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Abstract: Particulate matter (PM) of sizes less than 10 µm (PM10) and 2.5 µm (PM2.5) found in
the environment is a major health concern. As PM is more prevalent in an enclosed environment,
such as a subway station, this can have a negative impact on the health of commuters and staff.
Therefore, it is essential to continuously monitor PM on underground subway platforms and control
it using a subway ventilation control system. In order to operate the ventilation system in a predictive
way, a credible prediction model for indoor air quality (IAQ) is proposed. While the existing
deterministic methods require extensive calculations and domain knowledge, deep learning-based
approaches showed good performance in recent studies. In this study, we develop an effective hybrid
deep learning framework to forecast future PM10 and PM2.5 on a subway platform using past air
quality data. This hybrid framework is an integration of several deep learning frameworks, namely,
convolution neural network (CNN), long short-term memory (LSTM), and deep neural network
(DNN), and is called hybrid CNN-LSTM-DNN; it has the characteristics to capture temporal patterns
and informative characteristics from the indoor and outdoor air quality parameters compared with
the standalone deep learning models. The effectiveness of the proposed PM10 and PM2.5 forecasting
framework is demonstrated using comparisons with the different existing deep learning models.

Keywords: particulate matter; indoor subway station; deep learning; hybrid CNN-LSTM; ventilation
control

1. Introduction

Subway transportation is operated globally to cope with rising ground traffic conges-
tions. Fast and convenient subway transport systems help to reduce the traffic pressure
within cities [1]. With more than 310 subway stations on ten lines, Seoul is one of the largest
and busiest metropolitan cities. Each subway line carries about 700,000 passengers on
weekdays and 300,000 passengers on weekends [2]. While it offers a convenient way of
transportation, its internal air quality raises concern. If not properly ventilated, it causes
nitrogen dioxide, carbon dioxide, carbon monoxide, and particulate matter to accumu-
late over time [3]. Particulate matter (PM) and pollutants such as sulfur dioxide (SO2),
nitrogen oxides (NOx), carbon monoxide (CO), and others that are present in the air above
a certain threshold are known to cause several health problems, such as non-malignant
respiratory disease, asthma, and allergies; a higher mortality rate; and early death [4,5].
Particulate matter (PM) recently received much attention because of its negative health im-
pacts. PM2.5 and PM10 have aerodynamic dimensions less than 2.5 µm (PM2.5) and 10 µm
(PM10), which can erode the alveolar wall, decrease lung function, and induce various
cardiovascular disorders [6–8]. Existing studies [9–13] have stated that the concentration of
airborne particles in a subway station can be up to ten times higher than the recommended
WHO exposure limit. Additionally, the increase in PM concentrations has several negative
impacts on the economy [14,15]

Toxics 2022, 10, 557. https://doi.org/10.3390/toxics10100557 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics10100557
https://doi.org/10.3390/toxics10100557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-9140-1904
https://orcid.org/0000-0002-5871-2049
https://orcid.org/0000-0001-5512-2986
https://doi.org/10.3390/toxics10100557
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics10100557?type=check_update&version=2


Toxics 2022, 10, 557 2 of 15

Indoor air quality (IAQ) in subway stations depends on various factors, such as
outdoor air quality, climatic conditions, abrasion during operations, passenger loads, and
subway schedule [16,17]. Studies showed that outdoor PM2.5 could filtrate indoor buildings
even with closed doors [18]. Shrestha et al. [19], in their studies of 28 low-income homes
in Denver, Colorado, during the 2016 and 2017 wildfire seasons, showed that outdoor air
pollution related to traffic and wildfires increased the indoor air pollutant concentrations
due to infiltration and natural ventilation. Other studies showed how the wildfires smoke
transported by wind affects the quality, atmospheric chemistry, and visibility of places
located hundreds of kilometers away from the location of wildfires [20,21]. Wang et al. [22],
in their study, accounted that socio-economic factors such as industrial emissions (i.e., soot,
SO2 and NOx), population density, foreign direct investment, and per capita GDP had
significant influences on the environmental PM2.5 concentrations.

