-category weights set to 10). Changes in
chemical prioritization were observed in the two different scenarios.

2.2. Pathway Weighting

To facilitate user exploration of the importance of different routes of exposure, Ex
Priori also includes “pathway switches.” Currently, these weights are implemented as
checkboxes that allow the user to turn each main exposure route (dermal, ingestion, and
inhalation) “on” or “off.” The “pathway switches” allow the user to explore how chemical
prioritization changes if, e.g., dermal exposures are disregarded, or inhalation exposures
are disregarded.

2.3. Sensitivity Analysis

A one-way discrete sensitivity analysis was conducted for selected Ex Priori input
parameters to evaluate the impacts of these parameters on absorbed dose (not remaining
body burden) by exposure routes (dermal, ingestion, and inhalation). Eight candidate
variables were selected for the analysis because they define the indoor environment or
individual exposure factors, and therefore may vary substantially between individual
people and homes. The selected parameters, their default values, and their ranges are listed
in Table 1. For each model iteration, only one parameter is perturbed by replacing its default
value with an alternative (either low or high, as defined in Table 1), while other values of
other parameters are set to the defaults. To perform the sensitivity analysis directly within
the Ex Priori spreadsheet tool, Microsoft Excel’s “What-If Analysis” functionality was
used (Microsoft Excel for Microsoft 365, version 16.0; © Microsoft Corporation; Redmond,
WA, USA). For each model iteration, the following summary statistics were calculated for
the log10-scaled absorbed amounts for each exposure route, and for the log10-scaled total
amount absorbed: median; 25th and 75th percentiles (denoted Q1 and Q3, respectively);
the lowest value greater than or equal to Q1 − 1.5 × (Q3–Q1); and the highest value less
than or equal to Q3 + 1.5 × (Q3–Q1). (The last two statistics are the usual “whiskers” on
a standard box-and-whisker plot.) Model sensitivity to each parameter was evaluated
qualitatively, by examining shifts in the distribution summarized by these statistics.

2.4. Evaluation Using Exposures Inferred from NHANES Biomonitoring Data

The predictions of Ex Priori were evaluated by comparing them to median population
aggregate exposures inferred for parent chemicals of biomarkers measured in urine sam-
ples from the U.S. population by the National Health and Nutrition Examination Survey
(NHANES) [47]. There were 42 chemicals (identified by CASRN) that had both Ex Priori
exposure predictions and NHANES-inferred exposures; the comparison was made for these
42 chemicals. Specifically, Ex Priori was run with all product category and pathway weights
set equal to 1. The Ex Priori-predicted amount absorbed (not amount remaining after 24 h)
was converted from mass units of g/day to dose units of mg/kg/day (by assuming an
average adult body weight of 70 kg and a conversion factor of 1000 mg/g). The resulting
Ex Priori-predicted absorbed doses were compared to the median NHANES-inferred expo-
sures specifically for the age 20–65 demographic group. The Ex Priori amount absorbed
was selected for comparison, rather than the Ex Priori amount remaining after 24 h, because
amount absorbed was the quantity conceptually most similar to the quantity inferred by
Stanfield and colleagues [47]: they inferred aggregate exposures to the parent chemicals of
NHANES analytes, in mg/kg/day, which they interpret as “equivalent oral dose assuming
100% oral absorption.” Stanfield and colleagues [47] inferred exposures for several different
demographic groups; we chose to compare to NHANES-inferred aggregate exposures for
adults ages 20–65, since Ex Priori is intended to represent an adult consumer. To quantify
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the comparison, ordinary least-squares linear regression was used: log10-transformed
NHANES-inferred aggregate exposures were regressed on log10-transformed Ex Priori-
predicted absorbed doses. Analysis was conducted using R (version 4.2.0, R Foundation
for Statistical Computing, Vienna, Austria).

Table 1. Parameters selected to conduct one-way sensitivity analysis.

