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Abstract: Traditional toxicity risk assessment approaches have until recently focussed mainly on
histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic
understanding of pathways involved in the development of toxicity, by using transcriptomics and
other big data-driven methods such as high-content screening. Here, we used a recently described
optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like
cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and
their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing
acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq
technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded
protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac,
and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data
on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed
genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro
hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in
metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic
toxicity studies.

Keywords: mechanistic toxicity; transcriptomics; in vitro toxicology; stem cell derived; hepatocytes;
ER stress

1. Introduction

Chemical safety assessments are crucial to the research and development pipeline
of pharmaceutical, nanomaterial, agrochemical, and cosmetic industries. Most late-stage
pre-clinical studies and industrial risk assessment approaches depend upon the use of
whole-animal models, such as rodents. However, differences in phase I and II metabolising
enzymes and transporters [1,2] negatively impact risk assessment accuracy and extrap-
olation to chemical responses in humans. This is a major reason for the high cost and
poor efficiency of drug development [3]. In addition, the ethical concerns related to using
animals for chemical safety evaluation have led to the adoption of directive 2010/63/EU by
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the European Union, which calls for the use of the reduction, refinement and replacement
(3Rs) principle in chemical safety evaluations. Thus, animal-free chemical safety evaluation
models need to be developed, that sufficiently predict human toxicological responses and
can be used by industry and regulatory bodies.

With regards to identifying hepatotoxicants, one can use human in vitro models,
which currently include primary human hepatocytes (PHHs) or stable cell lines of hepatic
origin, such as the HepG2 [4] and HepaRG models [5], transiently immortalised PHHs [6]
or spheroids [7]. While PHHs remain the gold standard of in vitro models, they are scarce
as they are usually obtained from cadavers, transplants, or biopsies. Additionally, donor-
specific polymorphisms lead to differences in drug metabolism and clearance rates [8],
which may contribute to batch-to-batch differences observed for PHHs. Moreover, PHHs
rapidly lose mature hepatic functions in two-dimensional (2D) culture, rendering them
unsuitable for long-term exposure studies [9]. Transformed cell line models also do not
have biotransformation capacity comparable to that of freshly isolated PHHs [10].

With the discovery by Yamanaka and colleagues in 2006 [11] that nucleated somatic
cells can be reprogrammed to induced pluripotent stem cells (iPSCs), an inexhaustible hu-
man cell population can now be created that theoretically can differentiate into any human
cell type. As part of the in3 project (Marie Sklodowska-Curie Action-Innovative Training
Network 2017–2020 grant no. 721975, www.estiv.org/in3, accessed on 28 November 2021),
iPSCs were differentiated to different cells representing lung, kidney, liver, and brain, for
toxicity risk assessment studies, and the work on hepatocytic progeny is presented here.
Numerous protocols have been described for the targeted differentiation of hiPSCs to
cells with hepatocyte function, termed hepatocyte-like-cells (HLCs) [12–14]. We recently
described that overexpression of three transcription factors (TFs; termed 3x) combined
with the use of a metabolically improved medium (consisting of high concentrations of
amino acids and glycine, termed AAGLY) generates transcriptionally more mature HLCs
with improved cytochrome functional activity [15]. These cells can also be maintained in
culture without loss of function for at least 50 days.

Until recently, the study of toxicology used mostly dose-response studies to identify
and characterise toxicity risk. However, insights in toxicity mechanisms may improve
predictions of toxicity risk at lower doses and shorter exposure times. Transcriptomics
studies measure thousands of transcripts simultaneously and hence provide the means
to understand toxicity at a pathway-level, offering insights into early-time point events
that could also be used to predict toxicity caused by structurally similar chemicals. A
limited number of studies have been published that address mechanistic toxicity using
transcriptomics methods [7,16] and/or high-content imaging [17,18].

Here we used day 40 3x-genome and AAGLY-metabolically engineered (3x-AAGLY)
iPSC-HLC progeny to evaluate their potential as a model for traditional dose-response
toxicity studies and their ability to identify adverse effects mechanisms. For the purpose of
in vitro tissue-specific toxicity risk assessment, ten chemicals linked to toxicity in different
organs were chosen by the in3 network. Four other chemicals were chosen for this study, out
of which two have been classified as highly likely to cause clinically apparent hepatocellular
injury. The 3x-AAGLY-HLCs correctly categorised amiodarone, paraquat, diclofenac and
clozapine as acutely cytotoxic to hepatocytes. Transcriptomics data (using the TempO-Seq
method) on cells treated with amiodarone, paraquat, clozapine, diclofenac, gentamicin,
olanzapine, and ibuprofen at or lower than an IC10 concentrations, were used to gain
mechanistic insights in how these chemicals may cause hepatotoxicity. Additionally, we
examined whether genes involved in the ER stress and UPR pathways were induced
increasingly over time upon chemical treatment. Finally, we compared our transcriptome
dataset with available datasets of other in vitro liver toxicity models to benchmark the
sensitivity of 3x-AAGLY-HLCs to diclofenac.

www.estiv.org/in3
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2. Materials and Methods

Pluripotent stem cells: The SBAD2 iPSC line was derived by the Innovative Medicines
Initiative-funded StemBANCC consortium (grant agreement no 115439, http://stembancc.
org, accessed on 28 November 2021) from human adult dermal fibroblast cells. The human
embryonic stem cell (hESC) line H9 (WA09, WiCell research institute, Madison, WI, USA)
with three transcription factors (H9-3x) was generated as described in [15]. The use of
hESCs and iPSCs for this study was approved by the “Commissie Medische Ethiek”, UZ KU
Leuven/Onderzoek UZ Gasthuisberg, Herestraat 49, B 3000 Leuven, file number S-52426.

Primary human hepatocytes: As positive control for hepatocyte marker gene expres-
sion and function, hepatocytes were obtained from two cadaveric donors F125 (male,
62 years of age) and F133 (male, 57 years of age) from the Ministry of Health-accredited
tissue banks at the Cliniques Universitaires St Luc, Brussels. This post-mortem collected
tissue was obtained under the Belgian legislation on organ and tissue donation. The organs
were collected within the ‘opting out system’, which uses the principle that if the deceased
donor or her/his representative have not opposed organ donation, including for research
purposes, organs can be obtained post-mortem. Cells from the donors were used for gene
expression assessment and functional characterisation. The PHHs were thawed and plated
on collagen I-coated plates using Primary Hepatocyte Thawing and Plating Supplements
(Gibco Cat #CM3000).

Commercially available PHHs pooled from different donors (LiverPool™ Cryoplate-
able Hepatocytes, Sigma-Aldrich X008001-P) were thawed and plated at 80% viability
in between collagen (Rat tail collagen I, Corning) and growth-factor reduced matrigel
layers [19,20]. They were cultured in Williams E medium for 4 days, followed by 24 h in
Williams E with 2% FBS and 1% DMSO, followed by lysis for TempO-Seq.

HepG2 cell line: HepG2 cells were grown in T25 flasks until confluent in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), and
100 units/mL penicillin, 100 µg/mL streptomycin, and then plated in 24-well plates at
100,000 cells/well. When confluent, they were used as a control for the characterization
of HLCs.

HepaRG cell line: Human hepatoma HepaRG cells were cultured in Williams’ E
medium without phenol red and L-glutamine (ThermoFisher A1217-01, Waltham, MA,
USA) supplemented with 10% FBS (Gibco 10270-106), 2 mM glutamine (Gibco 25030-024),
100 units/mL penicillin 100 µg/mL streptomycin (Gibco 15140-122), 872 nM insulin (Sigma-
Aldrich I6634, St. Louis, MO, USA), and 50 µM hydrocortisone hemisuccinate (Santa Cruz
SC-250130, Santa Cruz, CA, USA). The cells were passaged every ten days by washing
with PBS and trypsinization. For TempO-Seq, a T-75 flask was maintained seven days in
culture, followed by another week in medium containing 1% DMSO (Sigma-Aldrich). The
cells were trypsinized and 250 µL of a 130,000 cells/mL cell suspension was added to each
well of a 48-well plate (Greiner). After two days in culture the medium was changed to 2%
FBS and 1%DMSO and cells maintained with this medium composition till day six. The
cells were lysed using 1X TempO-Seq buffer and two wells were pooled together for each
sample for sequencing.

Generation of the SBAD2-3x iPSC line: As described before [21], a flippase recombi-
nase target (FRT)-flanked donor cassette was integrated using zinc finger nucleases into
the AAVS1 locus of the SBAD2 iPSC line, to generate the master cell line for recombinase
mediated cassette exchange (RMCE). RMCE was performed by nucleofection of the master
FRT-iPSC line with a FLPe-expressing vector and a donor vector containing Hepatocyte
Nuclear Factor 1 Alpha (HNF1A), Forkhead Box A3 (FOXA3) and Prospero Homeobox Pro-
tein (PROX1), linked by 2A sequences and under control of a TetON promoter (SBAD2-3x
line). A schematic representation of the genome engineering of the SBAD2-3x line is shown
in Figure S1. Characterisation of the lines thus generated is described in Supplementary
Methods, Table S1 and Figures S2–S5.

