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Abstract

Background: Ongoing challenges such as geopolitical conflicts, trade disruptions, economic
sanctions, and political instability have underscored the urgent need for large manufac-
turing enterprises to improve resilience and reduce dependence on global supply chains.
Integrating regional and local Small- and Medium-Sized Enterprises (SMEs) has been
proposed as a strategic approach to enhance supply chain localization, yet barriers such as
limited visibility, qualification hurdles, and integration difficulties persist. Methods: This
study proposes a comprehensive knowledge graph driven framework for representing
and discovering SMEs, implemented as a proof-of-concept in the U.S. BioPharma sector.
The framework constructs a curated knowledge graph in Neo4;j, converts it to Resource
Description Framework (RDF) format, and aligns it with the Schema.org vocabulary to
enable semantic interoperability and enhance the discoverability of SMEs. Results: The
developed knowledge graph, consisting of 488 nodes and 11,520 edges, enabled accurate
multi-hop SME discovery with query response times under 10 milliseconds. RDF serial-
ization produced 16,086 triples, validated across platforms to confirm interoperability and
semantic consistency. Conclusions: The proposed framework provides a scalable, adaptable,
and generalizable solution for SME discovery and supply chain localization, offering a
practical pathway to strengthen resilience in diverse manufacturing industries.

Keywords: supply chain resilience; knowledge graphs; graph database; RDF; schema.org

1. Introduction

Recent geopolitical conflicts, trade disruptions, and economic volatility have exposed
hidden vulnerabilities and intensified longstanding challenges within global supply chains.
In response, many U.S.-based manufacturers have increasingly adopted reshoring strategies,
relocating production and services to the domestic market to reduce exposure to external
risks and enhance supply chain resilience [1]. However, this strategic shift has introduced
new operational challenges: large enterprises must now identify and collaborate with
regional partners in a timely manner to construct agile and reliable supply networks
without compromising quality, responsiveness, or cost-efficiency [2]. In this context, Small-
and Medium-Sized Enterprises (SMEs), which are regarded as the backbone of the American
economy, are increasingly recognized as essential contributors to the reshoring effort [3].
Their agility, niche expertise, and geographic proximity make them ideal contributors
to regionalized supply chains. Despite this, two persistent barriers have limited their
integration: (i) Large enterprises often lack structured, searchable data on the capabilities
and availability of local SMEs [2], and (ii) Many SMEs lack the visibility and digital
infrastructure needed to participate in complex supply networks [4]. These challenges have
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hindered effective supplier discovery and slowed the localization of manufacturing and
supply chain ecosystems.

Although recent research has advanced understanding of supply chain resilience and
digitalization, most efforts have focused on large firms, global optimization, or simulation-
based models [5]. Few studies have developed practical, semantically enriched digital frame-
works that make SMEs discoverable and interoperable within regional supply networks.
Current approaches are typically limited to static supplier databases or survey-driven assess-
ments, which lack the capacity to capture complex inter-enterprise relationships or to enable
cross-platform integration. This leaves an urgent gap for scalable, machine-interpretable
solutions that directly support SME integration into reshoring initiatives.

To bridge this gap, this work proposes a knowledge graph-based framework for rep-
resenting SMEs and their inter-enterprise relationships within regional supply chains. In
this framework, supply chain entities are modeled using a graph database and semanti-
cally enriched to form a knowledge graph, enabling machine-interpretable representation,
relationship mapping, and contextual search functionality. The semantic layer facilitates
structured querying, dynamic information retrieval, and improved interoperability across
digital platforms. A proof-of-concept implementation was then conducted using enterprise
data from the BioPharma sector in Pennsylvania (PA), a state in the U.S. with a high density
of manufacturing SMEs [6]. A dynamic search mechanism was developed, enabling multi-
conditional, human-readable queries that support efficient exploration of complex supply
chain relationships. These capabilities were shown to outperform conventional keyword-
based search tools in both speed and precision. To ensure broader applicability, the knowledge
graph was converted into the Resource Description Framework (RDF), a World Wide Web
Consortium (W3C) standard, and further aligned with Schema.org vocabulary to enhance
semantic consistency, interoperability and enable integration with web-based systems [7].

In essence, this work addresses the following research gaps: (i) the absence of struc-
tured, semantically enriched representations of regional SMEs; (ii) limited mechanisms for
querying complex inter-enterprise relationships; and (iii) a lack of interoperable frameworks
to support data sharing across systems.

Accordingly, this study is guided by two research questions (RQ):

RQ1: How can SMEs and their relationships within a regional supply chain be effectively
modeled using knowledge graphs to enhance dynamic information retrieval and discoverability?

RQ2: In what ways can semantic web technologies (such as RDF and Schema.org)
improve the interoperability of SME data?

To investigate RQ1, a graph-based query mechanism was designed and implemented
to support flexible, context-aware search for regional SME capabilities and connections.
To address RQ2, semantic interoperability was validated through RDF serialization,
Schema.org alignment, and cross-platform knowledge sharing scenarios.

The remainder of this paper is structured as follows: Section 2 reviews related work on
supply chain resilience, graph modeling, and knowledge representation. Section 3 presents
the methodology for knowledge graph construction, including data modeling, querying,
validation, and implementation using Pennsylvania BioPharma data. Section 4 extends
this methodological framework by addressing semantic interoperability: covering RDF
serialization, Schema.org alignment, and cross-platform validation. Section 5 discusses
key findings, implications, advantages and limitations. Section 6 concludes with the main
contributions and directions for future research.

2. Related Work and Motivation

Globalization and lean manufacturing have transformed supply chains into efficient
yet vulnerable systems. To minimize costs and enhance responsiveness, firms increasingly
rely on globally dispersed suppliers and maintain minimal inventories, making them highly
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susceptible to disruptions from natural disasters, geopolitical events, and pandemics [8].
Such disruptions often propagate across interconnected networks, amplifying systemic
risks [9-11]. Limited visibility into upstream and downstream components further hampers
timely response and recovery. Consequently, supply chain resilience, defined as the ability
to resist, absorb, and recover from disruptions while maintaining essential functions, has
emerged as a critical strategic capability [9-11]. While strategies such as supplier diver-
sification, localization, redundancy, and enhanced visibility have been proposed [12-14],
much of the literature remains theoretical or descriptive, with few scalable or empirically
validated implementations [5].