A traditional mechanical ventilation system is commonly observed in subway stations
for regulating interior pollutants. It plays an important role in reducing the particulate
matter and the energy demand of the subway station [23]. However, its operating mecha-
nism fails to account for the real-time fluctuation in the parameters that may cause energy
waste or deficiency. Forecasting PM2.5 and PM10 concentrations on platforms is critical for
establishing early warning systems and managing ventilation systems to maintain com-
muter safety [24,25]. In order to forecast these PMs, a new and effective hybrid deep learning
framework is proposed. The newly devised framework shows better forecasting performance
than existing forecasting frameworks, including contemporary deep learning machines.

The main contribution of this study includes the development of a hybrid CNN-LSTM-
DNN framework; we compare its performance with that of existing state-of-the-art deep
learning techniques, the RNN and its variants (LSTM and Bi-LSTM), the CNN, and the
DNN. The comparison of the performance of each of the deep learning architectures was
analyzed using the root mean square error (RMSE), the mean absolute error (MAE), and
R2. The predictive monitoring of PM10 and PM2.5 can help to develop an early monitoring
system and to control a ventilation system to maintain sustainable indoor air quality on
subway platforms.

The remainder of this paper is organized as follows: In the following section, the
relevant background and literature review are provided. Section 3 gives information
about the availability of data, the correlations among input data variables, and the model
description. In the next section, the analysis and the discussion of the results obtained
using different DL frameworks are given. Lastly, the paper is concluded, highlighting the
limitations of the present study and future directions.

2. Background and Literature Review

In order to forecast indoor air quality, the first step is to measure the number of
contaminants in the air, which may be conducted by putting sensors in strategically placed
sites [26]. Placing sensors in many of these sites can be expensive and unfeasible. An
alternate strategy could be the use of mathematical models utilizing data obtained from
sensors over an extended period and the prediction of their patterns using these models. As
a result, there have been a lot of efforts in recent years to construct environmental models
using different methodologies [27–29].

Commonly used methods for forecasting air pollutants can be categorized as mathe-
matical, statistical, and machine learning methods. Mathematical models or deterministic
methods require specific knowledge for parameter identification and know-how of the pro-
cesses. To overcome the limitation of deterministic models, statistical models that require a
large number of observed data were developed. Jian et al. [30] applied an auto-regressive
integrated moving average (ARIMA) model to predict the submicron particle concentration
in Hangzhou, China. Another stochastic ARIMA model by Slini et al. [31] was used to
forecast ozone concentration in Athens, Greece. One drawback of these models is that they
consider the relationship between the responses and predictors with comparatively simple
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linear models. At the same time, these models based on statistics are limited due to linear
assumptions and ignorance of multicollinearity.

To overcome this issue, non-linear machine learning (ML) models [32], such as support
vector machine [33], k-nearest neighbor [34], fuzzy logic [35], and artificial neural network
models [36,37], were adopted. Goulier et al. [37] used an artificial neural network to predict
the hourly NO2 concentration in Central London. However, these machine-learning-based
methods are not fully capable of learning from long-term dependencies or capturing
time-series patterns from IAQ data [38]. Conventional machine learning and shallow
networks are no longer state-of-the-art techniques, as they are unfit to capture the dynamic
behavior of PM. Contemporary artificial intelligence (AI) and deep learning techniques are
evolved to describe the complex, nonlinear PM relationship in an IAQ system. With several
advancements in the areas of deep learning, they can extract features by learning from
a large number of data [39,40]. Various deep learning methods are widely applied in air
quality monitoring and water effluent quality prediction [41]. The unique ability of deep
learning approaches is to learn from the vast number of data without prior experience, and
they have many advantages over classical algorithms.

Various deep learning approaches, including the deep recurrent neural network (RNN)
and convolutional neural network (CNN), were developed and improved for performing
tasks ranging from regression to classification, to prediction. Loy et al. [42] used several
types of RNN (long short-term-memory, gated recurrent unit) structures to predict hourly
PM2.5 in a subway station in South Korea. Long short-term memory (LSTM), a variant of
the RNN, stands out in time-series forecasting problems due to its property of long-term
memory. CNN is a popular technique for image recognition and classification and is
successfully applied for time-series forecasting tasks [43]. CNN and other deep learning
models are widely used in real-time air quality modeling [44]. Shahzeb et al. [3] used a
residual neural network (Resnet-50)-based modified version to predict PM2.5 concentra-
tion in a newly built subway station. Its input data consisted of 5 input attributes and
12 past observations.

