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Abstract: Heavy metal pollution of soil in agricultural areas is the most prominent environmental
pollution problem in China, seriously affecting human health and food security. It has become one
of the environmental problems to which all sectors of society attach great importance. Soil heavy
metals in the weathering area of hazardous geological bodies in southwest China have naturally high
background attributes. Therefore, ecological risk assessment and analysis of potential sources of
soil heavy metals in southwest China is of great significance for soil health management, soil heavy
metal pollution control and territorial spatial planning. In this study, we collected 787 soil samples
(0–20 cm) in Xuanwei County in China and analyzed the concentrations of As, Cd, Cr, Cu, Hg, Ni,
Pb and Zn in soils. Igeo, RI, HI and CR were used to calculate the pollution levels, ecological risks
and human health risks. Additionally, the PMF model and one-way ANOVA were used to identify
the potential sources and discuss the factors affecting the enrichment of heavy metals. The results
showed that the mean contents of the surface soils were 1.190 (Cd), 139.4 (Cr), 96.74 (Cu), 0.081 (Hg),
56.97 (Ni), 46.66 (Pb) and 130.1 (Zn) mg/kg. All heavy metals exceeded the background values of the
A layer soil in Yunnan Province. The Igeo showed that Cd was the most hazardous element in the
study area, followed by Cu, Cr, As, Ni and Pb. The RI showed that low ecological risks, moderate
ecological risks, considerable ecological risks and strong ecological risks accounted for 3.81%, 55.27%,
37.74% and 3.18%, respectively, of the total samples, and Cd was the main dominant element. The
HI values of the As element in children were greater than 1, indicating a non-carcinogenic risk, and
other elements’ risks were acceptable. The CR values of Cr and Ni were higher than their limits
(1 × 10−4), and both had carcinogenic risks in children and adults, as did As in children. According
to the PMF model, four heavy metals sources were identified: geological sources (32%), sources
from mining activities (19.38%), atmospheric deposition sources (17.57%) and agricultural sources
(31.05%). Thereinto, As and Pb were mainly derived from agricultural sources, Cd and Cr were mainly
associated with geological sources, Cu was largely from mining activity sources, Hg was mainly
from atmospheric deposition sources and Ni and Zn were mainly from geological sources, mining
activities and agricultural activities. The parent material has a significant influence on the enrichment
of heavy metals in the soil, and the heavy metals are significantly enriched in the carbonate parent
material and quaternary parent material. Topography also plays a role in heavy metal accumulation;
Cd, Cr, Cu, Ni and Zn gradually decreased with the increase in altitude, and As and Pb increased
with the increase in altitude. Mn-oxide played a crucial part in the enrichment of Cu and Zn, while
SOC, K2O and pH had little influence on the accumulation of heavy metals.
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1. Introduction

The term “heavy metal” is based on categorization by density or molar mass, which
usually refers to metals with a density greater than 4.5 g/cm3 [1]. In terms of soil pollution,
heavy metals usually refer to cadmium (Cd), Chromium (Cr), copper (Cu), Mercury (Hg),
nickel (Ni), lead (Pb) and zinc (Zn). Moreover, arsenic (As), regarded as non-metallic,
has metallic behavior and is considered specifically a metalloid [2,3]. After entering the
environment or ecosystem, heavy metals can exist in a variety of chemical states or chemical
forms [4,5]. What is more, due to their recalcitrance, cumulativity and hypertoxicity, heavy
metals would cause soil degradation and groundwater pollution, seriously reduce crop
production and pose a threat to the ecosystem and human health [6–9].

In China, nearly one-sixth of agricultural land have been polluted, and inorganic
pollutions were the dominant pollutants, by which 20 million hectares are contaminated by
heavy metals (MEP, 2014) [10]. Thereinto, the polluted arable land in the southwest regions
of China has reached 2.195 million hectares, posing a serious threat to local agricultural
products and the ecological environment. Meanwhile, the regional chemical atlas of China
and the 1:200,000 stream sediment survey results also show that heavy metals in soils have
a naturally high background attribute in karst landform areas of the southwest regions
of China, especially the Cd element [11,12]. Heavy metals pollution has become a major
problem in the southwest regions of China [13–16].

Carbonate rocks are considered to be the hazardous geological bodies that cause heavy
metal pollution in agricultural soils because of the secondary enrichment of carbonate
parent materials during weathering and pedogenesis [16–18]. Soils developed in the karst
landform areas of the world are generally rich in heavy metals, such as the elements
of Cd, Pb and Zn. The spatial distribution of heavy metals pollution is related to the
hazardous geological bodies [16,19,20]. These areas are often referred to as heavy metals
high geological background regions in which heavy metals are usually high in content,
low in activity and low in ecological risks [21–25]. In China, the southwest regions are
the most widely distributed and developed areas of karst landforms, and carbonate rocks
are the dominant material basis of the karst landforms [16,26]. For thousands of years,
local residents have cultivated terraced fields according to the trends of the mountains
and carried out agricultural activities in the carbonate parent-material areas, and some
of them, such as the Honghe Hani Rice Terraces are included in the Globally Important
Agricultural Heritage System (GIAHS) [27]. With the intensification of human activities
and land-use change, the soil physical and chemical property configurations have changed.
As a result, a part of the heavy metals are activated. Under these conditions, crops are in a
state of high stress from heavy metals, resulting in heavy metals pollution in agricultural
soil, which may be the reason why heavy metals have natural high background content in
soils of the southwest regions of China [28–30]. Therefore, it is necessary, for preventing
and controlling soil heavy metals pollution, to carry out a series of systematic research
projects to study the distribution, the pollution levels and the ecological risks of heavy
metals in karst areas. The sources of the heavy metals are also needed.