To capture the systemic nature of supply chains, researchers increasingly model them
as complex networks, where entities are connected via material, information, or financial
flows [15]. Graph-based models allow representation of inter-dependencies, simulation of
disruptions, and quantification of resilience. Approaches such as centrality analysis [16,17],
agent-based modeling [18], and shock propagation [19] reveal vulnerabilities but remain
largely conceptual, focusing on large enterprises while excluding small- and medium-sized
enterprises (SMEs). This exclusion is problematic given SMEs’ growing role in resilient,
regionalized manufacturing ecosystems.

SMEs are critical contributors to supply chain resilience, especially under the shift
toward modular and platform-based manufacturing [3,12,20-22]. However, SMEs often
remain invisible in global sourcing platforms due to limited discoverability, outdated data,
and lack of standardized representation. Platforms such as Wikidata [23], Thomasnet [24],
Mergent Intellect [25], and Dun & Bradstreet [26] offer centralized repositories but suffer
from incomplete data, poor update mechanisms, and limited query expressiveness. Wiki-
data requires SPARQL expertise, while commercial directories such as Thomasnet rely
on keyword search, often yielding imprecise results. These barriers highlight the need
for scalable, semantically rich frameworks that enhance SME visibility, enable dynamic
querying, and support cross-platform integration.

Knowledge graphs offer a promising solution by enabling semantic modeling of
enterprise capabilities, relationships, and context. They support interoperability with
standards such as RDF and Schema.org and allow multi-conditional querying that can
surface hidden connections. Recent research has begun to explore knowledge graphs in
supply chains, but most contributions remain partial or domain generic. For example, Zhou
et al. [27] proposed a supply chain knowledge graph for market convergence prediction,
employing representation learning to infer macro-level trends. While methodologically
sound, their work remains focused on high-level markets and does not address regional
implementation, SME discoverability, or semantic web alignment. Other studies have
leveraged zero-shot frameworks combining knowledge graphs with large language models
(LLMs) to map complex, multi-tiered dependencies in electric vehicle supply chains [28].
While these systems map multi-tiered dependencies and support intelligent querying using
language models, they do not incorporate RDF or Schema.org, and the design assumes
access to extensive enterprise data, limiting their utility for SMEs.

Diiggelin and Laurenzi [29] developed an ontology-driven decision support sys-
tem for risk analysis using knowledge graphs, validated through domain expert review.
While demonstrating strong knowledge modeling practices, their approach focuses on
organizational-level risk rather than SME integration or semantic interoperability. Tu
et al. [30] applied graph neural networks (GNNSs) to a large-scale automotive supply chain
knowledge graph for supplier recommendation. Their system showed superior predictive
accuracy compared to non-graph methods, but it does not address dynamic querying, RDF
compliance, or regional contexts, and SMEs remain underrepresented. Karam et al. [31]
proposed a hybrid framework combining knowledge graphs and Bayesian networks for
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bottleneck detection. While novel in combining structural and probabilistic models, it lacks
a schema for supplier discovery or semantic querying.

Kosasih et al. [32] advanced the field by applying GNNs for risk propagation and
reasoning over supply chain knowledge graphs. They encode complex inter-firm rela-
tionships and use GNN-based link prediction to surface hidden vulnerabilities. However,
their system does not address how such knowledge graphs are constructed, semantically
modeled, or deployed in web-based regional applications. Similarly, the distant supervision
method proposed by Huang et al. [33] focuses on automated knowledge extraction for
supply chain knowledge graphs, using natural language processing (NLP) and relation
extraction to build graphs from text. While critical for scalability, the method does not
extend to RDF or Schema.org alignment, nor is it embedded in an end-user system for SME
discovery or regional graph querying.

Several recent works leave gaps relevant to SME-focused supply chain resilience. Rolli
et al. [34] introduced an axiomatic RDF-based knowledge graph for Industry 4.0, but their
work remains conceptual and lacks SME-focused implementation and supplier discovery
features. Saidi et al. [35] developed reconfigurable supply chain models leveraging semantic
technologies, but these remain largely theoretical and do not address SME integration.
Similarly, Di Pierro [36] proposed ontology-enriched graph databases without validation
in real supply chain applications. McEachen and Lewis [37] advanced spatial knowledge
interoperability, and Thakker [38] investigated RDF—property graph translation, but both
contributions are outside the scope of SME supply chains.

Earlier foundational works such as Shadkam [39], Petersen et al. [40], and Grangel-
Gonzélez [41] established semantic integration approaches in supplier selection and Indus-
try 4.0 contexts. Complementing these, Petersen et al. [42] demonstrated an RDF-based
information model for manufacturing companies, showing how enterprise and asset data
can be exposed via RDF vocabularies and queried using SPARQL. Ameri et al. [43] applied
an ontological RDF in agri-food supply chains to support traceability, validating semantic
modeling and query execution in real-world contexts. Similarly, Petersen et al. [44] de-
veloped a federated, semantics-based supply chain analytics framework using SCORVoc
RDF vocabularies and distributed SPARQL queries. While these studies provide concrete
industrial applications of RDF in supply chain contexts, they remain disconnected from
dynamic web deployment, Schema.org compliance, and SME-focused supplier discovery,
motivating the distinct contributions of this work.

To systematically compare these contributions, Table 1 summarizes their core features,
focus areas, and limitations relative to the proposed framework. The format of Table 1 is
adapted from [45,46] to clearly present a comparative analysis of prior works and highlight
the novelty of this study. This analysis reveals persistent gaps, notably in SME integration,
dynamic querying capabilities, semantic modeling, and real-world application. Most prior
works remain conceptual, lack SME focus, and do not adopt dynamic querying or semantic
modeling standards such as RDF or Schema.org. Furthermore, they seldom demonstrate
real-world deployment or validation, limiting their practical impact. The proposed research
addresses these gaps by integrating semantic structuring, dynamic querying, SME-focused
design, and real-world application within a domain-specific context.

Table 1. Comparative analysis of related works.

Study Knowledge Graph Use ~ SME Focus  Querying Capability = Semantic Modeling Real-World Application
Rolli et al. (2025) [34] Yes No No Yes No
Saidi et al. (2025) [35] Yes No No Yes No
Di Pierro (2025) [36] Yes No No Yes No
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Table 1. Cont.