Cell culture and differentiation to HLCs: The iPSC lines were maintained on Matrigel
(Corning 354277, Corning, NY, USA)-coated plates in Essential 8 Flex (ThermoFisher

http://stembancc.org
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A2858501). For differentiation, they were seeded on growth-factor reduced matrigel
coated plates at a density of ~8.75 × 104 cells/cm2 and maintained in mTeSR medium
(Stem Cell Technologies 85850) for 2–3 days. The differentiation was done as described
in [15]. Briefly, the cells were maintained in liver differentiation medium (LDM) with
sequential growth factor cocktails (as described in Figure S6). Between day 0 and day 12,
0.6% dimethyl sulphoxide (DMSO) was added, between day 12 and 14, 2% DMSO, and
from day 14 onwards DMSO was omitted. From day 4 onwards, doxycycline 5 µg/mL
was added until the end of culture. From day 12 onwards LDM was supplemented with
8 mL MEM amino acids and 16 mL MEM non-essential amino acids solution per 100 mL,
and further supplemented with 20 g/L glycine from day 14 onwards. The media com-
positions are listed in Table S2. All growth factors were purchased from Peprotech (East
Windsor, NJ, USA).

Quantitative real time polymerase chain reaction: Cells were lysed and RNA was
extracted with the GenElute™ Mammalian RNA Extraction Kit (Sigma-Aldrich RTN70)
and reverse transcribed into cDNA using SuperScript® III First-Strand Synthesis SuperMix
(Invitrogen™ 18080400), according to the manufacturer’s protocol. qRT-PCR reactions were
prepared using the Platinum® SYBR® Green RT-qPCR SuperMix-UDG kit (ThermoFisher
Scientific 11733046). All primer sequences used are listed in Table S3.

Immunostaining: Immunostaining of iPSC and iPSC-progeny was performed as
described before [15]. The cells were imaged on an Axioimager Z1 microscope (Carl Zeiss,
Jena, Germany). The antibodies used are listed in Table S4. Staining was quantified based
on intensity in segmented cells (using the EBImage R package) and expressed as percentage
of cells stained with each antibody.

SBAD2-3x-AAGLY HLC functional assays: CYP3A4-dependent activity was measured
by the metabolization of the fluorometric probe 7-Benzyloxy-4-trifluoromethylcoumarin
(BFC; Sigma-Aldrich B5057), added for 4 h to the day 40 SBAD2-3x progeny as described [22].
Albumin secretion by day 40 SBAD2-3x progeny was quantified using the human albumin
ELISA quantification kit (Bethyl E88–129) according to manufacturer’s instructions.

Chemical toxicity dose-response studies: Day 40 SBAD2-3x-AAGLY HLCs were
treated with chemicals at the concentrations listed in Table S5a. The LiverTox DILI likeli-
hood scores, type of liver injury, and cytotoxic IC50 values (of the chemicals causing acute
hepatocellular injury) are listed in Table S5b. The treatment concentrations were chosen
based on literature [23–30]. After 48 h of treatment, medium was collected for lactate dehy-
drogenase (LDH) assay as a measure of cytotoxicity. We used the cytotoxicity detection
kit (Roche 11644793001) and followed the manufacturer’s instructions. Cytotoxicity was
calculated using the following formula, where Abs denotes the absorbance at 490 nm,
PC is positive control (cells killed with 0.1% triton-x-100), and NC is the negative control
(untreated cells):

Cytotoxicity (%) = 100 ×
Abssample − AbsNC

AbsPC − AbsNC
(1)

We used the drc R package to fit a four-parameter logistic regression curve for each
chemical treatment.

TempO-Seq: Two independent differentiations of SBAD2-3x-AAGLY-HLCs were
treated with amiodarone, paraquat, gentamicin, diclofenac, ibuprofen, clozapine, and
olanzapine on day 40 of differentiation in 96-well plates (Greiner) at the concentrations
and times listed in Table S6. After incubation, the cells were lysed using 1X TempO-Seq
Lysis Buffer, and frozen lysates shipped to Bioclavis (Glasgow, Scotland) for sequencing.
The probeset panel (Table S7) was based on the S1500+ gene panel identified by [31]
and supplemented further as described in [32,33]. These genes were selected for their
involvement in all major cellular stress pathways, as well as cell-type specific marker genes,
to provide information on the cell-type and cell state upon chemical treatment.

Additionally, we compared the expression of genes involved in xenobiotic metabolism
and other mature hepatocyte markers of HLCs to differentiated HepaRG cells and PHHs.
TempO-Seq data from sandwich cultured PHH and 2D cultures of differentiated HepaRG
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(each cultured for 6 days after seeding) were used, and the log2CPMs of expression values
were plotted.

DESeq2: The raw counts matrix (Table S8) was obtained from BioSpyder.
Subsequently, DEseq2 [34] was used to fit a generalised linear model of the form
Expression = β × Concentration + ε for each chemical and for each gene separately. Differ-
entially expressed genes were called using the Wald test. p-values were adjusted with the
Benjamini-Hochberg correction for multiple-test comparisons. Prior to generating heatmap
visualisations we converted the log2 CPM values of the top 20 most differentially expressed
genes to Z-scores for each chemical.

Enrichment of pathways in DEGs: The gene-pathway annotations made for chemical
stress response pathways by Wellens et al. [33,35] was used to link the concentration of
chemical treatments to the elicitation of stress responses. A Z-score was calculated using
the formula from Kutmon et al. [36]:

Z − score =

(
r − n R

N

)
√

n
(

R
N

)(
1 − R

N

)(
1 − n−1

N−1

) (2)

where N is the total number of TempO-Seq probes, R is the number of differentially
expressed probes (p < 0.05), r is differentially expressed probes in a particular stress
pathway, and n is the total number of TempO-Seq probes that were associated with the
specific pathway. A z-score of less than 1.96 was applied as a threshold, and the enrichment
Z scores thus calculated indicates the extent to which a given pathway is over- or under-
represented in the differentially expressed genes in response to chemical treatment.

WGCNA, GO enrichment, and GSVA: The WGCNA R package [37] was used to
generate signed co-expression networks for both the TempO-Seq data (with read counts
converted to log2 counts-per-million (CPM)) and the human samples of the Open Toxicoge-
nomics Project-Genomics Assisted Toxicity Evaluation Systems (TG-GATES) dataset [38].
Additionally, Gene Ontology (GO) enrichment analysis was performed on each module
using the topGO R package. Enriched GO terms were used to manually annotate each
co-expression module. Furthermore, Gene Set Variant Analysis (GSVA) was applied (using
the GSVA R package) to summarize the gene expression values in each co-expression
module and to assess module activities for each chemical [39].

RT-qPCR analysis of time-dependent differential expression of stress pathway genes:
To further investigate temporally distinct induction of stress pathway genes, we selected
the most cluster-central (kME > 0.65) genes from the WGCNA analysis on TempO-Seq
(UPR module) and TG-GATES (UPR/ER stress, RNA metabolism, and general/xenobiotic
metabolism modules). These were narrowed down to 10 genes based on literature evi-
dence [40–45] of toxicity (Table S9), and differential expression in TempO-Seq in at least one
of the three chemicals in common between the two datasets (i.e., amiodarone, diclofenac,
or ibuprofen). Day 40 SBAD2-3x-AAGLY-HLCs were treated with diclofenac at 0, 12.5, 25,
50, and 100 µM, ibuprofen at 0, 25, 50, 100, and 200 µM, or amiodarone at 0, 2.5, 5, 10, and
20 µM, respectively. Cell lysates were collected 2, 4, 6, 8, and 24 h after exposure for each
condition and expression of the selected genes was determined using RT-qPCR. In addition,
to assess if the IRE1 arm of the endoplasmic reticulum (ER) stress and subsequent UPR
pathway was also induced, we evaluated the expression of sXBP1 (spliced XBP1) mRNA
with the RT-qPCR primers described in [46].

Benchmarking: We manually assessed the literature for hepatocyte models with tran-
scriptomics data in response to chemical treatment. We compared the SBAD2-3x-AAGLY-
HLCs TempO-Seq data with four other studies GSE51952, GSE147866 [47], GSE40117 [48],
and E-MTAB-798 [38,49], as all these studies contained responses to diclofenac. Gene
symbols of rat samples (in GSE40117) were converted to their respective human gene
ortholog symbols using the biomaRt R package. Log2 fold changes of gene expression
following diclofenac treatment with its respective controls were determined for each of the
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models. PHH samples from E-MTAB-798, i.e., the TG-GATES dataset (exposed for 24 h at
the highest concentration of diclofenac) were used as ‘gold standard’ to compare with each
of the models. Genes were removed from analysis if they were not present in each of the
datasets and if they were not differentially expressed in the ‘gold standard’ samples. We
further defined a similarity metric for each gene’s induction for each of the models upon
diclofenac treatment, Equation (3).