With the research into heavy metals pollution becoming the focus of attention, many
scholars have carried out some related research about the content status, distribution
characteristics, pollution levels and enrichment factors of heavy metals in the southwest
karst landforms of China in recent years [13–16,21,28–34]. However, there are few studies
on the sources of agricultural heavy metals, which affects the scientific judgment about soil
heavy metals pollution. Therefore, it is necessary to identify the sources of heavy metals in
soils, especially in the high metal background areas of hazardous geological bodies, such as
carbonate rocks in the southwest regions of China, which is one of the important contents
for soil pollution prevention and control.

Source apportionment methods, for example, the emission inventory method, source
modeling method and receptor model, were initially carried out for the sources of par-
ticulate matter in the atmospheric environment, and now these have gradually formed a
relatively complete air pollution source analysis technology system [35–37]. Soil source ap-
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portionment is derived from atmospheric source analysis, but it is affected by the complex
characteristic of soil heavy metal pollution, such as concealment, accumulation and region-
alism [38,39]. This is different from air pollution. In recent years, many methods and models
have been applied to soil source analysis, such as principal component analysis-multiple
linear regression (PCA-MLR), chemical mass balance (CMB), positive matrix factorization
(PMF), partial least squares (PLS) and artificial neural networks (ANNs) [40–45]. Among
them, the PMF model is recommended by the USEPA; it simplifies the multiple-dimensional
variables and gets a few overall elements with a covariance matrix and relation matrix [46].
Plus, this method has non-negative constraints on factor loading and factor scores in the
process of solving to avoid negative values in the results of the matrix factorization, and
makes the obtained source component spectrum and source contribution rate have inter-
pretable and clear meanings [47]. In addition, PMF does not require the measurement of
the source profiles and uses error estimates for each individual data point to deal more
reasonably with missing and imprecise data [48].

Xuanwei is located in the east of Yunnan Province, at the junction of Yunnan and
Guizhou provinces, which is the main development areas of karst landforms. So far, there
are few studies, such as on the spatial distribution characteristic, regional soil pollution
assessment, and ecological risk assessment, on heavy metal pollution in this area. Thus, the
objectives of this study were to (1) evaluate the pollution levels, the potential ecological risks
and human health risks of heavy metals in hazardous geological bodies soils, (2) identify
the potential sources and their contributions of heavy metals to the hazardous geological
bodies soils and (3) explore the driving factors affecting heavy metal enrichment.

2. Materials and Methods
2.1. Study Area

Xuanwei County is located in Yunnan Province, China, between 25′56′′~26′4′′ N and
103′5′′~104′4′′ E (Figure 1). It covers an area of 90 km2. The area has a low-latitude plateau
monsoon climate that is tempered by its low latitude and moderate elevation. Its average
temperature is 13.4 ◦C and annual rainfall is 974.6 mm. The terrain in this area fluctuates
greatly, with an average elevation of 2147 m. Geologically, the study area is located in the
southwest margin of the Yangtze plates, which have strong geological tectonic movement
and obvious folds and faults. The soil lithology in the study area is carbonate rocks, clastic
rocks, sand shale and quaternary sediments (Figure 1). The soil types are latosol, alluvial
soil skeleton soil and lake wetland. Compared with other regions of China, the typical
farmland in this area is mainly terraced fields nestling against the mountains, and it mainly
grows corn and potatoes.

2.2. Sample Collection and Pretreatment

In 2016, 787 samples were collected from surface soil (0–20 cm) throughout the
study area according to the current situation of land use. The sampling density was
8.74 points/km2. The distribution of samples is shown in Figure 1. When collecting soil
samples, we usually took three to five subsamples around the pre-selected sampling loca-
tion and combined them into a sample by the equal quantity method. In addition, during
the sampling process, debris such as root residue, gravel, stones, sand and pebbles in the
soils would be removed and put them into cloth bags to take away. Furthermore, at the
completion of sampling, the hand-held receiver GPS was used to locate each sampling
point, and the coordinates of the sample point were recorded. The collected soils, when
air-dried in a warehouse, were pounded with a rubber hammer and crushed using a mortar
through a 20-mesh nylon sieve. Finally, those samples were put into plastic bottles and sent
to the laboratory for testing.
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2.3. Sample Analysis and Quality Assurance

Sample analysis and testing were completed by the Hubei Geological Research Labo-
ratory. In the test, the content of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), K2O,
Mn, SOC and soil pH values were determined. The detection methods and corresponding
detection limits are shown in Table S1. Sample analysis and testing were strictly in accor-
dance with the requirements of sample analysis quality in relevant technical standards,
and soil national standard material samples were also inserted in the analysis process with
the same conditions for analysis to monitor the accuracy of the analysis. The values of the
allowable limits between the measured and standard values are shown in Table S1.