Study Knowledge Graph Use =~ SME Focus  Querying Capability = Semantic Modeling  Real-World Application
Zhou et al. (2024) [27] Yes No Limited Partial No
AlMabhri et al. (2024) [28] Yes No Yes No No
Diiggelin & Laurenzi (2024) [29] Yes No No Yes No
Tu et al. (2024) [30] Yes No Yes No Yes
Kosasih et al. (2024) [32] Yes No Limited No No
Huang et al. (2024) [33] Yes No Limited No No
Karam et al. (2023) [31] Yes No Limited Partial No
McEachen et al. (2023) [37] Yes No No Yes No
Ameri et al. (2022) [43] Yes No No Yes Yes
Thakker (2021) [38] Yes No No Yes No
Shadkam (2021) [39] Yes No No No No
Grangel-Gonzilez (2019) [41] Yes No No Yes No
Petersen et al. (2017) [42] Yes No Yes Yes Yes
Petersen et al. (2016) [44] Yes No Yes Yes Yes
This Work Yes Yes Yes Yes Yes

3. Knowledge Graphs for Supply Chain Modeling

Modern manufacturing supply chains are complex, multi-tiered ecosystems involving
various types of entities, including suppliers, contract manufacturers, logistics providers,
and testing centers. These entities are connected by inter-dependent material, information,
and financial flows that form dense, dynamic networks. Traditional supply chain models
based on linear, tabular representations (e.g., relational databases) are ill-suited to capture
such complexity, especially when modeling relationships that are multi-directional, indirect,
or conditional [47].

In contrast, graph-based representations provide a more natural and flexible alter-
native [15]. In this approach, entities such as companies (e.g., Company A, Company B)
are represented as nodes, and their relationships (e.g., “Company A supplies Company
B” or “Company B works with Company A”) are represented as edges. The graph-based
structures can be stored and managed using a specific type of database called a graph
database. Unlike traditional relational databases, graph databases natively store relation-
ships and connections between entities alongside data, enabling seamless querying and
manipulation [47]. To maximize the utility of graph structures for decision-making, they
can be enriched with domain knowledge or semantics, thereby creating a knowledge
graph [47]. For example, Figure 1a illustrates a simple graph with two connected nodes,
while Figure 1b shows the corresponding knowledge graph where the nodes (labeled as
Company A and Company B) are enriched with additional attributes such as company size,
name, location, and relationship details like the quantity of materials supplied from A to B.
This enriched representation not only captures the existence of relationships but also their
meaning and context. A formal mathematical definition and example of the knowledge
graph structure used in this work are provided in Appendix A.

3.1. Knowledge Graph Implementation for SME Supply Chains

This section presents a step-by-step methodology for constructing a domain-specific
knowledge graph designed to enhance visibility and partner discovery within regional SME
supply chains, following the approach of [48]. The process comprises three main stages:

(1) Data Collection and Preprocessing: Gathering enterprise-level data relevant to the target
sector, followed by cleaning, structuring, and formatting for knowledge graph construction.
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(2) Knowledge Graph Schema Design: Importing processed data into Neo4j graph database
and defining nodes, edges and categories that structure the knowledge graph.

(8) Search Mechanism Design: Developing a dynamic, human-interpretable search mech-
anism to enable enterprise scouting and discovery within the knowledge graph.

The proof-of-concept implementation focuses on Pennsylvania’s BioPharma sector
but is generalizable to other industries. Figure 2 presents a pictorial flowchart illustrating
this methodology. The following sections describe each stage in detail.

(a) GRAPH

<«—— Works with ——
Company A Company B
—— Supplies —»

<+ SEMANTICS

(b) KNOWLEDGE GRAPH

<—— Works with ——
Company A Company B
—— Supplies —»

Quantity : 1000
Small Manufacturer Large Manufacturer

Name: CENTURY THERAPEUTICS INC. Name: GLAXOSMITHKLINE LLC

City: PHILADELPHIA State: PA
Figure 1. (a) Basic graph representation with nodes and edges showing entity connections; (b) Graph
enriched with semantic information such as entity attributes (Name, City) and relationship properties
(Quantity), resulting in a knowledge graph.

Data Collection Knowledge Search
and Graph Schema |:> Mechanism

Preprocessing Design Design

* Importing Data . Developin
* DataCleaning into Neo4j graph dynami’:; r:guman
database. . g
¢ Structuringand ;r;t::s;etable
Formatting Data + Definingnodes, NP
edge and
categories.

Figure 2. Methodological framework for constructing SME supply chain knowledge graph: data collec-
tion and preprocessing, knowledge graph schema design, and search mechanism for enterprise scouting.

3.1.1. Data Collection and Preprocessing

Enterprise-level data were collected from Mergent Intellect [25], a commercial data
platform that aggregates structured business information from Dun & Bradstreet. The
dataset included 488 enterprises located in Pennsylvania and categorized under North
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American Industry Classification System (NAICS) Code 3254 (Biopharmaceuticals). This
NAICS code classifies companies based on their primary business activities related to
biopharmaceutical manufacturing, ensuring relevance to the sector. For each enterprise,
attributes such as company name, location, employee count, sales volume, and business
function were extracted. The data were cleansed by removing duplicates and incomplete
records, then formatted into a tabular structure for knowledge graph construction.

3.1.2. Knowledge Graph Schema Design

The cleaned dataset was imported into the Neo4j graph database platform to develop
the knowledge graph. Once the data were imported, enterprises were modeled as nodes,
while their relationships were modeled as edges using Neo4j graph database. The compa-
nies are categorized into 8 groups based on the products made/service rendered, namely,
Large Scale Manufacturer (n = 45), and SMEs including: Small Manufacturer (1 = 165), Con-
tract Manufacturer (n = 34), Material Supplier (n = 52), R&D Company (1 = 96), Equipment
Supplier (n = 10), Logistics and Supply (1 = 64) and Testing Centers (n = 22). After node
creation, edges labeled “Works With” were established between companies located within
the same or neighboring regions, identified via their zip codes and sector relevance. This
iterative process resulted in a complete knowledge graph representing Pennsylvania’s Bio-
Pharma manufacturing and supply chain ecosystem. The final graph consists of 488 nodes
and 11,520 edges. Figure 3 illustrates a partial view of this knowledge graph.

Figure 3. Partial view of the Knowledge Graph for PA enterprises in BioPharma Sector.

Unlike existing repositories that focus on isolated enterprise records, the approach pre-
sented in this work models SMEs within their broader relational and geographic ecosystem,
enabling both direct and multi-hop discovery use cases essential for supply chain resilience.