Parameter Definition
Range Source of

Default Values
Source of

Low/High ValuesLow Default High

β

Air flow rate between
user bubble and

larger room
(residential)

60 m3/h 82.008 m3/h 300 m3/h

United States
Environmental

Protection
Agency [48]

Derived from Zhang,
Banerjee [49] (see

Supplemental Material S3.4;
see also [27,49,50]

CPM2.5 Background indoor
PM2.5 concentration 5 µg/m3 7.16 µg/m3 9 µg/m3 Deshpande, Frey [51] Deshpande, Frey [51]

CTSP Background indoor
PM10 concentration 40 µg/m3 75 µg/m3 150 µg/m3

Assumed (half of
NAAQS standard for

PM10 [52], as a
rough estimate)

Assumed (vary default
by a factor of 2 in
either direction)

Dust_floor_load Mass of dust on the
floor/unit area 0.1 g/m2 0.52 g/m2 2.5 g/m2 Wilson,

Jones-Otazo [53] Wilson, Jones-Otazo [53]

Frachand_mouth
Fraction of chemical

that is transferred
from hand to mouth

0.05 0.2 0.8 Ozkaynak, Xue [54] Ozkaynak, Xue [54]

Inhdil

Dilution factor to
account for increased

ventilation and
decreased exposure

when using a
product outdoors

1 20 100 Estimated based on
Klepeis, Gabel [55]

Estimated based on
Klepeis, Gabel [55]

Inhrate Volumetric
breathing rate 6.8 m3/day 16.2 m3/day 71.2 m3/day EPA [56]

EPA [56] (low value is
average of age groups ≥ 21
for sedentary/resting; high

value is average of age
groups ≥ 21 for
high intensity)

AER Building air exchange
rate (residential)

0.1 air
changes/h

0.45 air
changes/h

3 air
changes/h EPA [56] EPA [56]

Room
dimension

Dimension of one side
of square room 2.8 m 5.8 m 14.2 m EPA [56] EPA [56]

Skin SA Skin surface area of
adult human 1.61 m2 1.95 m2 2.425 m2 EPA [56]

EPA [56] (low value is
average of 5th percentile for
adults; high value is average
of 95th percentile for adults)

Vbubble

Near field volume
during product use
(user “bubble” as

compared to
room volume)

0.125 m3 0.2 m3 27 m3 Nicas [25] Assumed

3. Results
3.1. Chemical Rankings

Ex Priori’s ultimate output is chemical rankings based on the model-predicted body
burden remaining after 24 h. The results can be used to test the impact of various user
inputs on the final rankings. An example screenshot of the output on the “Dashboard” tab
of the Ex Priori spreadsheet is shown in Figure 2. Ex Priori shows not only the chemical
rankings, but also the model-estimated absorbed dose by each route (dermal, inhalation,
and ingestion), the model-estimated total absorbed dose, and the model-estimated amount
remaining in the body after one day. As well, Ex Priori shows the fraction of absorbed dose
attributable to each route, visualized with a data bar formatting for at-a-glance examination
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of relative route importance. Finally, Ex Priori shows flags indicating whether each chemical
is a mixture or a polymer, in which case results may be more uncertain (see Discussion).
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Example results are shown in Table 2 (the baseline scenario) and Table 3 (the pandemic
scenario). To assess the effect of including toxicokinetic considerations, Tables 2 and 3 also
present what the chemical rankings would have been if they were based on absorbed dose
only (without toxicokinetic considerations), rather than on remaining body burden after
24 h (with toxicokinetic considerations).

Table 2. Subset of chemical rankings (top 20 of 1108), with rankings by exposure route. All route and
product category weights are set to 1, and all parameters take their default value. ((*) = polymers
and/or mixtures; does not necessarily apply to each component of a mixture and does not apply to a
single sub-unit of a polymer).

Ex Priori Rank
(out of 1108 Chemicals)

Based on . . .

Percent of Absorbed
Dose via Route

Chemical Name CASRN
Body

Burden
after 24 h

Absorbed
Daily
Intake

Dermal Ingestion Inhalation Log10
Kow

Log10
Henry’s

Law

Half-
Life

(Hours)

Alcohols, C12-16,
Ethoxylated * 68551-12-2 1 1 99.14 0.35 0.51 5.90 −4.45 141.94

Isopropyl Myristate 110-27-0 2 4 99.93 0.06 0.02 6.90 −6.12 274.90

2-Octyldodecan-1-Ol 5333-42-6 3 20 99.85 0.15 <0.01 8.83 −6.33 987.02

Decanoic Acid, Ester With
1, 2, 3-Propanetriol

Octanoate *
65381-09-1 4 15 99.80 0.20 <0.01 4.97 −7.39 76.27

2-Ethylhexyl Salicylate 118-60-5 5 13 >99.99 <0.01 <0.01 4.05 −6.92 41.60

2-Cyano-3,3-Diphenyl-2-
Propenoic Acid,

2-Ethylhexyl Ester
6197-30-4 6 22 99.97 0.03 <0.01 5.25 −6.62 91.77
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Table 2. Cont.