2.4. Contamination Assessment of Heavy Metals in Soils
2.4.1. Geo-Accumulation Index

The geo-accumulation index (Igeo) was initially used to quantitatively evaluate the
degree of heavy metal pollution in sediment [49,50]. Due to its scientificity, accuracy and
intuitiveness, the Igeo has been widely used to evaluate soil heavy metal pollution in recent
years, which was calculated as follows [49]:

Igeo = Log2

[
Ci

k× Bi

]
(1)

where Ci is the concentration of heavy metal i in surface soil samples, while Bi is the
geochemical background value of element i in the A layer soil of Yunnan Province, and
factor k is the correction coefficient, generally 1.5. According to Muller (1969) [49], the Igeo
classification is shown in Table 1.

2.4.2. Ecological Risk Index

The potential ecological risk index (RI), which was used to evaluate the risk of heavy
metals from the sedimentological perspective by integrating the toxicity levels of heavy
metals, considered not only the content level but also the synergistic effect of multiple
elements, the toxicity level and the environmental sensitivity [51]. The calculation formulas
of the potential ecological risk index are Equations (2) and (3):

Ei
r = Tr ×

Ci
r

Cb
r

(2)
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RI =
n

∑
i=1

Ei
r (3)

where Ei
r is the potential ecological hazard coefficients of element r at point i. Ci

r is the
measured content of element r at point i, Cb

r is the soil geochemical background value
of element r. Cr is the toxic response factor of element r (i.e., As = 10, Cd = 30, Cr = 2,
Cu = 5, Hg = 40, Ni = 5, Pb = 5, and Zn = 1). Its classification is shown in Table 2. RI is the
comprehensive value of potential ecological hazard coefficients of heavy metals at point i.
It is divided into four grades (Table 2).

Table 1. Geo-accumulation index (Igeo) classification.

Class Igeo Values Soil Pollution

0 Igeo < 0 Unpolluted
1 0 ≤ Igeo < 1 From unpolluted to moderately polluted
2 1 ≤ Igeo < 2 Moderately contaminated
3 2 ≤ Igeo < 3 From moderately to strongly polluted
4 3 ≤ Igeo < 4 Strongly polluted
5 4 ≤ Igeo < 5 From strongly polluted to extremely polluted
6 5 ≤ Igeo Extremely polluted

Table 2. Ecological risk index and ecological hazard coefficients classification.

Class EI Values Ecological Hazard Class RI Values Ecological Risk

0 Ei
r < 40 Low level 0 150 < RI Low level

1 40 ≤ Ei
r < 80 Moderate level 1 150 ≤ RI < 300 Moderate level

2 80 ≤ Ei
r < 160 Considerable level 2 300 ≤ RI < 600 Considerable level

3 160 ≤ Ei
r < 320 Strongly level 3 600 ≤ RI Strongly level

4 160 ≤ Ei
r Extremely level

2.4.3. Health Risk Assessment

The risk assessment is the risk characterization of the adverse health effects caused
by environmental pollution according to the exposure assessment model developed by
the USEPA, which is generally accomplished in two steps: hazard identification and dose
response assessment [52–56]. The equation presented in Exhibits 4–6 is used for calculating
intake of children and adults by ingestion, dermal absorption, and inhalation for chemicals.

ADDingest =
CSi × IRing × CF× EF× ED

BW × AT
(4)

ADDdermal =
CSi × CF× SA× AF× ABS× EF× ED

BW × AT
(5)

ADDinhalation =
CSi × IRinh × ET × EF× ED

BW × AT
(6)

where ADDingestion, ADDdermal and ADDinhalation refer to the average daily doses through
exposure pathway by ingestion, dermal absorption, and inhalation, respectively, while
other parameters and theirs description and values are shown in Table 3.
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Table 3. Parameters and their detailed description for the health risk assessment [52,53].

Parameter Description Unit Adult Child

CSi Chemical concentration in soil mg/kg - -
IRing Ingestion rate mg/d 100 200
CF Conversion factor kg/mg 10−6 10−6

EF Exposure frequency days/year 350 350
ED Exposure duration years 24 6
BW Averaging body weight kg 56.8 15.9
AT Averaging time days ED × 365 ED × 365
SA Skin surface area available for contact cm2/event 5700 2800
AF Soil to skin adherence factor mg/cm2 0.2 0.2

ABS Absorption Factor unitless 0.001 0.001
IRinh Inhalation rate m3/days 14.5 7.5
ET Exposure time hours/day 24 24

The hazard quotient (HQ) is a function used to characterize the probability of non-
carcinogenic risk. The hazard index (HI) is used to assess the total potential risks of
noncarcinogenic effects from multiple elements. The potential carcinogenic risks (CR) of
developing a tumor from exposure to heavy metals were calculated using the following
Equations (7)–(9):

HQ =
ADD
R f D

(7)

HI =
n

∑
1

HQi (8)

CR = ADDi × SF (9)

where RfD is the chronic reference dose, and SF is the slope factor (Table 4).

Table 4. Reference dose (RfD) and slope factor (SF) for heavy metals [54–56].