Si =
log2 FCmodel

log2 FCgold
(3)

Si is the similarity of the i-th gene, FCmodel the fold change of the gene in the respective
model upon diclofenac treatment, and FCgold the fold change of the gene in the gold
standard samples upon diclofenac treatment. If Si = 1, then the induction of gene i upon
diclofenac treatment is equal in the respective model and the gold standard samples. We
then calculated a recovery curve for each model, counting how many of the significantly
differentially expressed genes in the gold standard samples were recovered under a range
of thresholds applied on Si.

3. Results
3.1. SBAD2-3x-AAGLY-HLCs Express Hepatocyte Markers, Produce Albumin and Have
CYP3A4 Activity

SBAD2-3x cells were differentiated using the protocol described in [15] for 40 days
(Figure S6), and expression of characteristic hepatocyte gene markers was demonstrated
by RT-qPCR and immunostaining. The cells displayed expression of ALB, AFP, CYP3A4,
CYP2C9, G6PC, NTCP, PEPCK, and HNF4A. (relative to RPL19), similar to the expression
levels in H9-HC3x-AAGLY HLCs (Figure 1a). The cells secreted ±40% as much albumin as
secreted by 12-h plated PHHs and the CYP3A4 enzymatic activity of SBAD2-3x-AAGLY-
HLCs was around 3-fold lower than that of 12-h plated PHHs (Figure 1b,c). Immunostain-
ing confirmed the expression of HNF4A, AFP, and CYP3A4 proteins in day 40 progeny.
Consistent with the CYP3A4 function, more SBAD2-3x-AAGLY-HLCs (Figure 1d,e) stained
positive for CYP3A4 than HepG2 cells (Figure S7). Approximately 83.4 ± 15.5% HLCs
and 25.76 ± 13.55% HepG2 cells were CYP3A4-positive, while 80.8 ± 17.4% HLCs and
99.9% HepG2 cells were HNF4A-positive. Both cell types also showed high expression
of AFP (81.5 ± 15% HLCs and 86.8 ± 15% HepG2 cells). Persistent expression of AFP,
lower albumin secretion and CYP3A4 activity indicate that the SBAD2-3x-AAGLY-HLCs
are not as mature as PHHs. SBAD2-3x-AAGLY-HLCs showed lower BFC metabolization
than HLC progeny from the 3x-hESC line we described previously [15], possibly due to
donor-specific differences.

3.2. SBAD2-3x-AAGLY HLCs Cells Accurately Classify Chemicals Causing Acute
Hepatocellular Injury

Day 40 SBAD2-3x-AAGLY HLCs were treated with increasing concentrations of
14 chemicals (Table S5a,b) for 48 h (Figure 2). No toxicity was observed following treatment
with chemicals that are not known to cause acute toxicity in hepatocytes, i.e., gentamicin,
lead (II) chloride, cerium dioxide nanoparticles, busulfan, doxorubicin, cyclosporine A,
pamidronate, ibuprofen, and olanzapine. Dose-dependent cytotoxicity was observed for
known acutely hepatotoxic chemicals including paraquat, amiodarone, diclofenac, and
clozapine, but not for valproic acid. Valproic acid is known to have an acute inhibitory
effect on mitochondrial respiration and ultimately steatosis, but only causes cytotoxicity at
high concentrations and longer-term treatment. Hence, absence of acute toxicity observed
here is in accordance with clinical observations [50].
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Figure 1. SBAD2-3x-AAGLY HLCs express hepatocyte markers, produce albumin, and have CYP3A4
activity. (a) Expression of hepatocyte markers in differentiated day 40 SBAD2-3x-AAGLY HLCs, H9-
ESC-3x-AAGLY-HLCs and non-cultured PHH. (n = 3 biological replicate differentiations and n = 2
PHH donors). The significance was compared to that in undifferentiated SBAD2-3x iPSCs by unpaired
2-tailed Student’s t-test. (* p < 0.05, ** p < 0.01, *** p < 0.001, NS: Not significant). (b) Comparison
of albumin secretion by SBAD2-3x-AAGLY HLCs and 12 h plated PHH by Albumin ELISA. (n = 2
PHH donors, n = 3 HLCs). The values for albumin secretion for 12 h PHH were used from Boon et al.,
Nature Communications, 2020, Figure 1d. (c) BFC metabolization of SBAD2-3x-AAGLY HLCs was
compared to that of thawed cryopreserved PHH and the HepG2 cell line. n = 2 PHH donors, (n = 3
HLC differentiations, n = 2 HepG2 cells). (d) Immunofluorescence staining for CYP3A4 and HNF4A
in day 40 differentiated SBAD2-3X HLCs. (e) Immunofluorescence staining for CYP3A4 and AFP in
day 40 differentiated SBAD2-3X HLCs. Scale bar = 200 µm. (Representative images of n = 2 independent
differentiations). Scale bar: 200 µm.
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Figure 2. SBAD2-3x-AAGLY HLCs cells accurately classify hepatotoxic and non-hepatotoxic chemicals.

Day 40 SBAD2-3x-AAGLY HLCs were treated with 14 chemicals: 11 prescription
drugs, 1 industrial chemical at nanoparticle size, 1 heavy metal salt and 1 pesticide, at
concentrations listed in Table S5. HLCs showed a dose-dependent increase in LDH activity
(in black) upon treatment with amiodarone, paraquat, diclofenac, and clozapine. The
y-axis indicates percentage LDH release with respect to control. No change in LDH levels
were observed in response to treatment with the other 10 chemicals. (n = 3 independent
differentiations and chemical treatments; smooth lines represent four-parameter logistic
regression fits).

3.3. Cellular Stress Pathway Genes Are Highly Differentially Expressed in SBAD2-3x-AAGLY
HLCs upon Chemical Treatment

The probeset panel and raw counts matrix obtained from TempO-Seq on treated
SBAD2-3x-AAGLY-HLCs is provided in Tables S6 and S7 respectively. We used DESeq2 to
fit generalised linear models to model the effect of chemicals at different concentrations on
gene expression (Figure 3a). Differential expression analysis revealed large numbers of dif-
ferentially expressed genes upon treatment with diclofenac (i.e., 552 genes) and amiodarone
(i.e., 109 genes). Only low to moderate numbers of genes were differentially expressed
after treatment with paraquat (i.e., 15 genes), ibuprofen (i.e., 13 genes), and clozapine (i.e.,
7 genes). Numerous genes, known to be involved in hepatotoxicity, were induced upon
treatment with amiodarone, diclofenac, and ibuprofen [40]. These included DDIT3 (UPR),
JMJD6 (p53 pathway), HSPA6 and ATF4 (UPR), and TRIB3 (NFKB associated), and GDF15
(oxidative stress and acute injury). INSIG1 (cholesterol biosynthesis), which is known to be
involved in the development of metabolic disorders upon treatment with clozapine [51],
was differentially expressed in cells treated with clozapine. Additionally, S100P, which
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is an early urinary biomarker of acute kidney toxicity caused by ibuprofen [52], was dif-
ferentially expressed upon treatment with ibuprofen. Significant differential expression
was not observed after 72 h of treatment, which may be due to a washout effect after
medium change. The enrichment of stress response pathways in the DEGs was determined
using the gene-pathway annotations made for the TempO-Seq probeset for eight common
stress response pathways by Wellens et al. [33], and the enrichment z-scores were plotted
against the concentration of chemical treatment (Figure 3b). The pathways were named
after key transcription factors in each pathway, i.e., ATF4 and XBP1 for different arms of
ER stress pathway, HIF1A, PPARG, and NRF2 for oxidative stress responses, AhR pathway
for xenobiotic response, and the P53 pathway for cell death mechanisms. Based on the
enrichment z-scores, majority of the DEGs in response to the treatments were enriched for
oxidative stress and ER stress/UPR pathway responses.

As differential expression analysis tools give merely a ranking of significantly differ-
entially expressed genes, while gene co-expression analysis techniques cluster genes into
co-expression modules that are enriched for specific pathways, we also applied WGCNA
analysis on our dataset to identify modules that were enriched upon treatment with the
different chemicals. WGCNA gene co-expression analysis revealed 13 co-expression mod-
ules (Figure 3c). We used enriched GO terms to assess each module’s function. The black
and red modules were found to be involved in lipid and xenobiotic metabolism and trans-
port, and the green-yellow module contained genes involved in carbohydrate metabolism.
The turquoise cluster contained genes involved in UPR, and the tan and green clusters
contained genes involved in extracellular matrix (ECM) and transport and secretion, respec-
tively. The yellow and pink modules contained genes involved in protein synthesis and
protein degradation, respectively, while the magenta module contained genes involved
in transcription regulation. The blue module had GO terms associated with development
and differentiation, and the brown and purple modules with cellular stress response and
inflammatory response/cell death, respectively. The salmon module had mixed GO terms.
The GO molecular functions of all modules are presented in Figure S8. The relative number
of differentially expressed genes in each module is represented in Figure 3d.