Shengdong et al. [45] proposed a hybrid deep learning framework for predicting air
quality (PM2.5) in Beijing, China. Rahmadani and Lee. [46] proposed a hybrid deep learning
model with an LSTM model and ordinary differential equations to model the epidemic
prediction framework of SARS-CoV-2. Lee et al. [47] proposed a real-time hybrid deep
learning architecture using an RNN and a general DNN to predict running safety for a high-
speed train. Yang et al. [48] proposed a model based on empirical mode decomposition
and LSTM modules to forecast PM2.5 in a subway platform. However, these methods are
limited from the fact that detailed analyses and comparisons with existing deep learning
models are provided comparatively less.

3. Hybrid CNN-LSTM Framework for Forecasting Indoor Subway Air Quality
3.1. Data and Preliminary Information

In this investigation, measurements at the Yeongtong station were made using infor-
mation from two separate sources. The ambient data were obtained from the Air-Korea
website (www.inair.or.kr (accessed on 26 April 2022)), and a GRIMM aerosol spectrom-
eter was used to detect particulate indoors. Figure 1 shows the tele-monitoring system
(Model 11-A) used to collect the real-time PM concentration at the platform. The Model
11-A portable aerosol spectrometer detected airborne aerosol particles in the size range of
0.25 µm to 32 µm in 31 channels.

The platform of interest was on the second floor below the surface. The platform and
the rail were fully sealed. The platform was the facing type, meaning persons wishing
to go in one direction faced people who wished to go in the opposite direction. Subway
trains ran from 5:15 am to 11:12 pm during weekdays and between 5:15 am and 12:17 am
(the next day) during weekends. The average number of passengers travelling each day
was 14,578 at the Yeongtong subway station. The flow of the passengers was not restricted
due to COVID-19; however, masks were compulsory for travelling passengers during the

www.inair.or.kr
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study period. A PLC-based mechanical ventilation was used during operating hours. The
efficiency of the ventilation system in removing the particulate matter was between 50 and
55% via capture-filtering using a medium filter.
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Figure 1. Spectrometer (Model 11-A) for detecting airborne particles at Yeongtong subway station.

This study considered the measurement of PM10, PM2.5 and PM1 at the Yeongtong
subway station from 22 October 2021 to 26 November 2021 and the measurement of PM10,
PM2.5, PM1, NO2, and CO outside the subway station (within 500 m from the Yeongtong
subway station) during the same period of time. The platform data were collected every
six seconds. As a preprocessing step, the data were averaged to a 5 min interval for our
analyses. Figure 2 shows the measurement trends of components both inside and outside
the subway station.
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Table 1 summarizes the basic statistics of the measured variables and data. Platform
PM10 and PM2.5 were influenced by many inside and outside factors. A preliminary linear
regression was performed to determine the correlation between the inside and outside
variables. Figure 3 shows the correlation between platform PM2.5 and the variables.

Table 1. Basic statistics of the measured variables at the Yeongtong subway station and outside
(22 October 26 to November 2021).

Item
Platform PM10 Platform PM2.5 Platform PM1 Outside PM10 Outside PM2.5 Outside NO2 Outside CO

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (ppm) (ppm)

Minimum 1.93 1.89 1.27 1.98 0.90 0.01 0.19
Maximum 260.24 145.97 126.36 184.64 114.83 0.08 1.70

Mean 32.95 26.95 22.37 43.86 24.42 0.03 0.62
Standard Deviation 23.51 20.90 18.54 26.65 18.13 0.01 0.24
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Figure 3. Correlation analysis of PM2.5 with other measured variables.

As shown in Figure 3, platform PM2.5 and platform PM10 had a strong correlation.
The information on CO and NO2 indicated more vehicular emission; consequently, it
depicted an implicit relation with particulate matter. Analogously, particulate matter from
the outside may have also infiltrated the inside of the subway, which was indicated by the
correlation values of 0.41 and 0.39. Those variables that showed very low coefficients of
correlation (<0.1) were dropped, and only those with CORR values greater than 0.2 were
considered for the forecast of platform PM10 and PM2.5. Similarly, the linear regression test
for platform PM10 and other variables is shown in Figure 4.