Ex Priori Rank
(out of 1108 Chemicals)

Based on . . .

Percent of Absorbed
Dose via Route

Chemical Name CASRN
Body

Burden
after 24 h

Absorbed
Daily
Intake

Dermal Ingestion Inhalation Log10
Kow

Log10
Henry’s

Law

Half-
Life

(Hours)

Isopropyl Palmitate 142-91-6 7 26 99.98 <0.01 0.02 8.07 −6.60 598.89

Polyethylene Glycol
Monostearate * 9004-99-3 8 27 >99.99 <0.01 <0.01 7.60 −7.23 438.16

Cetyl Alcohol 36653-82-4 9 25 99.91 0.08 0.01 6.59 −5.18 223.78

Tetradecan-1-Ol,
Propoxylated, Esters With

Propionic Acid *
74775-06-7 10 30 >99.99 <0.01 <0.01 7.61 −6.63 439.35

Stearic Acid 57-11-4 11 32 98.09 1.91 <0.01 8.08 −7.66 600.94

2-Ethylhexyl Palmitate 29806-73-3 12 34 97.25 2.75 <0.01 9.47 −6.64 1514.11

Stearic Acid, Monoester
With Glycerol * 31566-31-1 13 31 99.88 0.12 <0.01 6.11 −7.53 163.14

Masoprocol 500-38-9 14 19 >99.99 <0.01 <0.01 3.55 −5.78 29.85

Cetostearyl Alcohol * 67762-27-0 15 41 99.89 0.10 0.01 7.88 −5.21 525.20

Celgard * 9003-07-0 16 45 98.13 1.87 <0.01 8.75 −7.13 934.75

4-Tert-Butyl-4′-
Methoxydibenzoylmethane 70356-09-1 17 35 >99.99 <0.01 <0.01 4.64 −3.87 61.43

Alcohols, C16-18,
Ethoxylated * 68439-49-6 18 46 97.60 2.35 0.05 9.09 −6.27 1171.97

Homosalate 118-56-9 19 28 >99.99 <0.01 <0.01 3.92 −6.92 38.08

Pramocaine Hydrochloride 637-58-1 20 36 99.99 <0.01 0.01 4.04 −7.58 41.38

Table 3. For the pandemic scenario: Subset of chemical rankings (top 20 of 1108), with rankings by
exposure route. All other weights (route and product category) are set to 1, and all parameters take
their default values. ((*) = polymers and/or mixtures; does not necessarily apply to each component
of a mixture and does not apply to a single sub-unit of a polymer).

Ex Priori Rank (out of
1108 Chemicals)

Based on . . .

Rank in
Baseline
Scenario
Based on

. . .

Percent of Absorbed
Dose via Route . . .

Chemical Name CASRN
Body

Burden
after 24 h

Absorbed
Daily
Intake

Body
Burden

after 24 h
Dermal Ingestion Inhalation Log10

Kow

Log10
Henry’s

Law

Half-
Life

(Hours)

Polidocanol * 9002-92-0 1 12 30 98.64 1.35 <0.01 5.36 −4.85 98.75

Alcohols, C12-16,
Ethoxylated * 68551-12-2 2 16 1 97.91 1.33 0.76 5.90 −4.45 141.94

Toluene 108-88-3 3 4 44 <0.01 <0.01 >99.99 2.73 −2.23 17.33

Cellulose * 9004-34-6 4 15 38 4.14 1.01 94.85 4.46 −2.10 54.64

Benzenesulfonic Acid,
Mono-C10-16-Alkyl

Derivs., Sodium Salts *
68081-81-2 5 23 48 98.11 1.89 <0.01 6.15 −6.61 167.32

Dodecyldimethylamine
Oxide 1643-20-5 6 20 32 85.18 1.83 12.99 4.86 −4.33 71.28

Isopropyl Myristate 110-27-0 7 32 2 99.25 0.71 0.04 6.90 −6.12 274.90

Benzenesulfonic Acid,
C10-13-Alkyl Derivs.,

Sodium Salts *
68411-30-3 8 33 57 97.58 2.42 <0.01 6.15 −6.61 167.32
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Table 3. Cont.

Ex Priori Rank (out of
1108 Chemicals)

Based on . . .

Rank in
Baseline
Scenario
Based on

. . .

Percent of Absorbed
Dose via Route . . .