Figure 3. Cont.
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Figure 3. Cellular stress pathway genes are highly differentially expressed in SBAD2-3x-AAGLY
HLCs upon chemical treatment. (a) Heatmaps of the top differentially expressed genes in response to
treatment for each of the chemicals. X-axes represent increasing chemical concentrations. For each
gene the CPMs of replicate samples were averaged and transformed into Z-scores for visualisation.
(b) Z-score profiles of pathways enriched in response to chemical treatments. (c) WGCNA analysis on
the data revealed different modules of co-expressed genes (modules shown in Figure S8). Height of
the dendrogram is a measure of dissimilarity between genes. Hence, genes at the ‘tips’ of the branches
are more similar and more cluster-central. Colour scheme represents the partitioning of the genes
into the modules. (d) Bubble plot of the modules showing relative number of differentially expressed
genes per chemical in each module. (e) GSVA plot of selected clusters showing concentration-
dependent module activity for each drug. Red horizontal lines indicate GSVA scores of 0, which
indicates no over- or underrepresentation of a group of genes. Higher GSVA values indicate that
the respective module’s genes are generally higher expressed upon treatment with the respective
chemical and concentration, and vice versa.

Next, we assessed the activity of each module for each chemical with increasing
concentrations. Activity was assessed using the GSVA R package (Figure 3e). Upon treat-
ment with diclofenac, amiodarone, or ibuprofen, the UPR module activity increased with
increasing concentrations, while expression of genes in the mixed and ECM modules de-
creased. Increased UPR gene expression was also observed upon treatment with increasing
concentrations of paraquat. Activity of the carbohydrate metabolism module as well as
the xenobiotic metabolism model was downregulated by diclofenac. Olanzapine and
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gentamicin treatment had limited effects on the GSVA scores, in line with the fact that they
did not cause cytotoxicity in HLCs.

We also compared the expression in the TempO-Seq data of genes responsible for
xenobiotic metabolism and transport in HLCs vs HepaRGs and sandwich-cultured PHHs
and plotted the log2CPM values in Figure S9. In general, the SBAD2-3x-AAGLY-HLCs
expressed lower levels of these genes in comparison to HepaRGs and PHHs, except for
CYP2D6 and ABCB11 which were lower in HepaRG, and CYP1A2, PPARA and HNF4A
which were not significantly different between SBAD2-3x-AAGLY-HLCs and HepaRG.

3.4. Cellular Stress Genes Show Differential Expression at Different Time-Points after
Chemical Treatment

To assess if cluster-central cellular stress genes from the SBAD2-3x-AAGLY-HLCs-
TempO-Seq and TG-GATES-PHH analyses displayed dose- and time-dependent expression,
we selected 10 genes based on three criteria (genes listed in Table S8): (1) a cluster-centrality
measure (kME) higher than 0.65 in selected clusters (see Section 2) of both the SBAD2-3x-
HLC-TempO-Seq and TG-GATES-PHH analyses, (2) a significantly increasing induction
of expression with increasing concentrations of at least one chemical, and (3) literature
supporting the gene relevance (Figure 4a).

Day 40 SBAD2-3x-AAGLY-HLCs were treated with amiodarone, diclofenac, or ibupro-
fen at doses mentioned in the Section 2. Cell lysates collected after chemical addition
were analysed for gene expression using RT-qPCR. Diclofenac induced significant differ-
ential expression of ATF4, DDIT3, EIF1, HERPUD1, HSPA5, HSPA6, MAFF, PGM3, and
SLC3A2, at different concentrations and time-points. Amiodarone treatment resulted in
significant differential expression of DDIT3, HSPA5, EIF1, and HSPA6, while ibuprofen
treatment significantly altered the expression of DDIT3, EIF1, and HSPA5 (Figure 4b and
Figure S10). For the different components of the UPR stress pathway, we observed an
early-stage increase in transcripts for the chaperone proteins, HSPA5 and HSPA6, with in
some cases also an increased expression later after chemical exposure, possibly the result
of gene induction by the downstream effectors [53]. We also observed an early increase
in MAFF (which is responsible for antioxidant and cytoprotective responses). In general,
significant increases in genes functioning downstream in the pathway, such as EIF1, DDIT3
and sXBP1, were observed at later time-points of chemical exposure and were induced
more highly in response to higher chemical concentrations. All effects were assessed with
linear models (significance test results are in Table S10).

Thus, the ER stress/UPR mechanisms were induced at both early and late time-points
after amiodarone, diclofenac, or ibuprofen treatment, including an increased expression of
PERK-EIF2A-ATF4 pathway, and induction of DDIT3 indicating the initiation of apoptotic
cascades. In addition, spliced XBP1 transcripts were also increased at higher concentra-
tions/times by all three chemicals, indicating the activation of the IRE1 cascade.

3.5. Benchmarking

Finally, we sought to benchmark the TempO-Seq analysis of the SBAD2-3x-AAGLY-
HLCs with transcriptomics data from other hepatocyte toxicity models. We included in this
comparison the published transcriptomics data on HepaRG cells, HepG2 cells, hESC-HLCs,
primary rat hepatocytes (with and without Trichostatin A added for epigenetic stabilisa-
tion) and PHH from the TG-GATES together with the SBAD2-HC3x-HLCs TempO-Seq
data. Only dose responses to diclofenac were found in all datasets. Cellular toxicological
responses involve specific transcriptomic changes. Hence, it follows that similar tran-
scriptomic changes occur in similar models. To measure this, we calculated the number
of genes induced by diclofenac under a range of thresholds on the similarity Si (defined
in the Section 2) in published models and the SBAD2-3x-AAGLY-HLCs compared with
PHHs (treated with 400 µM for 24 h, i.e., the gold standard). The highest gene recovery
(at the highest threshold) was observed for the SBAD2-3x-AAGLY-HLC model treated
for 24 h with diclofenac at 75 µM (546/1220 genes (44.75%) and 37.5µM (482/1220 genes
(39.51%). This was followed by HepaRG cells treated with 252.5 µM of diclofenac for
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24 h, and HepG2 treated with 252.5 µM and 550 µM of Diclofenac for 24 h (Figure 5a,b).
Lower gene recoveries were observed for hESC-Heps and primary rat hepatocytes, and the
lowest recoveries were observed in the TG-GATES PHHs and HepaRGs treated at lower
diclofenac concentrations (i.e., 16–80 µM) or PHHs treated for 2 h.

Figure 4. Cellular stress genes show differential expression at different time-points after chemical
treatment. (a) Cluster centrality plot of genes from the UPR cluster from TempO-Seq for amiodarone,
diclofenac, and ibuprofen, vs. genes from selected clusters of TG-GATES. The top cluster central
genes (kME > 0.65) were selected and then narrowed down to 10 genes that had higher literature
evidence for toxicity. (b) Differential expression of selected genes in d40 SBAD2-3x-AAGLY HLCs in
response to chemical treatments for each time-point. Coloured lines indicate different concentrations
of the respective chemical. X-axes indicate the treatment times.
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Figure 5. Benchmarking of the SBAD2-3x-AAGLY HLC model versus other hepatocyte models for
transcriptional changes induced by diclofenac. (a) Recovery curves indicating the number of genes
for which the fold induction (upon diclofenac treatment in PHH treated with 400 µM diclofenac
and for a duration of 24 h) was recapitulated by each respective model, under various thresholds
of a similarity metric calculated as Si =

log2 FCmodel
log2 FCgold

. A gene i was counted when Si ≥ Threshold.
(b) Bar chart indicating for each hepatocyte model the number of genes with a fold induction (upon
diclofenac treatment) of equal or higher magnitude (i.e., Si ≥ 1 ) compared to the fold induction in
PHH (treated with 400 µM diclofenac and for a duration of 24 h).

4. Discussion

There is an urgent need to replace animal-based testing models in pre-clinical studies
and industrial risk assessment approaches of hepatotoxicity. In vitro models have been
optimized to a great degree over the past decades, and continue to be adapted. Freshly
isolated primary hepatocytes mimic in vivo hepatocytes the best. However, PHH culture
models suffer from inter-individual variation, rapid dedifferentiation and loss of mature
hepatocyte characteristics. Liver-derived transformed hepatic cell lines are more stable
in culture but display significantly less robust biotransformation than PHHs. Therefore,
PSC-derived hepatocytes or HLCs are increasingly being explored for their potential in
chemical risk assessment studies.

Here, we used a recently optimized PSC-HLCs model obtained by genome engineering
and metabolic engineering of the culture medium [15], to assess acute hepatocellular
toxicity. Based on the expression pattern of mature hepatocyte markers at the RNA and
protein level, 3x-AAGLY-HLCs appeared more mature than HepG2 cells but not as mature
as HepaRGs and PHHs (Figure 1, Figures S7 and S9). Of note, SBAD2-3x-AAGLY-HLCs
displayed lower BFC metabolization than HLC progeny from the 3x-AAGLY-hESC line
and two other 3x-AAGLY-hiPSC lines we described previously [15,54]. In addition, these
previous studies also demonstrated higher CYP3A4 drug biotransformation by 3x-AAGLY-
ESC-derived HLCs than HepaRG cells. These differences might be caused by donor-
specific differences. Nevertheless, the SBAD2-3x-AAGLY-HLCs, can correctly classify
agents causing acute hepatocellular toxicity.