3.1.3. Search Mechanism Design and Use Case Scenarios

Effective enterprise scouting, particularly for SMEs, is critical to supply chain diversi-
fication, risk mitigation, and regional economic development. However, traditional search
tools often fail to uncover indirect partnerships or alternative suppliers, limiting their value
for strategic sourcing and resilience planning. By integrating entity attributes with inter-
firm relationships in a unified structure, the constructed knowledge graph enables dynamic,
relationship-driven search capabilities. To assess its practical utility, this work examined
both simple lookups and complex, multi-conditional queries. The simple queries reflect fun-
damental supplier discovery tasks, such as identifying firms by location or organizational
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type, which are widely used for initial screening. In contrast, the multi-conditional queries
capture complex decision-making situations where firms must evaluate multiple criteria
simultaneously, for example, balancing specialization, geographic proximity, and collabora-
tive ties. These types of tasks are emphasized in the supplier selection literature [49] and in
studies on supply chain resilience and adaptation under disruption [50], confirming that
the chosen scenarios are representative of real-world supply chain challenges.

(a) Simple Relationship-Based Search

The knowledge graph built using the Neo4j graph database allows intuitive explo-
ration of companies and their direct connections using human language style search
prompts. For example, a user searching for all Logistics and Supply enterprises can re-
trieve matching companies and their relationships by selecting category filters, as shown
in Figure 4. Figure 4a shows search options to find and filter enterprises by predefined
categories such as Contract Manufacturing, Logistics and Supply, R&D, etc. These filters
are based on tagged metadata stored in the knowledge graph and appear in the interface
as dropdown menus or searchable text fields. Selecting a category displays all enterprises
matching that classification. Figure 4b shows relationship-based prompts to locate, for
instance, Logistics and Supply enterprises and explore their connections to other enterprise
categories. When activated, this option displays Logistics and Supply enterprises along
with their first-degree (direct) connections to other companies.

I BigMfg

(a) (b)

Figure 4. Simple search using built-in search prompts in Neo4j graph database: (a) Interface for searching
enterprises by category (e.g., BigMfg, ContractMfg); (b) Interface for locating Logistics and Supply
enterprises and exploring their relationships with other categories such as BigMfg and ContractMfg.

Users can further refine results by selecting individual enterprises to reveal direct
relationships and neighboring entities within the network (Figure 5). In Figure 5, the
selected enterprise node (ENDO PHARMACEUTICAL, INC.) expands to show all directly
connected entities, such as raw material suppliers, contract manufacturers, or other related
companies. The visual layout helps users quickly understand the local network context of
a given enterprise, offering insights into the company’s position within the regional supply
chain. For example, a Logistics and Supply enterprise connected to many other entities may
indicate a central role in distribution or supply coordination, while a manufacturer with
numerous connections could represent a key production hub within the regional network.
While this supports quick exploratory analysis, more detailed or conditional discovery
requires advanced queries, discussed in the following section.
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Figure 5. Simple search results showing the enterprise ENDO PHARMACEUTICAL, INC. (gray node
at the center) and its immediate neighboring connections. Colored nodes represent different enterprise
categories, such as BigMfg and ContractMfg.

(b) Enterprise Scouting Using Complex Multi-Conditional Queries

Beyond simple searches, the knowledge graph built on the Neo4j graph database
supports advanced multi-conditional queries that traverse multiple relationships to dis-
cover highly specific enterprise connections. These complex queries are essential in realistic
supply chain scenarios where users seek entities based on combinations of attributes
and indirect relationships. Such queries, expressed in human-readable templates, can be
dynamically adjusted by the user to explore alternative conditions or partners.

Scenario 1: Identifying a Supplier’s Supplier

Consider a large enterprise seeking to collaborate with a Pennsylvania-based contract
manufacturer who meets both of the following conditions: (i) the contract manufacturer
sources raw materials from GNOSIS USA INC., and (ii) the contract manufacturer works
with another large manufacturer, STI PHARMA LLC. Such a scenario reflects a realistic due
diligence or strategic sourcing situation where enterprises seek partners that are already
embedded in a reliable supply network. Traditional supply chain platforms rarely support
such multi-hop queries across indirect relationships. In contrast, the knowledge graph
efficiently executes this multi-conditional query, instantly returning the set of qualifying
enterprises. Figure 6 shows the results of the query: “Contract Manufacturers that get raw
materials from supplier GNOSIS USA INC. and work with STT PHARMA LLC”. This type
of query supports transparency, reveals non-obvious connections, and enhances strategic
supplier scouting.

Scenario 2: Locating Regional Suppliers with Specific Collaborations

In a second scenario, an enterprise might seek all raw material suppliers located in
a specific county (e.g., Philadelphia) that also supply a particular large company, such as
MEDICAL PRODUCTS LABORATORIES, INC. This query combines geographic filtering
with relationship-based criteria, functionality rarely supported by traditional supplier
databases. Using the knowledge graphs built on graph databases, this complex search was
executed with ease, again allowing dynamic input of county names or target companies.
Figure 7 displays the query results for: “All raw material suppliers in PHILADELPHIA
who work with MEDICAL PRODUCTS LABORATORIES, INC”.
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‘ X Small Mfg getting Raw Mat from GNOSIS USA INC and works with S ‘

Small Mfg getting Raw Mat from GNOSIS USA INC and works with §

SEARCH PHRASE 1

Small Mfg getting Raw Mat from GNOSIS USA INC and works with SANOFI PASTEUR INC.

ARCH PHRASE

Small Mfg getting Raw Mat from GNOSIS USA INC and works with SIGMAPHARM LABORATORIES, LLC

SEARCH PHRASE 1

Small Mfg getting Raw Mat from GNOSIS USA INC and works with STI PHARMA, LLC
SEARCH PHRASE 1

Small Mfg getting Raw Mat from GNOSIS USA INC and works with STRONGBRIDGE BIOPHARMA PLC
SEARCH PHRASE 1

Figure 6. Multi-conditional query results for Scenario 1, showing enterprises (blue nodes) that
(i) source raw materials from GNOSIS USA INC. and (ii) work with STI PHARMA LLC.

‘ X AlLRawMat Suppliers in PHILADELPHIA who works with M J

All RawMat Suppliers in PHILADELPHIA who works with M
SEARCH PHRASE

All RawMat Suppliers in PHILADELPHIA who works with M D PHARMA CONNECTION, LLC
SEARCH PHRASE

All RawMat Suppliers in PHILADELPHIA who works with MAGIC BULLET VACCINES, LLC
SEARCH PHRASE

All RawMat Suppliers in PHILADELPHIA who works with MAKEFIELD THERAPEUTICS, INC.
SEARCH PHRASE

All RawMat Suppliers in PHILADELPHIA who works with MARILLION PHARMACEUTICALS, INC.
SEARCH PHRASE

Figure 7. Multi-conditional query results for Scenario 2, showing suppliers in Philadelphia (red nodes)
that work with MEDICAL PRODUCTS LABORATORIES, INC.