Chemical Name CASRN
Body

Burden
after 24 h

Absorbed
Daily
Intake

Body
Burden

after 24 h
Dermal Ingestion Inhalation Log10

Kow

Log10
Henry’s

Law

Half-
Life

(Hours)

Sodium Dodecylben-
zenesulfonate * 25155-30-0 9 42 35 96.76 3.24 <0.01 5.88 −6.57 140.00

2-Tert-
Butylcyclohexyl

Acetate
88-41-5 10 36 41 35.96 2.36 61.68 4.24 −3.64 47.04

Neodol-12 * 68131-39-5 11 46 65 93.20 3.37 3.43 5.90 −4.45 141.94

Alcohols, C10-14,
Ethoxylated * 66455-15-0 12 43 36 76.99 3.57 19.44 5.29 −3.39 94.26

Sulfuric Acid,
Mono-C10-16-Alkyl

Esters, Sodium Salts *
68585-47-7 13 9 54 98.80 1.19 0.01 2.29 −6.51 12.93

Xylene * 1330-20-7 14 27 72 <0.01 <0.01 >99.99 3.14 −2.17 22.77

Stearic Acid 57-11-4 15 53 11 96.30 3.70 <0.01 8.08 −7.66 600.94

1,4-Dichlorobenzene 106-46-7 16 22 83 0.08 0.08 99.84 2.86 −4.93 18.91

(R)-P-Mentha-1,8-
Diene 5989-27-5 17 49 66 <0.01 <0.01 >99.99 4.46 −1.50 54.55

Alkanes, C9-12-Iso-* 90622-57-4 18 58 91 <0.01 <0.01 >99.99 5.47 −0.83 106.30

Nonylphenol,
Ethoxylated * 9016-45-9 19 51 55 96.16 3.81 0.03 4.43 −5.24 53.29

Alkanes, C7-8-Iso- * 70024-92-9 20 50 95 <0.01 <0.01 >99.99 4.09 −0.39 42.74

For the default (average) exposure scenario (Table 2), the highest-ranking chemicals
have exposures primarily driven by the dermal route. Most of their mass occurs in the
Personal Care product category, where dermal factors tend to be high, which makes the
skin loading relatively higher. They tend to be lipophilic (high log Kow) and not highly
volatile (low log Henry’s law coefficient), which makes them relatively more permeable
through skin. Additionally, their half-lives tend to be longer than 24 h, so that most of the
absorbed dose remains in the body after 24 h. Comparing the rankings by remaining body
burden vs. absorbed dose shows the importance of considering toxicokinetics in chemical
prioritization. Most of these chemicals would not rank in the top 20 if only absorbed daily
intake were considered—but when their longer half-lives are considered, these exposures
ultimately result in higher body burdens.

Table 3 shows the new top 20 ranked chemicals under the pandemic scenario. For
comparison, Table 3 also shows the rankings of these chemicals under the baseline scenario.
In the pandemic scenario, chemicals found primarily in Inside the Home products rise
20, 30, or more places in the rankings compared to baseline, reflecting that chemicals
from this product category become more prominent in overall exposure when use of
Personal Care products is reduced. Moreover, in contrast with the nearly 100% dermal
exposures for the top 20 chemicals in the baseline exposure scenario, the inhalation route
starts to become important for some chemicals in the pandemic scenario. For Toluene,
nearly 100% of exposure occurs via inhalation; for 2-Tert-Butylcyclohexyl Acetate (found in
Inside the Home air fresheners and disinfectants), approximately 62% of exposure occurs
via inhalation.

These results show that, with the product category weights, a single click can model a
change in individual use patterns—e.g., a pandemic scenario with more time spent at home
and less personal grooming—and instantly show the resulting changes in the chemicals
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that are prominent in overall exposure, including chemicals from different product sources
and different routes of exposure.

3.2. Sensitivity Analysis

Results of the discrete one-way sensitivity analysis are visualized in Figure 3, which
has three rows, representing dermal, ingestion, and inhalation routes, and eight columns,
representing the eight variables assessed in the analysis. The horizontal axis for each panel
is labeled “low”, “default,” and “high”, indicating which value for the variable was used
(low, default, and high values for each variable are defined in Table 1). The vertical axis
presents log10 transformed absorbed doses in units of grams. Note that this sensitivity
analysis is performed using absorbed dose, not ADME output (amount remaining in body
after one day), because Ex Priori does not currently apportion ADME outputs among routes.
Within each panel, the boxplots for “low” and “high” values can be compared to the boxplot
for the “default” value. If the position is shifted up or down compared to the “default”
boxplot, then the perturbed parameter impacts the absorbed dose estimated for that route.