As cytotoxicity dose-response studies are increasingly being replaced by high-throughput
studies to gain mechanistic information for improved toxicity prediction, we used TempO-Seq
as a tool to perform high-throughput RNA-sequencing studies from low starting material.
The transcriptomics data revealed that these chemical treatments induce early-time point
responses of cellular stress, including ER stress, UPR, and oxidative stress. In the past decade,
several studies identified ER stress and subsequent UPR as one of the major molecular
initiating events in response to chemical-induced toxicity in the liver [40,55,56], as when
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unmitigated or prolonged, UPR stress causes deleterious downstream effects, including lipid
accumulation (steatosis), cell death and inflammatory signalling [57]. We selected the highly
cluster-central genes from the WGCNA analysis from our dataset and TG-GATES dataset,
with evidence in literature for their involvement in cellular stress signalling. These genes were
then shown to have time and concentration-dependent differential regulation upon treatment
with amiodarone, diclofenac, and ibuprofen.

In the event of ER stress, the unfolded protein response is initiated as an adaptive
response [53]. When the chaperone HSPA5 dissociates from the three membrane effectors,
activating transcription factor 6 (ATF6), PKR-like ER kinase (PERK), and inositol requiring
enzyme 1 (IRE1), these proteins enter an activated state by cleavage (ATF6) or phospho-
rylation (IRE1 and PERK), and a series of downstream events ensue to restore cellular
homeostasis. Phosphorylation of eukaryotic initiation factor 2-alpha (eIF2a) by PERK leads
to decreased translation and selective activation of transcription of activating transcription
factor 4 (ATF4), which in turn induces the expression of chaperon synthesis and autophagy.
Activated IRE1 co-translationally splices out a 26 bp region from XBP1 mRNA, the protein
product of which is a transcription factor. ATF6 promotes the transcription of genes such
as chaperons and proteins that are part of ER-associated degradation (ERAD). When these
mechanisms prove inadequate in resolving ER stress, apoptosis may result via C/EBP
homologous protein (CHOP/DDIT3). We demonstrated the activation of the different axes
of the ER stress/UPR cascade, namely the PERK-EIF2A-ATF4 and the IRE1, as well as
the apoptosis pathways upon exposure of the SBAD2-3x-AAGLY-HLCs to amiodarone,
diclofenac, or ibuprofen for up to 24 h at doses lower than IC10.

Relatively few transcriptomics datasets exist on chemical-treated cells, and the ma-
jority of these are microarray datasets. Therefore, when we sought to benchmark the
transcriptomics changes in the SBAD2-3x-AAGLY-HLCs model against other models, di-
clofenac was the only chemical in common in all. We benchmarked the TempO-Seq data in
response to diclofenac from the SBAD2-3x-AAGLY-HLCs model versus transcriptomics
studies of other models, including HepG2 cells, HepaRG cells, ESC-HLCs, and PHH de-
scribed by [16,38,47], respectively. This demonstrated that the SBAD2-3x-AAGLY-HLCs
identify more differentially expressed genes as compared to transcriptomics data from the
other models at lower concentrations of diclofenac treatment. Primary rat hepatocytes
appeared to be less sensitive in detecting differentially expressed genes, which may be due
to differences in drug biotransformation [58]. The lower sensitivity of PHHs may be due to
the rapid de-differentiation of PHHs when cultured even for 12–24 h [59], and/or the well-
known variability between different PHH donors in susceptibility to chemical toxicity [8].

Transcriptomics methods in combination with improved cellular models can thus be
useful for detection of early cellular changes in response to treatments with toxic chemi-
cals. Ideally, risk assessment decisions should be made using a model consisting of both
parenchymal and non-parenchymal cells, which is more representative of the complexity of
the liver. In recent years, advances have been made in the optimization of human-relevant
iPSC-derived three-dimensional (3D) spheroid [60–62] and organoid [63–65] models for
long-term toxicological studies, with or without NPCs in co-culture. The Verfaillie lab has
also recently described a hydrogel-based 3D co-culture system with improved function
and maturation [54]. It will be of interest to differentiate 3x-AAGly-HLCs in combination
with iPSC-derived non-parenchymal cells in 3D, for longer term and repeat-dose toxic-
ity studies, and to test its applicability for assessment of toxicity risk and mechanisms.
However, transcriptomics and other omics readouts of these complex models, unless done
at the single cell level, are much less straightforward to interpret, and cannot pinpoint
which cell is responsible for the stress response. Hence, such models should ideally also be
equipped with genetically encoded fluorescent reporter genes to enable determination of
the contribution of parenchymal and non-parenchymal cells to the toxicity response. Such
models, however, are currently not yet available, even if this might become possible in the
coming years. On a final note, the information obtained from transcriptomics methods
are limited to adaptive stress responses in the form of differential expression of specific
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transcripts. Hence, a combinatorial approach with different omics techniques may offer
more insights into the connections between the molecular events and the outcome of cell
death. For instance, transcriptomics, proteomics, and metabolomics have been used in
combination recently for understanding toxicity mechanisms of perfluorohexanoic acid [66]
and dictamnine [67] in mice. Such combined approaches could also further enhance risk
assessment decisions when applied to PSC-HLC models in future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics10010001/s1, Supplementary Methods; Figure S1: Genome engineering for generation
of the SBAD-3x iPSC line, Figure S2: Characterization of the SBAD2-FRT line for pluripotency.
Figure S3: Profiling for genomic aberrations and SNPs. Figure S4: Confirmation of correct insertion
of the FRT cassette in the SBAD2-FRT line. Figure S5: Confirmation of insertion of 3x cassette in
the SBAD2-3x lines. Figure S6: Protocol for differentiation to HLCs. Figure S7: Immunofluorescent
staining of HepG2 cells. Figure S8a,b: GO Molecular Functions for clusters obtained from WGCNA
(Figure 3b), Figure S9: Expression levels of genes in SBAD2-3x-HLCs involved in phase I and
phase II metabolism and mature hepatocyte markers from TempO-Seq data, relative to PHHs and
HepaRGs. Figure S10: Cellular stress genes show differential expression at different time-points
after treatment of SBAD2-3x-AAGLY HLCs with Amiodarone. Table S1: PCR primers and southern
blot probes. Table S2: media compositions. Table S3: Primer sequences used for RT-qPCR. Table S4:
Antibodies used for immunofluorescent staining. Table S5: Chemicals chosen for dose-response assay
treatments and drug-induced liver injury (DILI) likelihood scores. Table S6: TempO-Seq treatment
concentrations. Table S7: TempO-Seq probes and corresponding genes. Table S8: raw counts matrix
obtained from TempO-Seq on the HLCs treated with chemicals for different concentrations and time-
points. Table S9: Cluster-central genes chosen based on differential expression in TempO-Seq data
and evidence and relevance in chemical-induced toxicity. Table S10: linear modelling of concentration
and time effects on gene expression.

Author Contributions: Conceptualization, S.G., C.M.V., J.D.S. and P.J.; methodology, S.G. and J.D.S.;
software, J.D.S.; validation, S.G., T.V., T.T., S.P., N.V., F.N. and M.K.; formal analysis, J.D.S. and S.G.;
investigation, S.G. and J.D.S.; data curation, J.D.S. and S.G.; writing—original draft preparation,
S.G., J.D.S. and C.M.V.; writing—review and editing, C.M.V., P.J., T.T., J.D.S. and N.I.K.; supervision,
C.M.V.; project administration, C.M.V., P.J. and N.I.K.; funding acquisition, C.M.V., P.J. and N.I.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by in3 Marie Skłodowska-Curie Action-Innovative Training Net-
work under grant no. 721975 (fellowship to S.G.) and Fonds Wetenschappelijk Onderzoek (FWO)
1S33916N (J.D.S.). T.T. was funded by FWO (1185918N), and F.N. by FWO (1151318N). C.M.V.
received funding from KU Leuven C14/17/111-3D-MuSYC, IWT-HILIM-3D, FWO-SBO-QPG-359638-
iPSC-LIMIC, FWO G0D9917N; and funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 681002 (EU-ToxRisk).

Institutional Review Board Statement: The use of hESCs and iPSCs for this study was approved
by the “Commissie Medische Ethiek,” UZ KU Leuven/Onderzoek UZ Gasthuisberg, Herestraat 49,
B 3000 Leuven, file number S-52426, approval date: 21 April 2015.