It is also worthwhile noting that the queries are dynamic, meaning the knowledge
graph updates the list of companies available for selection in the dropdown menu in real
time as queries are typed. This capability enhances localized supplier discovery, improves
supply chain transparency, and supports regional economic development by enabling
enterprises and policymakers to identify and strengthen trusted local supply networks.

3.2. Performance Evaluation and Comparison

To assess the performance of the proposed knowledge graph model, a series of test
queries discussed in Section 3.1.3 were executed on the constructed knowledge graph. The
evaluation focused on the following key metrics: (i) query execution time (Q) in milliseconds
(ms) and (ii) the number of nodes and edges returned. The test cases included both (i) simple
linear queries with single-hop lookups within the network, and (ii) complex multi-conditional
queries requiring traversal of multiple hops and filtering based on combined conditions.
Table 2 summarizes the tested queries (referenced in Section 3.1.3) and their outcomes.
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Table 2. Performance Summary of Knowledge Graph Queries.
Query Type Scenario # Nodes # Edges Q (ms)
Simple Linear Search 3.1.3 (a) 57 56 <1
Multi-Conditional Query 3.1.3 (b) Scenario 1 22 41 5
Multi-Conditional Query 3.1.3 (b) Scenario 2 8 7 8

The knowledge graph-based model delivered near-instantaneous results for simple
queries (<1 ms) and maintained execution times under 10 milliseconds even for com-
plex multi-hop queries. This contrasts sharply with existing platforms like Wikidata [23],
which rely on manual or semi-automated updates and offer incomplete industry coverage.
For example, a SPARQL query on Wikidata for BioPharma enterprises (Q507443) in the
United States (Q30) returned only 217 results, far below actual industry counts and took
approximately 802 milliseconds for a simple query. Moreover, platforms such as Wikidata
lacks support for complex, multi-conditional relationship queries like those demonstrated
here. Therefore, the proposed knowledge graph-based approach not only supports richer,
relationship-driven queries but does so with significantly faster response times

3.3. Validation and Accuracy Check

To assess the accuracy of the constructed knowledge graph and its querying mechanism,
a targeted manual validation was performed. A stratified random sample of eight enter-
prises, one from each of the eight key categories (e.g., manufacturers, suppliers, logistics
providers), was selected. For each enterprise, direct relationships (first-degree connections)
identified by the automated query mechanism were manually cross-checked against known
partnerships recorded in the graph database. Additionally, three complex multi-hop queries,
similar to those illustrated in Section 3.1.3 (b), were executed and verified.

4. Interoperability and Standardization

Knowledge graphs and graph databases have seen increasing adoption across in-
dustries due to their growing relevance and applications in diverse domains [51]. The
knowledge graph developed in this work for the Pennsylvania (PA) BioPharma sector
to enhance supply chain resilience represents one such application. However, to extend
the utility and applicability of this knowledge graph across a broader ecosystem of SMEs,
it must support key capabilities such as data exchange and integration, semantic reuse,
creation of new knowledge, and shared understanding across different systems. These
capabilities are collectively encompassed by the concept of interoperability, defined as the
ability of multiple systems to seamlessly exchange, interpret, and utilize information [52].
In the context of graph databases and knowledge graphs, interoperability implies that data
must be represented, stored, and shared in a manner that is both machine-readable and
intelligible across different platforms and domains [53]. One of the most effective ways to
achieve interoperability is through the adoption of standardized frameworks and protocols.

4.1. Semantic Web Standards

Standardization is driven by consensus among stakeholders including industry,
academia, user groups, and regulatory bodies, and ensures common protocols and data
formats [54]. The World Wide Web Consortium (W3C) plays a central role in defining such
standards for web-based information exchange. The W3C’s Semantic Web initiative (also
known as Web 3.0) introduces a framework for encoding data with well-defined semantics,
enabling it to be shared and reused across applications, communities, and enterprises.
According to W3C, the Semantic Web provides foundational technologies such as [55]:
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(i) RDF (Resource Description Framework): The standard model for data interchange.
(i) SPARQL: The standard query language for RDF-based data.

These technologies facilitate the creation of interoperable datasets and ontologies,
supporting flexible integration and reasoning across domains. To make the PA BioPharma
knowledge graph interoperable, it was mapped into the RDF format, the W3C standard
for structured data exchange on the web. This translation allows seamless integration into
other applications and domains, enabling a scalable, interoperable knowledge ecosystem.

4.2. RDF Data Model

The Resource Description Framework (RDF) is a W3C-standardized data model de-
signed for structured information exchange on the Web [6]. It provides a way to represent
and link data so that users can understand the meaning of entities and their relationships
across different domains [56]. At its core, RDF represents data as triples composed of
Subject, Predicate, and Object. The subject and object represent nodes or resources, while
the predicate defines the relationship between them. For example, the statement “Entity 1
works with Entity 2” can be modeled using the following RDF triples:

- Subject (Node): Entity 1
- Predicate (Edge): works with
- Object (Node): Entity 2

Each RDF triple uniquely identifies these elements, making it possible to clearly
model entities and their relationships. These relationships are often described using
shared vocabularies such as FIBO [57], FOAF [58], or Schema.org [59] to support semantic
interoperability across systems.

RDF data can be serialized in various formats such as Turtle, RDF/ XML, N-Triples, or
JSON-LD. For instance, the statement “Entity 1 is located in Philadelphia and works with
Entity 2” can be represented in Turtle format as shown below:

@prefix sch: <http://www.example.org/schema/>
<entity:1> sch:Works_With <entity:2>
<entity:1> sch:City “Philadelphia”

In this snippet, “entity:1” and “entity:2” represent entities (e.g., companies or orga-
nizations), and “sch:Works_With” is a property linking them. The predicate “sch:City”
associates Entity 1 with the city “Philadelphia.” The prefix “sch:” serves as a shorthand
for the full URI (Uniform Resource Identifier): <http://www.example.org/schema/> (ac-
cessed on 13 May 2025). The usage of the prefixes such as “sch:” helps improve readability
and reduce repetition in RDF syntax.