Heavy
Metals

RfD (mg/kg/d) SF (kg/d/mg)

Ingestion Dermal Inhalation Ingestion Dermal Inhalation

As 3.0 × 10−4 1.23 × 10−4 4.29 × 10−6 1.5 1.5 1.51 × 101

Cd 1.0 × 10−3 2.5 × 10−5 2.86 × 10−6 - - 6.3
Cr 3.0 × 10−3 3 × 10−5 - 5.01 × 10−1 2.0 × 101 4.2 × 101

Cu 4.0 × 10−2 1.2 × 10−2 - - - -
Hg 3.0 × 10−4 2.14 × 10−5 - - - -
Ni 2.0 × 10−2 5.4 × 10−3 9.0 × 10−5 1.7 4.25 × 101 8.4 × 10−1

Pb 1.4 × 10−3 5.24 × 10−4 - 8.5 × 10−3 - 4.2 × 10−2

Zn 3.0 × 10−1 6.0 × 10−2 - - - -

2.5. Positive Matrix Factorization Analysis (PMF)

PMF, as a receptor model, is an effective multi-factor data analysis method proposed
by Paatero and Tapper in 1993 that is a mathematical approach for quantifying the contribu-
tions of sources to samples based on the composition or fingerprints of the sources [57–59].
It decomposes a matrix of speciated sample data into two submatrices: factor contributions
(G) and factor profiles (F).

Xij =
n

∑
k=1

GikFkj + eij (10)

where Xij is the concentration of element i in sample j; Gik is the concentration of element i
in source k; Fkj is the contribution of source k to sample j; and eij is the residual matrix.

Q =
n

∑
i=1

m

∑
j=1

eij
2

uij
(11)
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uij =
5
6
×MDL (12)

uij =

√
(δ× c)2 + MDL2 (13)

where uij is the uncertainty of element i in sample j, which is calculated according to method
detection limit (MDL). When the concentration of elements is less than or equal to the
corresponding MDL, uij is Equation (12), and while it is larger than MDL, the uncertainty is
(13). δ is the relative deviation, generally 5% [60,61].

2.6. Data Analysis and Statistics

All the data were preliminarily processed in Excel 2015 (Microsoft Corporation,
Redmond, WA, USA) and SPSS 19.0 (IBM CORP, Armonk, NY, USA) software to cal-
culate the geochemical parameters. In addition, the figures are completed by ArcGIS 10.0
(Environmental Systems Research Institute Inc., Chicago, IL, USA) and CorelDRAW X4
(Corel Corporation, Ottawa, Canada) software.

3. Results and Discussion
3.1. The Overview of Soil HMs and Geochemical Indices in the Study Area

The concentrations of chemical components in the soil are shown in Table 5. The
mean content of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were 29.56, 1.190, 139.4, 96.74, 0.081,
56.97, 46.66 and 130.1 mg/kg, respectively. They were 1.61, 5.46, 2.14, 2.22, 1.40, 1.34, 1.15,
1.45 times the background values of soil in Yunnan Province [62]. Furthermore, compared
with the national soil geochemical reference value, the heavy metals were 1.96 (As), 5.48
(Cd), 1.80 (Cr), 2.12 (Cu), 1.25 (Hg), 1.74 (Ni), 1.71 (Pb) and 1.48 (Zn) times higher than the
corresponding high background reference value (75%) [63]. In general, the content of heavy
metals obviously exceeded their background values and showed significant enrichment
characteristics. The variation coefficients of heavy metals in the study area were all over
20%, specifically 58.77% (As), 52.78% (Cd), 48.50% (Cr), 137.64% (Cu), 45.95% (Hg), 34.86%
(Ni), 26.40% (Pb) and 33.85% (Zn), respectively, showing high spatial variation [64].

Table 5. Geochemical statistical of chemical components in topsoil samples.

Elements n Me a Med b Max c Min d CV e SD f
Yunnan
Province

Background

China
Background

High
Background

Baseline

As 787 29.56 27.48 116.5 3.386 54.65% 16.15 18.4 12.1 14
Cd 787 1.190 1.085 5.348 0.054 47.76% 0.570 0.218 0.23 0.197
Cr 787 139.4 122.4 521.0 46.96 42.57% 59.36 65.2 68.5 68
Cu 787 96.74 57.20 355.3 14.26 81.38% 78.73 43.6 27.1 27
Hg 787 0.081 0.074 0.394 0.023 41.97% 0.034 0.058 0.087 0.056
Ni 787 56.97 53.79 180.3 11.15 32.91% 18.75 42.5 29.6 31
Pb 787 46.66 47.91 118.9 14.73 27.11% 12.65 40.6 31.2 28
Zn 787 130.1 124.1 387.2 20.30 32.30% 42.02 89.7 79 84
Mn 787 655.9 594.4 2260 42.44 56.90% 373.19 626 583 -
K2O 787 1.468 1.174 4.487 0.239 61.22% 0.90 1.940 2.242 -
SOC 787 1.961 1.944 4.930 0.216 31.35% 0.61 2.256 - -
pH 787 - 5.38 8.30 4.26 12.99% 0.699 5.7 6.7 -

a: mean; b: median; c: maximum; d: minimum; e: coefficient of variation; f: standard deviation. As, Cd, Cr, Cu,
Hg, Ni, Pb, Zn and Mn: mg/kg; K2O and SOC: %; pH: unitless.

The average content of Mn in the study area was 655.9 mg/kg, with a range of
42.44~2260 mg/kg, which was similar to its background value [62]. The coefficient of
variation was 56.9%, presenting high variation. K2O content ranged from 0.239~4.487%,
with an average of 1.468%. The variation coefficient of K2O was in the middle (61.22%),
showing high variation. SOC was abundant in the study area, and the content ranged
from 0.216~4.93%, with an average content of 1.961%. The coefficient of variation was
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31.35%, indicating moderate variation. The pH in the study area varied from 4.26 to 8.30,
with a median value of 5.38, and 89.71% of the sampling sites were in acidic or weakly
acidic environments.