For dermal exposure (top row in Figure 3), most of the parameters evaluated do not
impact absorbed dose, with the exception of the air flow between user bubble and room
(denoted β). The sensitivity to β occurs because the fraction of chemical apportioned to the
air depends on β, and only the remaining fraction of chemical not apportioned to the air is
available for dermal absorption (see Supplemental Material S1.4.2 and S3.4). A larger β
means that more chemical mass is apportioned to the air, and proportionally less chemical
mass is available to the skin. Interestingly, dermal exposure is not sensitive at all to skin
surface area. This result occurs because, for the majority of chemicals included in Ex Priori
(809 out of 1108), the predicted total flux through the skin exceeds the upper limit of the
total mass of chemical present on the skin; for these chemicals, the absorbed amount is
simply assumed to be the total mass of chemical present on the skin, and is not affected by
skin surface area at all. Predicted dermal exposures often exceed the upper limit because
Ex Priori currently does not model any pathway for removing chemicals from skin. This is
also the reason why dermal exposures dominate other routes for most chemicals.

For ingestion exposure (second row in Figure 3), absorbed dose is reduced under four
conditions: (1) a higher air flow between user bubble and room (β); (2) a larger dust load,
(3) a smaller hand-to-mouth fraction, and 4) a larger room dimension (length and width).
Ingestion exposure is driven by incidental dust ingestion; therefore, exposure is reduced by
conditions that contribute to more dilution of the chemical in room dust (conditions 1, 2,
and 4) and lesser dust ingestion (condition 3).

For inhalation exposure (third row in Figure 3), the results indicate that absorbed
dose is increased by higher β and higher inhalation rate, and decreased by higher room air
exchange rate (AER) and room dimensions. The increase with inhalation rate is intuitive:
breathing more air produces greater inhalation exposure. The increase with β is somewhat
counterintuitive, since increased β means that air in the user bubble is exchanged (and thus
chemical is removed from the air) faster. However, as previously discussed, the fraction
of chemical apportioned to the air increases with β; on balance, for the median chemical
in Ex Priori, this increase outweighs the increased rate of chemical removal from the user
bubble. This result is explained by the fact that, at median β, the fraction of total chemical
emitted to the air is small (less than 0.1) for the majority of chemicals in Ex Priori. As shown
in the Supplemental Material (Section S3.4, Table S6, Figures S2–S6), when the fraction
of chemical emitted is near 1 at median β (which typically occurs for volatile chemicals),
then further increasing β does not allow any additional chemical to be emitted to the air
(because all of it is already in the air). In this case, the increased removal of chemical
from the air at increased β ultimately results in decreased inhalation exposure. However,
when the fraction of chemical emitted is less than about 0.7 at median β, then increasing β

above the median effectively allows more of the chemical to be emitted to the air (see the
Supplemental Material, Figure S7). This effect outweighs the increased removal of chemical
from the air with increased β, ultimately resulting in increased inhalation exposure. The
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effect is even stronger when the chemical reaches its air saturation concentration (thus
reaching a cap on the amount that can be emitted) at median β; increasing β will lift the
saturation-imposed cap on emission. The majority of chemicals in Ex Priori have fraction
emitted less than 0.1 at median β (see the Supplemental Material, Figure S7), and 56%
of chemicals reach air saturation concentration at median β. Therefore, for the median
chemical in Ex Priori, an increase in β results in increased inhalation exposure. By contrast,
increasing the AER for the larger room has the expected effect of decreasing inhalation
exposure. Increasing the room dimensions has the effect of diluting the same chemical
mass in a larger volume of air, and has little or no effect on the fraction of chemical that can
be emitted to air, thus reducing inhalation exposure.

Toxics 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

These results show that, with the product category weights, a single click can model 
a change in individual use patterns—e.g., a pandemic scenario with more time spent at 
home and less personal grooming—and instantly show the resulting changes in the chem-
icals that are prominent in overall exposure, including chemicals from different product 
sources and different routes of exposure. 