3.2. Preprocessing for Hybrid Deep Learning Framework

The data that are mentioned in the above section were preprocessed to remove the
missing values or outliers obtained due to the malfunction or shock of the sensors. The data
obtained from the Yeongtong subway station is of six-second intervals. In order to integrate
inner and outside signals, the time scale was modified to five-minute intervals. The outside
station data were collected at a one-hour frequency. However, they were converted to



Toxics 2022, 10, 557 6 of 15

five-minute-interval data using spline interpolation. The data were then transformed for
the feasibility of the sequential temporal model. The sampling was obtained in the time
period [tn − ∆t, tn+k], where tn is the current time in the nth sample; ∆t is called the window
size, and it refers to one hour in the past from the current time (tn); tn+k is the ‘kth’ time
ahead in the future. In this study, it was half an hour ahead in the future. Figure 5 shows
the past input data (feature data) and the prediction target (the label data).
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Figure 5. Time-series samples for the forecasting of platform PM10 and PM2.5.

As it can be seen, a larger window size (∆t) included more features and a smaller
sample size, whereas a smaller window size gave more samples but fewer features. In
the dataset, we had 7242 sample data points for training and 1080 sample data points for
testing, collected over a period form 22 October to 26 November 2021 on the Yeongtong
subway platform and outside. The forecasting workflow of platform PM10 and PM2.5 is
given in Figure 6.
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Figure 6. Workflow of the forecast of platform PM10 and PM2.5 on the Yeongtong subway platform
using hybrid CNN-LSTM-DNN and other deep learning-based architectures.

3.3. Proposed Hybrid Deep Learning Framework

To build an efficient PM10 and PM2.5 prediction model, we propose a hybrid deep
learning framework by integrating Conv1D with LSTM. Figure 7 shows the model structure
of the proposed framework.
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Figure 7. The structure of the proposed hybrid Conv-LSTM-DNN framework.

The proposed framework consists of an input layer, a convolution layer, an LSTM
layer, a fully connected layer (DNN layer), and an output layer. The convolution layer
learns the local features of the time-series sequence data using its convolutional operation.
It shortens the length of time-series data and enhances the dependences among data. Each
convolution layer has multiple filters, enabling it to learn more hidden features from the
sequence data. The following LSTM block learns the long short-term dependencies in the
sequence using the connection of memory cells. The subsequent fully connected layer
maps the features into the sample space, while the output layer estimates the target PM
value. The integration of the standalone framework with shared representation aids to
build an effective time-series model that can learn intelligently from hybrid features. PM
forecasting (ypred) is denoted with function ‘ f ′ using nesting functions Fconv, Flstm, Ff c
and the activation function, as shown in Equation (1).

ypred = f = Ff c(Flstm(ReLU(BN(Fconv
(
Xinput

)
)))) (1)

The forward propagation of the proposed deep learning framework follows the equa-
tions below.

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (2)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
(3)
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Ct = ( ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Ht−1 + bi) (4)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (5)

H = ot ◦ tanh(Ct) (6)

where X1 . . . .Xt are all the inputs, the cell outputs are C1 . . . . . . Ct, and H1 . . . . . . Ht are
the hidden states of the proposed framework. ‘o’, denotes the Hadamard product, and
‘*’ is the convolutional operation. The discrepancy between the desired label, ‘y

′
t, and the

output, ‘ot’, is evaluated using an objective function across all the ‘T’ time steps, as given in
Equation (7).

L(x1, . . . , xt, y1, . . . .yt, wh, wo) =
1
T ∑ l(yt, ot) (7)

As the backpropagation process, the gradient is computed with regard to the weight
parameters, ‘w’, as shown in the equation below.