Informed Consent Statement: Primary human hepatocytes were obtained from Ministry of Health-
accredited tissue banks at the Cliniques Universitaires St Luc, Brussels. This post-mortem collected
tissue was obtained under the Belgian legislation on organ and tissue donation. The organ col-
lected within the ‘opting out system’ uses the principle that if the deceased donor or her/his
representative have not opposed organ donation, including for research purposes, organs can be
obtained post-mortem.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the Flow Cytometry Core Facility at KULeuven for performing
FACS experiments. We would also like to thank Ruben Boon, Samantha Zaunz, Kristy Vogels,
Rob Van Rossom, and Elisa Bella Malki (Stamcelinstituut, KU Leuven, Belgium), for their valuable
contribution and input to the project.

https://www.mdpi.com/article/10.3390/toxics10010001/s1
https://www.mdpi.com/article/10.3390/toxics10010001/s1


Toxics 2022, 10, 1 16 of 18

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dresser, M.J.; Gray, A.T.; Giacomini, K.M. Kinetic and Selectivity Differences between Rodent, Rabbit, and Human Organic Cation

Transporters (OCT1). J. Pharmacol. Exp. Ther. 2000, 292, 1146–1152.
2. Fashe, M.M.; Juvonen, R.O.; Petsalo, A.; Räsänen, J.; Pasanen, M. Species-Specific Differences in the in Vitro Metabolism of

Lasiocarpine. Chem. Res. Toxicol. 2015, 28, 2034–2044. [CrossRef] [PubMed]
3. Li, A.P. Accurate prediction of human drug toxicity: A major challenge in drug development. Chem. Interact. 2004, 150, 3–7.

[CrossRef]
4. Garside, H.; Marcoe, K.F.; Chesnut-Speelman, J.; Foster, A.J.; Muthas, D.; Kenna, G.; Warrior, U.; Bowes, J.; Baumgartner, J.

Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2
cells and cryopreserved primary human hepatocytes. Toxicol. Vitro 2014, 28, 171–181. [CrossRef] [PubMed]

5. Kanebratt, K.P.; Andersson, T.B. Evaluation of HepaRG Cells as an in Vitro Model for Human Drug Metabolism Studies. Drug
Metab. Dispos. 2008, 36, 1444–1452. [CrossRef]

6. Liguori, M.J.; Blomme, E.A.; Waring, J.F. Trovafloxacin-Induced Gene Expression Changes in Liver-Derived in Vitro Systems:
Comparison of Primary Human Hepatocytes to HepG2 Cells. Drug Metab. Dispos. 2008, 36, 223–233. [CrossRef] [PubMed]

7. Bell, C.C.; Lauschke, V.M.; Vorrink, S.U.; Palmgren, H.; Duffin, R.; Andersson, T.B.; Ingelman-Sundberg, M. Transcriptional,
Functional, and Mechanistic Comparisons of Stem Cell–Derived Hepatocytes, HepaRG Cells, and Three-Dimensional Human
Hepatocyte Spheroids as Predictive In Vitro Systems for Drug-Induced Liver Injury. Drug Metab. Dispos. 2017, 45, 419–429.
[CrossRef] [PubMed]

8. Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug
therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther. 2007, 116, 496–526. [CrossRef]

9. Gómez-Lechón, M.J.; Tolosa, L.; Conde, I.; Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs.
Expert Opin. Drug Metab. Toxicol. 2014, 10, 1553–1568. [CrossRef]

10. Donato, M.T.; Jover, R.; Gómez-Lechón, M. Hepatic Cell Lines for Drug Hepatotoxicity Testing: Limitations and Strategies to
Upgrade their Metabolic Competence by Gene Engineering. Curr. Drug Metab. 2013, 14, 946–968. [CrossRef]

11. Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by
Defined Factors. Cell 2006, 126, 663–676. [CrossRef] [PubMed]

12. Zhao, N.; Chen, S.; Cai, J.; Guo, Y.; Song, Z.; Che, J.; Liu, C.; Wu, C.; Ding, M.; Deng, H. Derivation and Characterization of
Hepatic Progenitor Cells from Human Embryonic Stem Cells. PLoS ONE 2009, 4, e6468. [CrossRef]

13. Hannan, N.; Segeritz, C.-P.; Touboul, T.; Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat.
Protoc. 2013, 8, 430–437. [CrossRef] [PubMed]

14. Ma, X.; Duan, Y.; Tschudy-Seney, B.; Roll, G.; Behbahan, I.S.; Ahuja, T.P.; Tolstikov, V.; Wang, C.; McGee, J.; Khoobyari, S.; et al.
Highly Efficient Differentiation of Functional Hepatocytes from Human Induced Pluripotent Stem Cells. Stem Cells Transl. Med.
2013, 2, 409–419. [CrossRef] [PubMed]

15. Boon, R.; Kumar, M.; Tricot, T.; Elia, I.; Ordovas, L.; Jacobs, F.; One, J.; De Smedt, J.; Eelen, G.; Bird, M.; et al. Amino acid levels
determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat. Commun. 2020, 11, 1393. [CrossRef]
[PubMed]

16. Hof, W.V.D.; Coonen, M.; Van Herwijnen, M.; Brauers, K.; Wodzig, W.K.W.H.; Van Delft, J.H.M.; Kleinjans, J.C.S. Classification of
Hepatotoxicants Using HepG2 Cells: A Proof of Principle Study. Chem. Res. Toxicol. 2013, 27, 433–442. [CrossRef]

17. Wink, S.; Hiemstra, S.; Herpers, B.; Van De Water, B. High-content imaging-based BAC-GFP toxicity pathway reporters to assess
chemical adversity liabilities. Arch. Toxicol. 2016, 91, 1367–1383. [CrossRef] [PubMed]

18. Wink, S.; Hiemstra, S.W.; Huppelschoten, S.; Klip, J.E.; Van De Water, B. Dynamic imaging of adaptive stress response pathway
activation for prediction of drug induced liver injury. Arch. Toxicol. 2018, 92, 1797–1814. [CrossRef]

19. Mueller, S.O.; Guillouzo, A.; Hewitt, P.G.; Richert, L. Drug biokinetic and toxicity assessments in rat and human primary
hepatocytes and HepaRG cells within the EU-funded Predict-IV project. Toxicol. Vitro 2015, 30, 19–26. [CrossRef] [PubMed]

20. Dong, J.Q.; Smith, P.C. Glucuronidation and Covalent Protein Binding of Benoxaprofen and Flunoxaprofen in Sandwich-Cultured
Rat and Human Hepatocytes. Drug Metab. Dispos. 2009, 37, 2314–2322. [CrossRef] [PubMed]

21. Ordovás, L.; Boon, R.; Pistoni, M.; Chen, Y.; Wolfs, E.; Guo, W.; Sambathkumar, R.; Bobis-Wozowicz, S.; Helsen, N.; Vanhove, J.;
et al. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-
Mediated Transgene Inhibition. Stem Cell Rep. 2015, 5, 918–931. [CrossRef] [PubMed]

22. Donato, M.T.; Jimenez, N.; Castell, J.V.; Gómez-Lechón, M.J. Fluorescence-based assays for screening nine cytochrome p450 (p450)
activities in intact cells expressing individual human p450 enzymes. Drug Metab. Dispos. 2004, 32, 699–706. [CrossRef]

23. Xu, J.J.; Henstock, P.V.; Dunn, M.C.; Smith, A.R.; Chabot, J.R.; De Graaf, D. Cellular Imaging Predictions of Clinical Drug-Induced
Liver Injury. Toxicol. Sci. 2008, 105, 97–105. [CrossRef] [PubMed]

24. Lin, W.; Huang, Y.-W.; Zhou, X.-D.; Ma, Y. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. Int. J. Toxicol.
2006, 25, 451–457. [CrossRef]

http://doi.org/10.1021/acs.chemrestox.5b00253
http://www.ncbi.nlm.nih.gov/pubmed/26395423
http://doi.org/10.1016/j.cbi.2004.09.008
http://doi.org/10.1016/j.tiv.2013.10.015
http://www.ncbi.nlm.nih.gov/pubmed/24189122
http://doi.org/10.1124/dmd.107.020016
http://doi.org/10.1124/dmd.107.017608
http://www.ncbi.nlm.nih.gov/pubmed/17967932
http://doi.org/10.1124/dmd.116.074369
http://www.ncbi.nlm.nih.gov/pubmed/28137721
http://doi.org/10.1016/j.pharmthera.2007.09.004
http://doi.org/10.1517/17425255.2014.967680
http://doi.org/10.2174/1389200211314090002
http://doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://doi.org/10.1371/journal.pone.0006468
http://doi.org/10.1038/nprot.2012.153
http://www.ncbi.nlm.nih.gov/pubmed/23424751
http://doi.org/10.5966/sctm.2012-0160
http://www.ncbi.nlm.nih.gov/pubmed/23681950
http://doi.org/10.1038/s41467-020-15058-6
http://www.ncbi.nlm.nih.gov/pubmed/32170132
http://doi.org/10.1021/tx4004165
http://doi.org/10.1007/s00204-016-1781-0
http://www.ncbi.nlm.nih.gov/pubmed/27358234
http://doi.org/10.1007/s00204-018-2178-z
http://doi.org/10.1016/j.tiv.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25952325
http://doi.org/10.1124/dmd.109.028944
http://www.ncbi.nlm.nih.gov/pubmed/19773537
http://doi.org/10.1016/j.stemcr.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26455413
http://doi.org/10.1124/dmd.32.7.699
http://doi.org/10.1093/toxsci/kfn109
http://www.ncbi.nlm.nih.gov/pubmed/18524759
http://doi.org/10.1080/10915810600959543