The background value content of heavy metals in southwest China was high, par-
ticularly the Cd element [65,66]. Compared with other research reported in southwest
China (Table 6), the contents of Cd, Cr and Ni in the study area were similar to those
reported in other geological high background areas. However, the elements such as As,
Cd and Zn were lower than those in the agricultural soils of Xiangjiang River in Hunan
Province [67]. The As element was similar to that of the agricultural soils in Guangdong
and Almyros (GR) [6,42], but it was lower than in the soils around the lead–zinc mine [21].
Compared with the study in Table 6, the content of Hg was low compared with that in
Hainan Province, which was much lower than that in the typical volcanic soils in Maicheng
County of Hainan Province (0.081 vs. 49.09 mg/kg) [8]. There was little difference in the
content of Cu, Pb and Zn between this study area and southwest China. Compared with
Qatar, Almyros (GR) and Fogang County in southeast China, Zhuxi County in central
China and Chengmai County in south China, the content of Cu and Pb were significantly
different, which were 3.78, 2.78, 7.96, 1.94 and 2.89 times Cu, and 2.56, 4.76, 0.90, 1.78 and
2.40 times Pb, and 1.41, 4.36, 2.31, 0.73 and 1.94 times Zn [8,42,50,54,68].

Table 6. Comparison of soil heavy metals content in the study area with previous studies around the world.

Location As Cd Cr Cu Hg Ni Pb Zn Reference

This study area 29.56 1.19 139.4 96.74 0.081 56.97 46.66 130.1 -
Baoshan City,

Yunnan (CHN) 93 0.269 128 48.7 0.178 57.9 45.2 114.8 [21]

Qujing City, Yunnan (CHN) 18.1 1.18 174.1 202.0 0.09 71.1 34.9 167.2 [65]
Hezhang County, Guizhou (CHN) 24.6 2.25 176.4 89.6 0.15 65.7 41.2 173.0 [66]

Fogang County, Guangdong (CHN) 5.3 0.07 27.49 12.15 0.10 10.51 51.87 56.34 [42]
Qidong County, Hunan (CHN) 105.02 10.50 100.52 62.56 0.45 - 92.70 517.20 [67]

Zhuxi County, Hubei (CHN) 14.2 2.1 78.8 49.8 0.13 58.6 26.2 178.6 [68]
Chengmai County, Hainan (CHN) 7.06 67.51 156.88 33.43 49.09 72.47 19.48 65.57 [8]

Madrid (ES) - 0.34 26.5 22.5 - 20.9 22.8 52.8 [54]
50Qatar 27.6 0.2 85.7 25.6 - 61.9 18.2 92.4 [50]

Almyros (GR) 2.1 3.3 39.2 34.8 0.9 19.8 9.8 29.8 [6]

As, Cd, Cr, Cu, Hg, Ni, Pb and Zn: mg/kg.

3.2. Assessment of Heavy Metals Pollution
3.2.1. Geo-Accumulation Index Assessment

In this paper, the high background values of soil geochemical baseline values of China
were used to calculate the geo-accumulation index. The statistical results showed that the
cumulative parameters of heavy metals in the study area are Cd (1.86) > Cu (0.83) > Cr
(0.36) > As (0.27) > Ni (0.21) > Pb (0.10) > Zn (−0.03) > Hg (−0.15). In addition to Hg and Zn,
other elements were polluted, especially Cd, which is the most polluting element with the
highest value. Other elements were uncontaminated or up to a moderately polluted level.

3.2.2. Ecological Risk Assessment

The potential ecological risk indexes (RI) showed that the samples with low ecological
risks, moderate ecological risks, considerable ecological risks and strongly ecological risks ac-
counted for 3.81%, 55.27%, 37.74% and 3.18% of the total samples, respectively. The order of
contributions of the eight heavy metals to RI was Cd > Hg > As > Cu > Pb > Ni > Cr > Zn,
and theirs contribution rates were 73.5%, 14%, 3.83%, 3.31%, 1.91%, 1.84%, 1.18% and
0.43%, respectively. Thus, it could be seen that Cd was the most hazardous element in the
study area.

3.2.3. Health Risk Assessment

It was an essential precondition for soil environmental management to evaluate the
harm of soil heavy metals pollution to human health. An assessment of health risks of
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heavy metals in soil was conducted using the exposure assessment model developed by
the USEPA [52,53]. Based on the exposure assessment model established by the USEPA,
the average daily doses (ADD), the hazard index (HI) and the potential carcinogenic (CR)
of children and adults exposed to contaminated soil through ingestion, dermal absorption
and inhalation were calculated. The statistical results are shown in Table 7.

Table 7. Statistics of health risks exposure to heavy metals under different pathways.