3.2. Sensitivity Analysis 
Results of the discrete one-way sensitivity analysis are visualized in Figure 3, which 

has three rows, representing dermal, ingestion, and inhalation routes, and eight columns, 
representing the eight variables assessed in the analysis. The horizontal axis for each panel 
is labeled “low”, “default,” and “high”, indicating which value for the variable was used 
(low, default, and high values for each variable are defined in Table 1). The vertical axis 
presents log10 transformed absorbed doses in units of grams. Note that this sensitivity 
analysis is performed using absorbed dose, not ADME output (amount remaining in body 
after one day), because Ex Priori does not currently apportion ADME outputs among 
routes. Within each panel, the boxplots for “low” and “high” values can be compared to 
the boxplot for the “default” value. If the position is shifted up or down compared to the 
“default” boxplot, then the perturbed parameter impacts the absorbed dose estimated for 
that route. 

 
Figure 3. Outputs of one-way sensitivity analysis. Each row represents one exposure route (the bot-
tom row represents total exposure). Each column represents one model parameter. β: Air flow rate 
between user bubble and larger room (m3/hour). CPM2.5: Background indoor PM2.5 concentration 
(µg/m3). CTSP: Background indoor total suspended particulate concentration (µg/m3). Dustload = Mass 
of dust on the floor per unit area (g/m2). Fhandmouth = Fraction of chemical transferred from hand to 
mouth (unitless). Inhdil = Dilution factor for products used outdoors (unitless). Inhrate = Inhalation 
rate (m3/day). AER = Building air exchange rate (residential) (# air changes/hour). Room dim = Di-
mension of one side of square room (m). Skin SA = Skin surface area (m2). Vbubble = Air volume of 

Figure 3. Outputs of one-way sensitivity analysis. Each row represents one exposure route (the
bottom row represents total exposure). Each column represents one model parameter. β: Air flow
rate between user bubble and larger room (m3/hour). CPM2.5: Background indoor PM2.5 con-
centration (µg/m3). CTSP: Background indoor total suspended particulate concentration (µg/m3).
Dustload = Mass of dust on the floor per unit area (g/m2). Fhandmouth = Fraction of chemical trans-
ferred from hand to mouth (unitless). Inhdil = Dilution factor for products used outdoors (unit-
less). Inhrate = Inhalation rate (m3/day). AER = Building air exchange rate (residential) (# air
changes/hour). Room dim = Dimension of one side of square room (m). Skin SA = Skin surface area
(m2). Vbubble = Air volume of near-field user bubble (m3). Within each panel, three box-and-whisker
plots represent the distribution of intakes (absorbed doses) via the specified route at the low, default,
and high values of the specified parameter (as marked on the horizontal axis). Low, default, and high
values for each parameter are defined in Table 1. Lower and upper hinges correspond to the first
and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the
largest value no further than 1.5 × IQR (distance between the first and third quartiles) from the hinge.
The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge.
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The bottom row shows all three routes combined, to assess sensitivity of the total
absorbed exposure. Total exposure is most sensitive to β, inhalation rate, room AER, and
room dimension. This result reflects the nature of Ex Priori’s exposure models: chemical
partitioning to air is considered first, and only the remaining chemical mass after air
partitioning is available for dermal or ingestion exposure.

This qualitative, one-way, discrete sensitivity analysis of a subset of parameters does
not rule out possible sensitivity to other parameters, nor to combinations of parameters.
It does not analyze sensitivity to chemical- or product-specific inputs, and it does not
characterize distributions of model predictions corresponding to data-driven distributions
of model parameters. However, it does reveal key features of Ex Priori’s exposure models
that are important for context when interpreting prioritization results: namely, factors
affecting chemical partitioning to air will change not only inhalation exposures, but also
dermal and ingestion exposures.

3.3. Evaluation by Comparing to NHANES-Inferred Exposures

The comparison between Ex Priori-predicted absorbed amount and NHANES-
inferred aggregate exposures [47] is visualized in Figure 4. The best-fit linear model was
log10(y) = −4.7 + 0.38 log10(x), where y = NHANES-inferred aggregate exposure and
x = Ex Priori-predicted absorbed amount. Adjusted R2 for this linear model was 0.15. See
Supplemental Material Section S4.
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This result implies that Ex Priori estimates of absorbed dose are biased high—not 
unexpected, given the known-conservative assumptions of Ex Priori. However, given that 

Figure 4. NHANES-inferred aggregate exposure vs. Ex Priori-predicted absorbed amount, each in
mg/kg/day, on log10-log10 scale, for 42 chemicals. Each letter represents one chemical; lower-case
letters represent different chemicals from their corresponding upper-case letters (e.g., “A” and “a”
represent two different, unrelated chemicals). Gray vertical line segments represent range of 95%
credible interval bounds on NHANES-inferred median aggregate exposures. Dashed diagonal line
represents the identity line, y = x. Solid diagonal line represents the best-fit linear regression model,
i.e., log10(y) = −4.7 + 0.38 log10(x), where y = NHANES-inferred aggregate exposure and x = Ex
Priori-predicted absorbed amount converted to mg/kg/day. See text for details on linear regression.
See Supplemental Material Table S7 to map letter codes to chemical names and CASRN.