Toxics 2022, 10, 1 17 of 18

25. García-Rubio, L.; García-Abad, A.M.; Soler, F.; Míguez, M.P. Cytotoxicity of paraquat in freshly isolated rat hepatocytes: Effects of
L-carnitine. BioFactors 1998, 8, 59–64. [CrossRef]

26. Bramlage, P.; Goldis, A. Bioequivalence study of three ibuprofen formulations after single dose administration in healthy
volunteers. BMC Pharmacol. 2008, 8, 18. [CrossRef] [PubMed]

27. Barpe, D.R.; Rosa, D.D.; Froehlich, P.E. Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight
patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur. J. Pharm. Sci. 2010,
41, 458–463. [CrossRef] [PubMed]

28. Tchounwou, P.B.; Yedjou, C.G.; Foxx, D.N.; Ishaque, A.B.; Shen, E. Lead-induced cytotoxicity and transcriptional activation of
stress genes in human liver carcinoma (HepG2) cells. Mol. Cell. Biochem. 2004, 255, 161–170. [CrossRef]

29. Regec, A.L.; Trifillis, A.L.; Trump, B.F. The Effect of Gentamicin on Human Renal Proximal Tubular Cells. Toxicol. Pathol. 1986,
14, 238–241. [CrossRef] [PubMed]

30. Rha, J.H.; Jang, I.J.; Lee, K.H.; Chong, W.S.; Shin, S.G.; Lee, N.; Myung, H.J. Pharmacokinetic comparison of two valproic acid
formulations: A plain and a controlled release enteric-coated tablets. J. Korean Med Sci. 1993, 8, 251–256. [CrossRef]

31. Mav, D.; Shah, R.R.; Howard, B.E.; Auerbach, S.S.; Bushel, P.R.; Collins, J.B.; Gerhold, D.; Judson, R.S.; Karmaus, A.; Maull,
E.A.; et al. A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics.
PLoS ONE 2018, 13, e0191105. [CrossRef] [PubMed]

32. Limonciel, A.; Ates, G.; Carta, G.; Wilmes, A.; Watzele, M.; Shepard, P.J.; VanSteenhouse, H.C.; Seligmann, B.; Yeakley, J.M.; Van
De Water, B.; et al. Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells
using TempO-Seq. Arch. Toxicol. 2018, 92, 2517–2531. [CrossRef]

33. Wellens, S.; Dehouck, L.; Chandrasekaran, V.; Singh, P.; Loiola, R.A.; Sevin, E.; Exner, T.; Jennings, P.; Gosselet, F.; Culot, M.
Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound.
Toxicol. Vitro 2021, 73, 105112. [CrossRef] [PubMed]

34. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef] [PubMed]

35. Singh, P.; Chandrasekaran, V.; Hardy, B.; Wilmes, A.; Jennings, P.; Exner, T.E. Temporal transcriptomic alterations of cadmium
exposed human iPSC-derived renal proximal tubule-like cells. Toxicol. Vitro 2021, 76, 105229. [CrossRef]

36. Kutmon, M.; van Iersel, M.; Bohler, A.; Kelder, T.; Nunes, N.; Pico, A.; Evelo, C.T. PathVisio 3: An Extendable Pathway Analysis
Toolbox. PLoS Comput. Biol. 2015, 11, e1004085. [CrossRef] [PubMed]

37. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

38. Igarashi, Y.; Nakatsu, N.; Yamashita, T.; Ono, A.; Ohno, Y.; Urushidani, T.; Yamada, H. Open TG-GATEs: A large-scale
toxicogenomics database. Nucleic Acids Res. 2014, 43, D921–D927. [CrossRef] [PubMed]

39. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform.
2013, 14, 7. [CrossRef] [PubMed]

40. Tsutsumi, S.; Gotoh, T.; Tomisato, W.; Mima, S.; Hoshino, T.; Hwang, H.-J.; Takenaka, H.; Tsuchiya, T.; Mori, M.; Mizushima, T.
Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ.
2004, 11, 1009–1016. [CrossRef] [PubMed]

41. Wong, W.W.-L.; Puthalakath, H. Bcl-2 family proteins: The sentinels of the mitochondrial apoptosis pathway. IUBMB Life 2008,
60, 390–397. [CrossRef] [PubMed]

42. Hori, O.; Ichinoda, F.; Yamaguchi, A.; Tamatani, T.; Taniguchi, M.; Koyama, Y.; Katayama, T.; Tohyama, M.; Stern, D.M.; Ozawa, K.;
et al. Role of Herp in the endoplasmic reticulum stress response. Genes Cells 2004, 9, 457–469. [CrossRef] [PubMed]

43. Katsuoka, F.; Motohashi, H.; Ishii, T.; Aburatani, H.; Engel, J.D.; Yamamoto, M. Genetic Evidence that Small Maf Proteins Are
Essential for the Activation of Antioxidant Response Element-Dependent Genes. Mol. Cell. Biol. 2005, 25, 8044–8051. [CrossRef]
[PubMed]

44. Liu, C.; Li, X.; Li, C.; Zhang, Z.; Gao, X.; Jia, Z.; Chen, H.; Jia, Q.; Zhao, X.; Liu, J.; et al. SLC3A2 is a novel endoplasmic reticulum
stress-related signaling protein that regulates the unfolded protein response and apoptosis. PLoS ONE 2018, 13, e0208993.
[CrossRef] [PubMed]

45. Ashida, H.; Kanazawa, K.; Danno, G.-I. Hepatic Phosphoglucomutase Activity as a Marker of Oxidative Stress Induced by
Pro-oxidative Drugs. Biosci. Biotechnol. Biochem. 1994, 58, 55–59. [CrossRef] [PubMed]

46. Van Schadewijk, A.; Wout, E.F.A.V.; Stolk, J.; Hiemstra, P. A quantitative method for detection of spliced X-box binding protein-1
(XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperon 2011, 17, 275–279. [CrossRef]

47. Oda, S.; Uchida, Y.; Aleo, M.D.; Koza-Taylor, P.H.; Matsui, Y.; Hizue, M.; Marroquin, L.D.; Whritenour, J.; Uchida, E.; Yokoi, T.
An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for
predicting drug-induced liver injury. Arch. Toxicol. 2020, 95, 149–168. [CrossRef]

48. Doktorova, T.Y.; Yildirimman, R.; Vinken, M.; Vilardell, M.; Vanhaecke, T.; Gmuender, H.; Brolén, G.; Holmgren, G.; Li, R.; Van
Delft, J.; et al. Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models. Carcinogenesis
2013, 34, 1393–1402. [CrossRef] [PubMed]

http://doi.org/10.1002/biof.5520080111
http://doi.org/10.1186/1471-2210-8-18
http://www.ncbi.nlm.nih.gov/pubmed/18959779
http://doi.org/10.1016/j.ejps.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/20688160
http://doi.org/10.1023/B:MCBI.0000007272.46923.12
http://doi.org/10.1177/019262338601400213
http://www.ncbi.nlm.nih.gov/pubmed/2876489
http://doi.org/10.3346/jkms.1993.8.4.251
http://doi.org/10.1371/journal.pone.0191105
http://www.ncbi.nlm.nih.gov/pubmed/29462216
http://doi.org/10.1007/s00204-018-2256-2
http://doi.org/10.1016/j.tiv.2021.105112
http://www.ncbi.nlm.nih.gov/pubmed/33631201
http://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://doi.org/10.1016/j.tiv.2021.105229
http://doi.org/10.1371/journal.pcbi.1004085
http://www.ncbi.nlm.nih.gov/pubmed/25706687
http://doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://doi.org/10.1093/nar/gku955
http://www.ncbi.nlm.nih.gov/pubmed/25313160
http://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
http://doi.org/10.1038/sj.cdd.4401436
http://www.ncbi.nlm.nih.gov/pubmed/15131590
http://doi.org/10.1002/iub.51
http://www.ncbi.nlm.nih.gov/pubmed/18425793
http://doi.org/10.1111/j.1356-9597.2004.00735.x
http://www.ncbi.nlm.nih.gov/pubmed/15147274
http://doi.org/10.1128/MCB.25.18.8044-8051.2005
http://www.ncbi.nlm.nih.gov/pubmed/16135796
http://doi.org/10.1371/journal.pone.0208993
http://www.ncbi.nlm.nih.gov/pubmed/30592731
http://doi.org/10.1271/bbb.58.55
http://www.ncbi.nlm.nih.gov/pubmed/27315705
http://doi.org/10.1007/s12192-011-0306-2
http://doi.org/10.1007/s00204-020-02882-4
http://doi.org/10.1093/carcin/bgt054
http://www.ncbi.nlm.nih.gov/pubmed/23393228