ADD (Mean) HQ (Mean)
HI

(10−2)
CR

(10−4)Ingestion
(10−4)

Dermal
(10−6)

Inhalation
(10−6)

Ingestion
(10−2)

Dermal
(10−2)

Inhalation
(10−2)

As Children 3.560 0.998 0.870 119.0 0.812 20.30 140.0 5.490
Adults 0.499 0.569 0.471 16.60 0.462 11.00 28.10 0.828

Cd Children 0.144 0.040 0.035 1.440 0.161 1.230 2.813 0.002
Adults 0.020 0.023 0.019 0.201 0.092 0.663 0.956 0.001

Cr Children 16.80 4.710 4.110 56.10 15.70 - 71.80 11.10
Adults 2.350 2.680 2.220 7.850 8.950 - 16.80 2.650

Cu Children 11.70 3.270 2.850 2.920 0.027 - 2.940 -
Adults 1.630 1.860 1.540 0.408 0.016 - 0.424 -

Hg Children 0.010 0.003 0.002 0.325 0.013 - 0.338 -
Adults 0.001 0.002 0.001 0.046 0.007 - 0.053 -

Ni Children 6.870 1.920 1.680 3.440 0.036 1.860 5.340 12.50
Adults 0.962 1.100 0.908 0.481 0.020 1.010 1.51 2.110

Pb Children 5.630 1.580 1.370 40.20 0.301 - 40.50 0.048
Adults 0.788 0.898 0.744 5.630 0.171 - 5.800 0.007

Zn Children 15.70 4.390 3.830 0.523 0.007 - 0.530 -
Adults 2.200 2.500 2.070 0.073 0.004 - 0.077 -

As can be seen from Table 7, the average daily doses (ADD) by ingestion were the
highest, accounting for over 99.29% of the total ADD, which was the most important way
of intake, while dermal and inhalation exposures were relatively low. Moreover, the ADD
of children is significantly higher than that of adults, about 7.04 times higher than that of
adults, indicating that the impact of heavy metal pollution on children is greater than that
of adults. These results were consistent with previous studies [69,70].

The values of HI were used to quantify non-carcinogenic risks, and if the value of HI is
greater than 1, that indicated a non-carcinogenic risk in the area. Table 7 shows that only the
HI values of the As element in children were greater than 1, indicating a non-carcinogenic
risk, while adults had no non-carcinogenic risks. In addition, although the HI value of Cr
for children (0.72) was less than 1, it was also high, and it is necessary to pay attention to
its hazards. Adimalla et al. (2019) reported that non-carcinogenic risks for As and Cr in
children were seven times higher than for adults in India, and children were facing more
acute health risks than adults, which was in line with the present study [71]. As for CR, it
should be taken seriously because the CR values of the As element in children and Cr and
Ni in both children and adults were higher their limits (1 × 10−4) [52], indicating that there
were carcinogenic risks. These conclusions correspond with the results of the studies by
Yang et al. (2022) about the geological high background area of heavy metals in Hainan [8].

3.3. Source Apportionment of Heavy Metals

In this paper, EPA PMF 5.0 was used to identify and quantify heavy metal pollution
sources. The signal-to-noise ratio (S/N) of the experimental data was greater than 10. To
ensure the best prediction, 2~6 factors were respectively set for 20 iterations. Finally, Q
(Robust) and Q (True) were determined to be the closest and the best effects when the
number of factors were 5. Hence, eight heavy metals may have five potential sources. The
source profiles and contributions are shown in Figure 2 and factor profiles are shown in
Figure 3. The total contribution rates of the different sources are shown in Figure S1.
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Factor 1 (which represents 9.68% of the total contributions) was characterized by the
relatively high contributions of Cr and Ni, which were 45.7% and 21.8%, respectively. The
CV values of Cr and Ni were 42.57% and 32.91%, indicating that they have high spatial
heterogeneity. Previous studies have shown that although the content of Cr and Ni in
carbonate rocks was lower than that in other parent materials, the degree of enrichment in
soils formed by the weathering of carbonate rocks was higher [72]. It can be determined
from Table 8 that the content of Cr and Ni in the carbonate parent materials and quaternary
parent materials in the study area were significantly higher than those in other parent
materials, indicating that the sources of Cr and Ni were closely related to the parent
material. Zhang et al. (2020) studied Reshui Town in Xuanwei City and found that the Cr
and Ni in agricultural soils mainly existed in a residual form (Cr was 81.35% and Ni was
89.03%) [72]. Therefore, factor 1 was the geological source.

Table 8. Results of one-way ANOVA for content by parent materials and elevation.

Description n As Cd Cr Cu Hg Ni Pb Zn

Parent
materials

Clastic Rocks 182 35.57 a 1.05 bc 137.82 a 40.42 c 0.070 b 53.43 b 40.75 b 99.96 c

Carbonate Rocks 422 32.58 a 1.19 b 140.79 a 91.93 b 0.085 a 57.59 b 52.89 a 137.27 b

Quaternary Sediments 158 16.00 b 1.38 a 141.62 a 185.37 a 0.086 a 63.44 a 39.15 b 154.85 a

Sand Shale 25 18.96 b 1.00 c 127.29 a 33.26 c 0.061 b 35.15 c 34.03 c 77.70 d

Elevation

2050–2100 m 161 19.60 c 1.41 a 151.78 a 162.16 a 0.087 a 64.54 a 40.42 c 151.73 a

2100–2150 m 252 25.23 b 1.27 ab 150.18 a 111.78 b 0.081 ab 59.24 ab 42.07 c 127.03 b

2150–2200 m 272 37.39 a 1.08 bc 132.96 ab 60.03 c 0.078 ab 53.42 bc 51.15 b 122.24 b

2200–2250 m 85 35.59 a 0.95 c 112.09 bc 55.57 c 0.074 b 49.41 cd 55.97 a 123.54 b

2250–2300 m 17 32.48 a 0.91 c 104.21 c 47.57 c 0.087 a 46.20 d 55.75 a 129.25 b

Significant differences post-hoc comparison were indicated by the different letters (a, b, c and d).