Figure 8 illustrates a simplified RDF graph based on this example. Since RDF decom-
poses each data statement, every entity (e.g., Entity 1 and Entity 2) and its properties (e.g.,
City) are represented as distinct components, often as separate nodes or edges, in the RDF
graph. Formal definitions of RDF triple structure, data types, and Turtle serialization syntax
are provided in Appendix B for reference.

sch: City PHILADELPHIA

sch: Works_With

Figure 8. RDF graph representation showing two triples in the order [Subject, Predicate, Object]:
(i) [entity:1, sch:City, “Philadelphia”]; (ii) [entity:1, sch:Works_With, entity:2].
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Name: ABC Corp.
City: New York

Works with

4.3. Database Mapping

In simple terms, database mapping is the process of translating a database from
a source database format to a target database format. To enhance interoperability, the
knowledge graph for PA BioPharma, which is a Labeled Property Graph (LPG), needs
to be mapped to the RDF format and back in a lossless manner (i.e., preserving all the
information). This mapping is performed based on the following procedures:

(i) Props — W (Property names from LPG mapped to URIs in RDF).

(ii) Values — L (Property values from LPG mapped to Literals in RDF).

(iii) Labels — L U W (Labels from LPG mapped to Literals or URIs in RDF).

(iv) VUE — WU B (Nodes and Edges from LPG mapped to URIs or BNodes in RDF).

In other words, every element in the LPG, whether node, edge, label, or property, is
transformed into a corresponding RDF triple. This enables the preservation of both data
structure and semantics.

Figure 9 illustrates this mapping process, showing how the nodes and edge in the LPG are
converted into seven distinct RDF triples. In the RDF representation, each entity, relationship,
and property is decomposed into triples consisting of a Subject, Predicate, and Object. This
granular decomposition allows all information from the LPG to be captured explicitly, with
each property and value represented as a separate node or edge in the RDF graph.

(b) RDF Graph

rdf: Type

sch: Name ABD Corp.

sch: City

New York

sch: Works_With

Name: XYZ Inc.
City: Chicago

(a) LPG

schi Naime XYZ Inc.
sch: City
Chicago
(c) List of Triples
Number Subject Predicate Object
1 entity: 1 rdf: Type sch: Company
2 entity: 1 sch: Name "ABD Corp."
3 entity: 1 sch: City "New York"
4 entity: 1 sch: Works With entity: 2
5 entity: 2 rdf: Type sch: Company
6 entity: 2 sch: Name "XYZ Inc."
74 entity: 2 sch: City "Chicago"

Figure 9. Mapping from LPG to RDF. (a) LPG Representation, (b) RDF Representation, (c) List of
Triples obtained from the RDF.

As shown in Figure 9¢, some triples use prefixes such as “sch:” or “rdf:”. These act as
shorthands for full URIs (e.g., rdf: corresponds to <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> (accessed on 13 May 2025), and sch: to <http://www.example.org/schema/>)
(accessed on 13 May 2025). While such custom or default vocabularies work for general
use, they lack semantic alignment with widely adopted standards. To enhance broader
web-based interoperability, these prefixes could be mapped to standardized vocabularies
such as Schema.org [59].
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http://www.w3.org/1999/02/22-rdf-syntax-ns#
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4.4. Interoperability Workflow for PA BioPharma Knowledge Graph

To address the interoperability needs of the knowledge graph developed for the PA

BioPharma sector, this work follows a three-step methodological framework:

(1) Knowledge Graph Creation: Building the domain-specific knowledge graph as de-
scribed in Section 3, using the Neo4j graph database.

(2) RDF Mapping: Mapping the knowledge graph to the RDF standard.

(3) Schema.org Extension: Extending the RDF graph with Schema.org vocabulary to
achieve semantic interoperability.

Figure 10 illustrates this overall interoperability workflow, providing a conceptual
roadmap for the detailed steps discussed in the sections that follow.

Knowledge RDF Mapping |:> Schema.org

Graph Creation Extension

* Representsthe Map K"°W‘ed$e Vocabulary
Knowledge Graph Graph toRDFin mapping
already created in Neo4j
Section 3using . . ¢ Semantic
Neodj ¢ Creation of triples errEhmEm

Subject, Predicate
and Object

Figure 10. Interoperability workflow showing three stages: knowledge graph creation, mapping the
knowledge graph to RDF and extending it with Schema.org for semantic integration across SME
supply chains.

4.4.1. RDF Mapping

The knowledge graph constructed in Section 3 serves as the input for the RDF map-
ping process. This existing graph was implemented in Neo4j and subsequently mapped
to the RDF using the Neosemantics (n10s) extension. This extension enables seamless
interoperability by allowing data stored in Neo4j’s Labeled Property Graph (LPG) model to
be transformed into standard RDF serializations. Data insertion is performed using Cypher
query language, and the output is, by default, serialized in Turtle format, though other
RDF formats such as RDF/XML can be produced through content negotiation. The original
LPG-based knowledge graph comprised 488 nodes and 11,520 edges. After conversion to
RDF, the graph expanded into a total of 16,086 RDF triples, reflecting RDF’s more granular,
triple-based representation. Figure 11 presents a partial view of the RDF serialization in
RDF/XML format.

As seen in Figure 11, the RDF output uses a default vocabulary automatically gen-
erated based on the Neo4j schema. This vocabulary assigns generic URI prefixes (e.g.,
neodj:/ / graph.xxx) to represent node labels, properties, and relationships. Although this
schema-specific vocabulary is sufficient for serialization and internal querying, it lacks
interoperability for broader web-based data integration. To address this, it is necessary
to map the terms in the RDF graph to publicly recognized vocabularies. Specifically, the
generic Neo4j vocabulary is aligned with equivalent terms in Schema.org, a widely adopted
RDF schema that enhances semantic consistency and facilitates data sharing and integration
across heterogeneous systems. This vocabulary alignment ensures that the RDF represen-
tation of the PA BioPharma knowledge graph is both machine-readable and semantically
interoperable with external data sources and ontologies.
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Organization
A Schema.org Type

Thing > Organization

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:n4sch="neo4j://graph.schema#"
xmlns:n4ind="neo4j://graph.individuals#"
xmlns:rdf="http://ww.w3.0rg/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="neo4j://graph.individuals#73">
<rdf:type rdf:resource="neo&j://graph.schema#fLogiSupply" />
</rdf:Description>

<rdf:Description rdf:about="neo&j://graph.individuals#72">
<rdf:type rdf:resource="neo&j://graph.schema#tCompany" />
<n4sch:name>COMPLETE INTRAVENOUS ACCESS SERVICES INC</n&4sch:name>
</rdf:Description>

<rdf:Description rdf:about="neo4j://graph.individuals#73">
<rdf:type rdf:resource="neo&j://graph.schemattCompany" />
<n4sch:name>PHYSICIANS RX PHARMACY OF CLINTON, INC</n&4sch:name>
</rdf:Description>

<rdf:Description rdf:about="neo4j://graph.individuals#72">
<rdf:type rdf:resource="neo&4j://graph.schema#iTesting" />
</rdf:Descrintion>

Figure 11. Partial view of the RDF representation (in RDF/XML format) of the PA BioPharma
Knowledge Graph.