This result implies that Ex Priori estimates of absorbed dose are biased high—not
unexpected, given the known-conservative assumptions of Ex Priori. However, given that
the intended use of Ex Priori is screening-level prioritization, the more important question is
whether Ex Priori’s prioritization correlates with the prioritization implied by the NHANES
inferences. One metric answering this question is the R2 of the comparison, which repre-
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sents correlation between Ex Priori predicted exposures and NHANES-inferred exposures.
A higher R2 represents greater correlation and therefore more-similar prioritization. The
R2 of the comparison was 0.15. To contextualize this result, we compared it to the R2

of a comparison made by Stanfield and colleagues [47], between the NHANES-inferred
exposures and the predictions of another rapid prioritization-level exposure model, SEEM3.
We used information reported in Supplemental Table S9 of [47], which reports NHANES-
inferred exposures and SEEM3-predicted exposures for 37 chemicals. (SEEM3 [57] is a
machine-learning model trained on exposures inferred from NHANES biomonitoring data
available in 2014. The 37 chemicals reported by Stanfield and colleagues [47] are chemicals
that are newly added to NHANES urine biomonitoring since the development of SEEM3,
and were therefore not in the SEEM3 training set.). Specifically, we subset that table to
retain only the NHANES-inferred exposure for the most-recent available NHANES cohort
for each CASRN, then performed an unweighted linear regression of log10(NHANES-
inferred exposure) vs. log10(SEEM3-predicted aggregate intake). The resulting best-fit
model was log10 (NHANES) = 0.75 + 1.06 log10 (SEEM3), with adjusted R2 = 0.15. See
Supplemental Material section S4. (We performed an unweighted regression, unlike the
weighted regression reported by Stanfield and colleagues [47], in order to better compare
with the unweighted regression of NHANES-inferred exposures vs. Ex Priori predictions.).
In other words, Ex Priori predictions correlate with NHANES-inferred exposures about as
well as SEEM3 predictions do.

4. Discussion

Evaluating multi-chemical exposure modelssuch as Ex Priori remains a challenge due
to the complexity of human behaviors and chemical fate and transport. The fate resulting
after product use results from chemical partitioning and transformation that occur both in
the indoor environment and within the body [17]. This complexity is acknowledged as a
limitation in exposure science [58].

Sensitivity analysis indicates that the model is sensitive to parameters that determine
the fraction of chemical mass that partitions into the air, because that affects the chemical
mass available to other routes of exposure. The chemical mass partitioning to air is governed
by the estimated constant emission rate during product use. Limitations of the assumption
of constant emissions rate, and of the approach used to derive the estimated emission rate,
therefore strongly affect the predictions of Ex Priori. These assumptions also affect the
sensitivity to other model parameters, particularly β. A more-detailed time-dependent
emissions model would likely be more realistic; however, a time-dependent emissions
model would suffer from data limitations (as it would require detailed information about
how each product is applied and used, which is unavailable for most products), and would
present problems with computational tractability (numerical solution of systems of differ-
ential equations for thousands of chemicals is impractical in an Excel-based modeling tool).
The constant emissions rate is an imperfect approximation, but it represents a compromise
between the extremely conservative typical default assumption that all chemical in the
product is emitted to the air, and the currently infeasible approach of modeling detailed
time-dependent air emissions. Additionally, Ex Priori models emissions with the assump-
tion that products are liquid, meaning that it is not applicable to solid consumer products
or articles. Improving estimation of the emissions rate is a key area for future refinement of
the model (A much more detailed discussion of chemical emissions rate assumptions and
uncertainties is included in the Supplemental Material, Sections S3.3 and S3.4).