Toxics 2022, 10, 1 18 of 18

49. Uehara, T.; Kiyosawa, N.; Shimizu, T.; Omura, K.; Hirode, M.; Imazawa, T.; Mizukawa, Y.; Ono, A.; Miyagishima, T.; Nagao, T.;
et al. Species-specific differences in coumarin-induced hepatotoxicity as an example toxicogenomics-based approach to assessing
risk of toxicity to humans. Hum. Exp. Toxicol. 2008, 27, 23–35. [CrossRef] [PubMed]

50. Komulainen, T.; Lodge, T.; Hinttala, R.; Bolszak, M.; Pietilä, M.; Koivunen, P.; Hakkola, J.; Poulton, J.; Morten, K.J.; Uusimaa, J.
Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015, 331, 47–56.
[CrossRef] [PubMed]

51. Le Hellard, S.; Theisen, F.M.; Haberhausen, M.; Raeder, M.B.; Fernø, J.; Gebhardt, S.; Hinney, A.; Remschmidt, H.; Krieg, J.C.;
Mehler-Wex, C.; et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of
antipsychotic-treated schizophrenic patients: Perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse
effects? Mol. Psychiatry 2008, 14, 308–317. [CrossRef] [PubMed]

52. Jung, Y.H.; Han, D.; Shin, S.H.; Kim, E.-K.; Kim, H.-S. Proteomic identification of early urinary-biomarkers of acute kidney injury
in preterm infants. Sci. Rep. 2020, 10, 4057. [CrossRef] [PubMed]

53. Malhi, H.; Kaufman, R.J. Endoplasmic reticulum stress in liver disease. J. Hepatol. 2011, 54, 795–809. [CrossRef] [PubMed]
54. Kumar, M.; Toprakhisar, B.; Van Haele, M.; Antoranz, A.; Boon, R.; Chesnais, F.; De Smedt, J.; Tricot, T.; Idoype, T.I.; Canella, M.;

et al. A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model.
Biomaterials 2021, 276, 121006. [CrossRef]

55. Wang, L.; Chen, J.; Ning, C.; Lei, D.; Ren, J. Endoplasmic Reticulum Stress Related Molecular Mechanisms in Nonalcoholic Fatty
Liver Disease (NAFLD). Curr. Drug Targets 2018, 19, 1087–1094. [CrossRef] [PubMed]

56. Ren, Z.; Chen, S.; Zhang, J.; Doshi, U.; Li, A.P.; Guo, L. Endoplasmic Reticulum Stress Induction and ERK1/2 Activation
Contribute to Nefazodone-Induced Toxicity in Hepatic Cells. Toxicol. Sci. 2016, 154, 368–380. [CrossRef] [PubMed]

57. Liu, X.; Green, R.M. Endoplasmic reticulum stress and liver diseases. Liver Res. 2019, 3, 55–64. [CrossRef] [PubMed]
58. Kumar, S.; Samuel, K.; Subramanian, R.; Braun, M.P.; Stearns, R.A.; Chiu, S.-H.L.; Evans, D.C.; Baillie, T.A. Extrapolation of

Diclofenac Clearance from in Vitro Microsomal Metabolism Data: Role of Acyl Glucuronidation and Sequential Oxidative
Metabolism of the Acyl Glucuronide. J. Pharmacol. Exp. Ther. 2002, 303, 969–978. [CrossRef] [PubMed]

59. Elaut, G.; Henkens, T.; Papeleu, P.; Snykers, S.; Vinken, M.; Vanhaecke, T.; Rogiers, V. Molecular Mechanisms Underlying the
Dedifferentiation Process of Isolated Hepatocytes and Their Cultures. Curr. Drug Metab. 2006, 7, 629–660. [CrossRef]

60. Holmgren, G.; Ulfenborg, B.; Asplund, A.; Toet, K.; Andersson, C.X.; Hammarstedt, A.; Hanemaaijer, R.; Küppers-Munther, B.;
Synnergren, J. Characterization of Human Induced Pluripotent Stem Cell-Derived Hepatocytes with Mature Features and
Potential for Modeling Metabolic Diseases. Int. J. Mol. Sci. 2020, 21, 469. [CrossRef] [PubMed]

61. Lee, G.; Kim, H.; Park, J.Y.; Kim, G.; Han, J.; Chung, S.; Yang, J.H.; Jeon, J.S.; Woo, D.-H.; Han, C.; et al. Generation of uniform liver
spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials 2021, 269, 120529. [CrossRef]
[PubMed]

62. Takayama, K.; Kawabata, K.; Nagamoto, Y.; Kishimoto, K.; Tashiro, K.; Sakurai, F.; Tachibana, M.; Kanda, K.; Hayakawa, T.;
Furue, M.; et al. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 2012,
34, 1781–1789. [CrossRef] [PubMed]

63. Thompson, W.L.; Takebe, T. Generation of multi-cellular human liver organoids from pluripotent stem cells. Methods Cell Biol.
2020, 159, 47–68. [CrossRef] [PubMed]

64. Pettinato, G.; Lehoux, S.; Ramanathan, R.; Salem, M.M.; He, L.-X.; Muse, O.; Flaumenhaft, R.; Thompson, M.T.; Rouse, E.A.;
Cummings, R.D.; et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells
mixed with Endothelial Cells. Sci. Rep. 2019, 9, 8920. [CrossRef]

65. Bin Ramli, M.N.; Lim, Y.S.; Koe, C.T.; Demircioglu, D.; Tng, W.; Gonzales, K.A.U.; Tan, C.P.; Szczerbinska, I.; Liang, H.; Soe, E.L.;
et al. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. Gastroenterology 2020, 159, 1471–1486.e12.
[CrossRef] [PubMed]

66. Jiang, L.; Hong, Y.; Xie, G.; Zhang, J.; Zhang, H.; Cai, Z. Comprehensive multi-omics approaches reveal the hepatotoxic mechanism
of perfluorohexanoic acid (PFHxA) in mice. Sci. Total. Environ. 2021, 790, 148160. [CrossRef] [PubMed]

67. Tu, C.; Xu, Z.; Tian, L.; Yu, Z.; Wang, T.; Guo, Z.; Zhang, J.; Wang, T. Multi-Omics Integration to Reveal the Mechanism of
Hepatotoxicity Induced by Dictamnine. Front. Cell Dev. Biol. 2021, 9, 700120. [CrossRef] [PubMed]

http://doi.org/10.1177/0960327107087910
http://www.ncbi.nlm.nih.gov/pubmed/18480146
http://doi.org/10.1016/j.tox.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/25745980
http://doi.org/10.1038/sj.mp.4002133
http://www.ncbi.nlm.nih.gov/pubmed/18195716
http://doi.org/10.1038/s41598-020-60890-x
http://www.ncbi.nlm.nih.gov/pubmed/32132597
http://doi.org/10.1016/j.jhep.2010.11.005
http://www.ncbi.nlm.nih.gov/pubmed/21145844
http://doi.org/10.1016/j.biomaterials.2021.121006
http://doi.org/10.2174/1389450118666180516122517
http://www.ncbi.nlm.nih.gov/pubmed/29766802
http://doi.org/10.1093/toxsci/kfw173
http://www.ncbi.nlm.nih.gov/pubmed/27613715
http://doi.org/10.1016/j.livres.2019.01.002
http://www.ncbi.nlm.nih.gov/pubmed/32670671
http://doi.org/10.1124/jpet.102.038992
http://www.ncbi.nlm.nih.gov/pubmed/12438516
http://doi.org/10.2174/138920006778017759
http://doi.org/10.3390/ijms21020469
http://www.ncbi.nlm.nih.gov/pubmed/31940797
http://doi.org/10.1016/j.biomaterials.2020.120529
http://www.ncbi.nlm.nih.gov/pubmed/33257114
http://doi.org/10.1016/j.biomaterials.2012.11.029
http://www.ncbi.nlm.nih.gov/pubmed/23228427
http://doi.org/10.1016/bs.mcb.2020.03.009
http://www.ncbi.nlm.nih.gov/pubmed/32586449
http://doi.org/10.1038/s41598-019-45514-3
http://doi.org/10.1053/j.gastro.2020.06.010
http://www.ncbi.nlm.nih.gov/pubmed/32553762
http://doi.org/10.1016/j.scitotenv.2021.148160
http://www.ncbi.nlm.nih.gov/pubmed/34380288
http://doi.org/10.3389/fcell.2021.700120
http://www.ncbi.nlm.nih.gov/pubmed/34595163

	Introduction 
	Materials and Methods 
	Results 
	SBAD2-3x-AAGLY-HLCs Express Hepatocyte Markers, Produce Albumin and Have CYP3A4 Activity 
	SBAD2-3x-AAGLY HLCs Cells Accurately Classify Chemicals Causing Acute Hepatocellular Injury 
	Cellular Stress Pathway Genes Are Highly Differentially Expressed in SBAD2-3x-AAGLY HLCs upon Chemical Treatment 
	Cellular Stress Genes Show Differential Expression at Different Time-Points after Chemical Treatment 
	Benchmarking 

	Discussion 
	References