4.4.2. Schema.org Extension

Schema.org is a widely adopted public vocabulary comprising an extensive collection
of schemas for structured data. It facilitates machine readability and enhances semantic
understanding of content on the internet, significantly improving data discoverability and
search engine performance [60-62]. Developed collaboratively by major search engines
including Google, Microsoft, Yahoo, and Yandex, Schema.org provides definitions for com-
monly used entities such as organizations, places, products, services, and their associated
properties [63]. Currently, Schema.org vocabularies are used by over 10 million websites and
applications to make data more accessible and interpretable by intelligent systems. Figure 12
illustrates the rich, structured definitions available through Schema.org, specifically for the
tag “Organization” (https://schema.org/Organization, accessed on 13 May 2025) and its
associated property “address” (https://schema.org/address, accessed on 13 May 2025).

[more...]

An organization such as a school, NGO, corporation, club, etc.

Property Expected Type
Properties from Organization

Description

actionableFeedbackPolicy

CreativeWork or
URL

For a NewsMediaOrganization or other news-related Organization, a statement
about public engagement activities (for news media, the newsroom’s), including
involving the public - digitally or otherwise -- in coverage decisions, reporting

address

PostalAddress or

Physical address of the item.

and activities after publication.

Text
aggregateRating AggregateRating The overall rating, based on a collection of reviews or ratings, of the item.
— Person Alumni of an organization.
s Inverse property: alumniOf
AdministrativeArea or The geographic area where a service or offered item is provided. Supersedes
. . GeoShape or serviceArea.
azeaserve Place or
Text
award Text An award won by or for this item. Supersedes awards.
Brand or The brand(s) associated with a product or service, or the brand(s) maintained
B Organization by an organization or business person.
contactPoint ContactPoint A contact point for a person or organization. Supersedes contactPoints.
P CreativeWork or For an Organization (e.g. N iaOrganization), a 1t describing (in
CEEACTEIOROENNGY URL news media, the newsroom’s) disclosure and correction policy for errors.
Organization Arelationship between an organization and a department of that organization,
department also described as an organization (allowing different urls, logos, opening
hours). For example: a store with a pharmacy, or a bakery with a cafe.
dissolutionDate Date The date that this organization was dissolved.

address
A Schema.org Property

Thing > Property :: address
Physical address of the item.

Values expected to be one of these types.

ss

Used on these types

es

Figure 12. Rich definition of the tags “Organization” and “address” in Schema.org.
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To ensure semantic interoperability of the RDF representation of the PA BioPharma
knowledge graph, the generic Neo4j schema vocabulary is mapped to Schema.org vocabu-
lary. This process involves identifying a corresponding term in Schema.org for each node
label, property, and relationship in the original Neo4j schema. As a result, the Neo4j-specific
URI prefixes (e.g., neodj:/ / graph.xxx) are systematically replaced with Schema.org URIs
(e.g., https:/ /schema.org/xxx), producing a semantically enriched RDF graph that aligns
with publicly accepted web standards. Table 3 presents the mapping between Neo4j schema
elements and their equivalent Schema.org elements. A partial graphical view of the RDF
graph updated with Schema.org vocabulary is shown in Figure 13.

Table 3. Neo4j schema elements and their equivalent Schema.org schema elements.

Neo4j Schema Element Element Type Schema.org Schema Elements (Accessed on 13 May 2025)
Company label https://schema.org/Organization
Name property https:/ /schema.org/legalName
Type property https:/ /schema.org/affiliation
NAICS Code property https://schema.org/naics
City property https:/ /schema.org/location
Zip property https:/ /schema.org/postalCode
Works_With relationship https:/ /schema.org/seller

http://schema.org/naics 3254
15317
http://schema.org/postalCode

http://schema.org/seller s ora/
Pl 9 http://schema.org/location CANONSBURG
http://schema.org/affiliation

entity:1

http://schema.org/location

http://schema.org/affiliation

http://schema.org/legalName BigMfg
VIATRIS INC.
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

http://schema.org/naics » 3254
http://schema.org/legalName

ALACER CORP. http://schema.org/Organization

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

http://schema.org/postalCode

17013

Figure 13. Graphical representation of RDF triples mapped using Schema.org vocabulary.

It is important to note that both Neo4j’s LPG model and RDF are based on underlying
graph structures, which greatly simplifies the mapping process compared to data models
based on tabular (relational) or document-oriented schemas [63]. This structural similarity
ensures that the transformation between LPG and RDEF, especially when enhanced with
Schema.org, is not only seamless but also preserves semantic context and data fidelity.

The transition of the PA BioPharma knowledge graph to RDF format extends beyond
technical representation. RDF serialization aligned with Schema.org enables semantic
interoperability, allowing the graph to integrate across platforms and applications. This
alignment facilitates incorporation into Linked Open Data ecosystems, supplier discovery
portals, and other web-based platforms, thereby extending the utility of the knowledge
graph beyond its initial implementation. As a result, RDF serialization supports practical
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supply chain use cases such as enhanced partner discovery, cross-domain querying, and
dynamic integration with emerging datasets.

4.5. Interoperability Validation

To evaluate the interoperability of the RDF-based graph data model generated from the
Neo4j knowledge graph, the RDF serialization (comprising 16,086 triples) was imported into
GraphDB [64], a leading RDF triple store known for its native SPARQL support. The RDF
file was loaded via the GraphDB browser interface, with the loading process completing
in approximately 100 milliseconds. To assess interoperability, the same query scenarios
discussed in Section 3.1.3 were re-executed on the RDF graph within GraphDB. Each
Cypher query used in Neo4j was translated into a semantically equivalent SPARQL query
and implemented in GraphDB. The results obtained from GraphDB matched exactly with
those from the Neo4j implementation, both in terms of returned entities and relationships.
This confirms that the RDF representation preserved the structural and semantic integrity
of the knowledge graph, demonstrating cross-platform operability between Neo4j and
GraphDB. Figure 14 illustrates the query results for Scenario 2 (Section 3.1.3 (b)) as executed
within GraphDB.