The main contributing elements of factor 2, which account for the 17.57% of the
total contributions, were Hg, contributing 64.6%, and Pb (20.4%), Cd (14.2%), As (13.6%),
Cu (13.0%) and Zn (9.7%), which contributed the next highest. Since As is the only heavy
metal existing in the atmosphere in the form of a gas phase, the migration of mercury
was controlled by climate and altitude effects [73,74]. The study area was located on the
Yunnan-Guizhou Plateau with an average altitude of over 2000 m and low atmospheric
temperature. Under these special conditions, Hg would migrate and settle onto the high
elevations along with the atmosphere, causing the accumulation of mercury in these areas.
In addition, as typical emission elements of traffic pollution, Pb, Hg and Cd were mainly
affected by automobile exhaust emissions, rubber tire wear, brake wear and road surface
wear [75,76]. Thus, factor 2 was the anthropogenic sources of atmospheric deposition.

Cd, Zn, Cr, Pb, Ni and Cu had higher contribution values in factor 3 (which represents
22.32% of the total contributions), among which the contribution rate of Cd was as high
as 76.7%, and the contribution rates of Zn, Cr, Pb, Ni and Cu were 23.5%, 20.2%, 20.8%,
13% and 10.5%, respectively. The study area is located in the karst area where the parent
materials of the soil were mainly carbonate rocks. The content of Cd in the study area
(1.19 mg/kg) is much higher than its background value (0.218 mg/kg). Moreover, our
previous studies in this area showed that Cd mainly existed as a residual form and as
potential biological components (accounting for 61.59%) that could not be absorbed and
utilized by plants [65]. In addition, prior studies had shown that the fluxes of Cd in surface
soils from the carbonate substrates were determined by the dual effects of secondary
enrichment and parent rock inheritance [19]. This might be the reason why the content of
Cd in surface soils was significantly higher than its background value. Therefore, factor 3
was a geological source.

The main loading element in factor 4 (which represents 19.38% of the total contribu-
tions) was Cu, with a contribution rate of 76.5%. Second, Ni (27.6%) and Zn (28.9%) also
contributed. One-way ANOVA results showed that the contents of Cu in different parent
materials were significantly different, and the content of Cu in quaternary parent materials
was much higher than that in other parent materials. The CV values of Cu in the study
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area were high (81.38%), indicating that the distributions of Cu in the study area were
inhomogeneous, and there may be point-source pollution. The study area was located
in the eastern part of Yunnan Province, where a large number of IOCG-type iron-copper
deposits were distributed [77]. The parent rocks were characterized by rich iron and high
copper, which easily cause the enrichment of Cu, Ni and Zn during the development of the
soils [78]. Therefore, factor 4 was a mining activity source.

The main contributing elements of factor 5 (which represents 31.05% of the total
contributions) were As, Pb, Ni, Zn, Cr and Cd, which contributed 83.6%, 50.2%, 37.7%, 34%,
20.5% and 9%, respectively. The As element was the dominant component of factor 5. In
agricultural activities, arsenic compounds were widely used in pesticides, herbicides and
insecticides, which may be the potential factors causing As accumulation in agricultural
soils [79,80]. In addition, the excessive use of pesticides not only caused residual toxic
pollution, but also resulted in heavy metals pollution of soil because of the composition
of some pesticides containing Hg, As, Cu, Zn and other heavy metals [79,81]. Therefore,
factor 5 was an agricultural source.

In summary, factor 1 and factor 3 are both geological sources, so there are mainly four
sources of heavy metals in the study area, namely a geological source, a mining activity
source, an atmospheric deposition source and an agricultural source, with each source
accounting for 32%, 19.38%, 17.57% and 31.05%, respectively.

3.4. Influencing Factors of Heavy Metals Enrichment
3.4.1. Influence of Parent Materials on Heavy Metals

Table 8 shows statistical information regarding the content of heavy metals in the
study area. One-way ANOVA showed that, except for Cr, the differences in the content of
seven heavy metals in the parent materials were significant (p < 0.05). In soil overlying sand
shale, Cd, Cu, Ni, Pb and Zn were lower than the background values of Yunnan Province,
and the contents of As, Cd and Cr were lower than the average values of the study area,
which indicate that the heavy metals were depleted, while the soils overlying carbonate
rocks such as limestone formations were enriched with most heavy metals, such as Cd, Cu,
Hg, Ni and Zn. This might be because in the pedogenesis of carbonate rocks, insoluble
substances, such as iron and manganese oxides and clay minerals, remain in place, and the
resolved heavy metals were constantly absorbed by them, resulting in accumulation [82].
Soil overlying clastic rocks was enriched with As, indicating that clastic rocks were one of
the enrichment sources of As.

3.4.2. Effects of Topographic Factors on Heavy Metals

Elevation and slope might be among the main factors affecting heavy metal enrichment
in the southwest regions of China [83]. Therefore, we analyzed the one-way ANOVA in
this paper (Table 8). The results showed that the content of heavy metals showed different
accumulation patterns, and there were significant differences in accumulation of heavy
metals at various elevations. The content of Cd, Cr, Cu, Ni and Zn increased with the
decrease in elevation, and increased by 52%, 43%, 232%, 39% and 11% in the areas below
2100 m compared with those above 2250 m. What is more, the contents of As and Pb in
highland areas were significantly higher than at lower-altitude spots.