∂L
∂wh

=
1
T

T

∑
t=1

∂(yt, ot)

∂wh
(8)

3.4. Comparisons with Existing Deep Learning Models
3.4.1. LSTM and Bidirectional LSTM

LSTM is a special form of RNN architecture proposed by Hochreiter and Schmid-
huber [49]. The traditional DNN fails to properly handle the time-series data, as input
and output variables are assumed to be independent of each other. The LSTM network is
selected owing to its ability to learn short and long impacts from historical air quality data.
It shows good performance in air quality prediction [50,51]. LSTM is capable of handling
arbitrarily long sequences. Bidirectional LSTM is an upgraded version of LSTM given by
Graves and Schmidhuber [52]. For the modeling process, it also considers the information
in later time series. In order to show the effectiveness of the proposed framework, the
prediction was compared with that obtained using LSTM and Bidirectional LSTM.

3.4.2. DNN and CNN

The DNN is a deep learning-based structure consisting of an input layer, hidden
layers, and an output layer. The number of hidden layers is set by the user, and their main
function is to transmit data from the input layer to the output layer. After the feed-forward
step, the weights of each of the hidden layers are updated based on learning algorithms.
We adopted ‘stochastic gradient descent’ for backpropagation. The parameters of this
model, such as the number of hidden layers, learning rate, and momentum constant, were
determined experimentally with the data. The used activation function was tanh with a
dropout probability of 0.3, to prevent it from overfitting. The equations of the DNN were
as shown below.

zl
i = ∑

i
wl

i,j ∗ xl−1
i + bl

j (9)

al = tanh
(

zl
i

)
(10)

where ‘w’ is the weight matrix, ‘x’ is the input vector, and ‘b’ is the bias.
As another comparison model, the CNN is successfully used in image classification

and, more recently, in multivariate time-series data. It is capable of automatically extracting
partial features from the data using the convolution operation. Convolutional computing
was calculated as shown below.

yl
j = ∑

i

[
xl−1

i ∗ wl
i,j + bl

j

]
(11)

xl
j = ReLU

(
BN
(

yl
j

))
(12)
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xl+1
k = FC

(
wl+1

k,j ∗ xl
j + bl+1

k

)
(13)

where * refers to the convolution operation, and wl
I,j and bl

j are the weights of filters and

biases. xl−1
i and yl

j represent the input and the output of the ‘l’ convolution layer. Each
convolution layer is followed by a batch normalization and ReLU activation function.

4. Indoor Air Quality Forecasting and Comparison Analysis

In order to compare the forecasting performance, the RMSE (root mean square error),
the MAE (mean absolute error), and R2 (coefficient of determination) were considered and
were calculated using Equations (14)–(16), where yi

true and yi
pred are the true and predicted

values, y is the average of the truth data, and ‘m’ is the number of test samples.

RMSE =

√
1
m

m

∑
i=1

(
yi

pred − yi
true

)2
(14)

MAE =
1
m

m

∑
i=1
|yi

pred − yi
true| (15)

R2 = 1−
∑m

i=1

(
yi

pred − yi
true

)2

∑m
i=1
(
y− yi

true
)2 (16)

In this section, the performance of each mentioned stand-alone architecture is com-
pared with that of the proposed framework (hybrid CNN-LSTM-DNN framework). For
the comparisons, PM10 and PM2.5 at the platform were forecasted on the time scale of
thirty minutes ahead. Then, past data of an hour from the target time were used to predict
PM10, and PM2.5 thirty minutes ahead. As explained in Section 3, the past data were
averaged at five-minute intervals, giving twelve attributes for each of the input variables.
The performance of each of the deep learning models was evaluated using the RMSE,
the MAE, and R2. Figure 8 shows the calculated and the measured PM10 values for the
Yeongtong subway platform using different deep learning architectures. The prediction
models were implemented using Matlab® 2021Rb.

The results showed the superior performance of the proposed hybrid deep learning
framework in terms of all the performance metrics (RMSE, MAE, and R2) as compared
with the other standalone deep learning architectures. The prediction accuracy for platform
PM10 was the highest in the case of the hybrid CNN-LSTM-DNN framework, as depicted
by the highest R2, 0.55, and the lowest RMSE and MAE values, 8.94 and 6.44, respectively
(as shown in Table 2). Bidirectional LSTM performed well in the prediction of both platform
PM10 and PM2.5, with RMSE values of 9.8 and 11.95, respectively. The performance of
the DNN with regard to the RMSE was good for platform PM10 but not so good for
platform PM2.5.