Similarly, sensitivity analysis reveals that dermal exposure is not sensitive at all to skin
surface area. This uncertainty represents a limitation of the model’s simplified representa-
tion of dermal uptake, another key area for future model refinement. Moreover, Ex Priori
currently uses a simplified model of product wash-off by assuming that a constant fraction
of product remains on the skin after use, where that fraction represents the fraction retained
post-wash-off for each product type, as derived in SHEDS-HT. Time-dependent wash-off is
not modeled. This simplification likely results in conservative dermal exposure estimates.
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Another source of uncertainty stems from Ex Priori’s reliance on physicochemical
parameters based on chemical structure. This presents challenges when a representative
chemical structure is difficult to identify, such as for chemical mixtures or for polymers.
For example, “Alcohols, C12-16, Ethoxylated” (CAS-RN 68551-12-2) represents a mixture
of fatty alcohols with different structures; assigning a single representative structure and
single set of representative physicochemical properties is therefore necessarily uncertain.
For another example, cellulose (CAS-RN 9004-34-6) is a polysaccharide, and the chemical
structure used to find the representative physicochemical properties represents only one
unit of the polysaccharide chain—thus volatility is overestimated, leading to the probably
unrealistically high inhalation exposure predicted in Table 3. In future work, it might be
possible to approach quantifying the uncertainty for polymers and mixtures by enumerating
possible structures for these substances and performing sensitivity analysis for the possible
structures. Improved curation of representative chemical structures and of physicochemical
properties is a key area for future refinement of Ex Priori. In the meantime, Ex Priori flags
mixtures and polymers in its output (see Figure 2), allowing users to quickly identify these
substances and decide whether and how to include them in any decision-making that
uses Ex Priori output. All input parameters are user-editable, so if a user identifies better
representative physicochemical properties for a flagged chemical, it is easy to enter them
into the model spreadsheet and re-run Ex Priori using the new values.

Another limitation of Ex Priori is its default product composition database. CPCPdb is
based on data gathered in 2015, and therefore may not reflect the most recent products and
ingredients available in the fast-moving consumer products landscape. For this analysis,
product composition data were not evaluated against external sources. Data curation
efforts for CPDat (including product composition data) are ongoing. However, the flexible,
modular, user-accessible nature of Ex Priori allows the user to add or substitute product
composition data as desired, if the user has a preferred source for such data.

The sensitivity analysis presented here does not explore sensitivity to product compo-
sitional data (mass fractions of chemicals in products). This is acknowledged as a limitation;
however, a complete sensitivity analysis, including high, medium, and low-end mass frac-
tions for each chemical in each product, is beyond the scope of the current work. However,
such a sensitivity analysis is of high interest for future work. In general, Ex Priori-predicted
exposures to a given chemical will scale linearly with total mass of chemical across products,
until the chemical mass is great enough that chemical emissions to air inside the “user
bubble” cause the air concentration to reach its saturation limit such that no additional
chemical can partition into the air. Then, inhalation exposures will cease to scale up with
total chemical mass. However, dermal and ingestion exposures will scale up more quickly,
as a smaller fraction of chemical will be lost to the air, and therefore a greater fraction of
chemical will remain available to partition onto the skin and onto floor dust. For quanti-
tative analysis of the effect of variability in product composition, along with variability
in consumer use patterns and other exposure factors, we recommend the more-detailed
population exposure model SHEDS-HT [6].

Despite these acknowledged limitations, Ex Priori appears to perform comparably to
another rapid exposure model (SEEM3) when the predictions of both models are evaluated
by examining their correlation to median aggregate exposure rates for the U.S. population
inferred from NHANES urine biomonitoring data [47].

5. Conclusions

Ex Priori shows promise as a screening-level chemical prioritization tool designed to
allow exposure modelers to rapidly explore various patterns of consumer behavior and
their potential impacts on exposure. Ex Priori can be used as an exploratory scoping tool
before using more-detailed EPA exposure models and tools such as SHEDS-HT [6] and/or
more-comprehensive life cycle exposure models such as RAIDAR [20] and USETox [15]. Ex
Priori considers multi-chemical exposures from consumer products and articles accounting
for product formulation and use; physical-chemical properties, such as partition coefficients;
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and user exposure factors and activity patterns. The power of Ex Priori’s simple dashboard
is the ease of dynamically exploring exposure scenarios, variables, and routes and their
ramifications on multi-chemical exposures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10100569/s1, Ex Priori Supplemental Material.docx (including
the following: a detailed description of model including all equations; tables of Ex Priori inputs
and calculated variables; detailed derivation of emissions assumption used in two-zone inhalation
model; sensitivity analysis of inhalation exposure to β). Ex_priori_workbook.xlsb (Excel workbook
implementation of Ex Priori model, including all data). Reference [59] is cited in the Supplemental
Materials.
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