3.4.3. Impacts of Soil Chemical on Heavy Metals

In this paper, the influence of K and Mn oxides, SOC and pH on heavy metal accumu-
lation was discussed by calculating the Pearson correlation coefficient (Figure 4).
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Iron and manganese oxides in soils have high adsorption capacity for heavy metals
and are important carriers of heavy metal migration and enrichment [84,85]. In this study, a
significant positive correlation was found between Mn-oxides and the heavy metals Cu and
Zn (p < 0.01), and the concentrations of Cu and Zn increased with increasing Mn-oxides,
suggesting that Mn-oxides may be the contributing factor to Cu and Zn enrichment. SOC
not only affects the accumulation of heavy metals in soils but can also form a complex
with heavy metal elements, affecting the migration and transformation of various forms of
heavy metals [86]. There was a moderate correlation between SOC and Cd in the study area,
and the correlation between SOC and other heavy metals was weak, which implied that
SOC had little cumulative effect on heavy metals. This may be due to the fragile ecological
environment in southwest China, serious soil degradation under natural conditions, thin
reservoir of organic matter and limited adsorption capacity of soil heavy metals. Zhang
Fugui et al. (2022) found the same result when they conducted a soil survey in the Hezhang
area, Guizhou Province [66].

Except for the slight correlation between As and Pb and K2O in soils, the correlation
between others and K2O in soil was not obvious, while the correlation between pH and
all heavy metals was weak. The same research results were also found in the study
of a karst area in southwest China [12,66]. As alkaline metal ions K+, Na+, Ca2+ and
Mg2+ in soil solutions had the chemical properties of neutralizing H+ and preventing soil
acidification. The study area was located in the karst area of southwest China. The widely
distributed carbonate rocks provide sufficient K+, Na+, Ca2+, Mg2+ and other basal ions
during weathering and soil formation to provide a buffer for soil acidification, which may
be the reason why heavy metals were less affected by pH and K2O.

The main reason for heavy metals enrichment in the study area was the weathering
and pedogenesis of soil-forming parent materials in the karst area. The enrichment of Cd,
Cr and Ni was mainly from the release of soil-forming parent materials (i.e., secondary
enrichment of carbonate rocks during soil formation). That was also the most important
heavy metal element causing heavy metal pollution (Cd) and harm to human health
(Cr and Ni) in the study area. Therefore, special attention should be paid to Cd, Cr and Ni
elements in high background areas, and the monitoring network should be established to
dynamically monitor the contents of Cd, Cr and Ni in soil and crop seeds. In addition, if
it is not necessary, people should not come into contact with the developing soils in karst
areas, especially children. In addition, As and Pb pollution caused by agricultural activities
was also an important cause of harm to human health. In particular, the element As was
a major contributor to both carcinogenic risks and non-carcinogenic risks. We should
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take some measures to limit the use of chemicals containing heavy metals in agriculture
to prevent heavy metal pollution from the use of fertilizers and pesticides in agriculture.
Heavy metals from mining activities and atmospheric deposition, such as Cu, Zn and Hg,
were less harmful to soil and humans, and their risks were manageable.

4. Conclusions

In this paper, we took the heavy metals high background area in the southwest of
China as the research area. By studying the concentration, pollution degrees, ecological
hazards and sources of heavy metals in the soil overlying hazardous geological bodies we
found that:

(1) The concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in soils of the study area
were significantly enriched. Moreover, their distributions were inhomogeneous, and
there might be point sources of pollution.

(2) The Igeo and RI indexes showed that Cd was the most hazardous element in the
study area. The results of a human health risk assessment showed that only the As
element had non-carcinogenic risks for adults and other element risks were acceptable,
whereas the carcinogenic risks in the study area were more serious. Cr and Ni had
carcinogenic risks in both children and adults, and As had carcinogenic risks in
children.

(3) Traceability analysis by PMF found four heavy metal pollution sources, namely
geological sources (factor 1 and factor 3), atmospheric deposition sources (factor 2),
sources from mining activities (factor 4) and agricultural sources (factor 5).

(4) In different parent-material areas, the enrichment characteristic of heavy metals was
different except the distribution of Cr, which was weakly affected by parent materials;
Cd, Cu, Hg, Ni, Pb and Zn were enriched in the parent-materials area of the carbonate
zone, while As was enriched in the clastic rocks area; almost all heavy metals were
depleted in the shale area and enriched in the quaternary, but their enrichment degrees
were weaker than that in the carbonate area.

(5) The results of the one-way ANOVA showed that topographic factors play an essential
role in the accumulation of heavy metals in soils. The content of Cd, Cr, Cu, Ni and
Zn gradually decreased with the increase in altitude, and the decreased amplitude
was similar in different altitude intervals. The content of As and Pb increased with
the increase in altitude, and the contents were higher at high altitude.

(6) In the study area, Mn-oxide was an important factor influencing the enrichment of Cu
and Zn, while SOC and K2O had little influence on the accumulation of heavy metals.
In addition, pH had no significant effect on heavy metals accumulation.
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