A similar forecasting performance for the estimated platform PM2.5 and the measured
platform PM2.5 is given in Figure 9.
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Table 2. Forecasting performance for platform PM10 and PM2.5.

Comparison
Model

Platform PM10 Platform PM2.5

RMSE MAE R2 RMSE MAE R2

Hybrid Deep learning framework
(proposed) 8.94 6.44 0.55 10.1 6.81 0.35

BILSTM 9.8 7.15 0.4 11.95 7.99 0.23
DNN 9.93 6.37 0.37 12.83 7.33 0.31
LSTM 10.8 7.89 0.41 10.51 7.55 0.34
RNN 10.98 7.93 0.33 12.62 8.08 0.1
CNN 15.64 10.41 0.15 19.04 11.89 0
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Figure 9. R2 comparisons for the calculated platform PM2.5 and measured platform PM2.5.

Figure 10 shows the overall forecasting and the RMSE measures.
The variation pattern obtained showed that the forecasted data and the actual mea-

surements were close when using the proposed hybrid deep learning framework. However,
a little more variation in the measurements of platform PM10 was observed for all the
models during peak hours (after the 220th data point), as shown with a red vertical line in
Figure 10a. This variation in fluctuation was not very high for the hybrid deep learning
framework as compared with the other frameworks. The RMSE and MAE for the predic-
tion of platform PM10 were improved by 8.7% and 10% compared with the second-best
deep learning framework, Bi-LSTM. Similarly, for the prediction of platform PM2.5, the



Toxics 2022, 10, 557 11 of 15

RMSE and MAE improved by 4% and 10%, respectively, with respect to the second-best
deep learning-based framework, LSTM. It could be concluded that the proposed hybrid
framework was well able to mimic the behavior of the measured platform PM10. Thus, the
estimated value of the forecasted platform PM10 served as a precursor to the incoming
peak in the measured value. A similar trend was also observed for the comparison of the
measured PM2.5 and the predicted platform PM2.5, as shown in Figure 11.
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Figure 10. Half-an-hour-ahead forecasting results for platform PM10 for different deep learning
models. (a) Hybrid deep learning framework (the proposed model), (b) BiLSTM, (c) DNN, (d) LSTM,
(e) RNN, and (f) CNN.
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5. Conclusions

The main highlights of this study are the integration of several deep learning methods
into one, called hybrid CNN-LSTM-DNN framework, to make a prediction of PM10 and
PM2.5. The performance of the proposed model in terms of forecasting PM10 and PM2.5
was better than that of the reference models owing to its ability to capture temporal patterns
and informative characteristics from the indoor and outdoor air quality parameters. The
proposed hybrid deep learning framework yielded the best results, with an RMSE value of
8.94 and an MAE of 6.4.
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The main contribution of this paper can be summarized as follows: The one-dimensional
convolution operation filtered original sequence data and reduced their dimension. LSTM
learned the long short-term dependencies and effectively built a predictive model. The
proposed methodology highlighted the effectiveness of deep learning algorithms in treat-
ing the nonlinear, non-stationary time-series data for PM monitoring. A demonstration
of the effectiveness of the proposed model was conducted by comparing it with other
state-of-the-art deep learning techniques for forecasting platform PM10 and PM2.5. The
forecasting of future platform PM10 and PM2.5 could be used as a reference variable for
the control system of subway ventilation, since there is a time delay to reduce the current
PM levels in the air. This could help to more effectively protect passengers from harmful
exposure to particulate matter. In other words, the predictive monitoring of PM10 and
PM2.5 could help to develop early monitoring systems and regulate ventilation systems to
maintain a sustainable indoor air quality index.

This paper could be further improved by incorporating more data, for example,
geographical and meteorological data such as temperature, humidity, wind speed and
direction, etc. It is expected that the addition of such factors could improve the forecasting
performance of the proposed model. Lastly, the effectiveness of the model needs to be
explored in case of scant data or sensor failure. Future studies should take into consideration
all the issues listed above to develop a robust model for the prediction of platform PM10
and PM2.5.
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