GraphDB

@ Import

Q? Explore

SPARQL

Monitor
{é} Setup
® Help

C\ (7 Graph1 g en

SPARQL Query & Upd ate i Editoronly  Editor and results M
Raw Response Pivot Table Google Chart Download as

Name s City s Zip B

Figure 14. RDF Query results for Scenario 2, Section 3.1.3 (b) implemented using SPARQL in GraphDB.

5. Discussion and Implications

Global supply chain disruptions have accelerated the shift toward localized manufac-
turing models, highlighting the strategic importance of regional small- and medium-sized
enterprises (SMEs) in strengthening supply chain resilience. Despite this, large enterprises
often face significant challenges in identifying and evaluating local SME partners due
to fragmented data sources, lack of visibility, and limited access to reliable information.
Conversely, SMEs struggle to gain exposure and integrate into larger supply chains, often
hindered by resource constraints and limited networking opportunities.

This study presents a knowledge graph driven approach to model and analyze supply
chain networks, using the PA biopharma sector as a representative case. Implementation
of knowledge graphs using the Neo4j graph database effectively mapped SMEs and their
interrelationships, demonstrating how such a framework can enhance supply chain scout-
ing and diversification efforts. This aligns with prior research emphasizing the value of
network-based models for representing inter-dependencies and enabling resilience analy-
sis [15,16,19]. A core strength of the knowledge graph-based approach is its support for
complex, multi-hop querying, enabling users to uncover indirect relationships and hidden
collaboration opportunities that may not be apparent through traditional search tools. This
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directly addresses the gaps noted in existing SME discovery approaches [27,29,33]. The
flexibility of the graph database also enables real-time updates and schema evolution, al-
lowing the system to adapt as the supply chain network grows or changes, consistent with
supply chain theory on dynamic capabilities for resilience [9,10]. This demonstrates a clear
answer to RQ1: knowledge graphs can effectively represent SMEs and their relationships
within a regional supply chain, enabling dynamic information retrieval and discoverability
through multi-hop querying.

Moreover, by converting the knowledge graph into RDF format and aligning it with the
Schema.org vocabulary, the knowledge graph becomes interoperable with external systems,
facilitating broader integration and reuse across platforms. This feature addresses RQ2,
showing that semantic web technologies improve the interoperability of SME data, enabling
seamless exchange and integration across systems, and supporting cross-domain queries
and collaboration. Validation was performed through the inspection of representative query
results and relationship structures, confirming alignment with known supplier networks
based on publicly available company data.

To contextualize the contributions of this work, a comparison was drawn with publicly
accessible platforms such as Wikidata and Thomasnet. Although both platforms offer
useful SME-related information, several limitations were observed. Wikidata, despite
supporting complex SPARQL queries, suffers from partial and incomplete data coverage in
domain-specific contexts such as the biopharma sector and exhibits slower response times
compared to the proposed knowledge graph. Furthermore, Wikidata relies on manual
or semi-automated updates, resulting in delayed or outdated information [27,31]. It also
lacks support for complex, multi-conditional relationship queries and semantic enrichment
necessary for advanced supply chain analysis. Thomasnet, on the other hand, primarily
functions as a keyword-based directory, offering simple text search capabilities without
support for graph-based queries or multi-hop relationship discovery. Its database structure
does not facilitate exploration of indirect supplier connections or complex inter-enterprise
relationships. Crucially, neither Wikidata nor Thomasnet support semantic interoperabil-
ity or alignment with widely adopted vocabularies such as Schema.org, limiting their
integration potential within broader web-based or linked data ecosystems.

In contrast, the proposed knowledge graph framework delivers curated, domain-specific
data with flexible multi-hop querying, enabling discovery of complex inter-enterprise re-
lationships. Its near-instantaneous query response times (about 10 milliseconds even for
multi-hop queries) demonstrate a significant performance advantage. Additionally, its real-
time update capability and semantic interoperability via RDF serialization and Schema.org
alignment provide superior functionality and integration potential compared to existing
platforms. These findings build upon prior work advocating for domain-specific, seman-
tically interoperable supply chain knowledge graphs as enablers of SME integration and
resilience [27,29,34,42]. A structured comparison of these approaches is presented in Table 4.

Table 4. Comparison with Existing Platforms.

Feature Wikidata Thomasnet Knowledge Graph (This Work)
Data Coverage Partial, general-purpose Partial, industry listings Focused, domain-specific
Query Complexity High (SPARQL) Low (Keyword) Low to High (Cypher Queries)
Multi-Hop Querying Limited Not Supported Supported
Real-Time Updates No No Yes (for user-supplied data)

The RDF serialization and Schema.org alignment of the PA BioPharma knowledge
graph have significant implications for inter-enterprise data sharing and system integration.
By adopting widely recognized semantic web standards, the framework enables seamless
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exchange of structured, machine-readable data across organizations [34,36,42,44]. This
supports integration with external systems and open data repositories, enhancing partner
discovery, enabling cross-domain querying, and fostering dynamic collaboration across
supply chain networks. Such interoperability positions the knowledge graph as a scalable
foundation for shared supply chain intelligence ecosystems, aligning with artificial intelli-
gence (Al) and machine learning (ML) initiatives, platform-based manufacturing [65], and
enabling the development of digital supply chain twins.

While implementing a knowledge graph entails costs for software, infrastructure,
and maintenance, several factors make this approach increasingly accessible for SMEs.
Open-source graph database platforms like Neo4j Community Edition provide a cost-
effective starting point, and cloud-based graph services offer scalable, pay-as-you-go
options that lower upfront investment. Automation tools and prebuilt integration templates
can further reduce technical complexity and cost. Additionally, shared industry platforms or
consortium-based models present opportunities for SMEs to collectively access knowledge
graph capabilities at a fraction of individual cost. With growing availability of affordable
solutions and support models, the proposed framework is well-positioned to be a viable,
practical tool for SMEs aiming to enhance visibility, collaboration, and resilience within
regional supply chains.

Limitations

While the proposed knowledge graph framework demonstrates significant potential,
several limitations must be acknowledged to contextualize its current scope and applica-
bility. First, the approach relies heavily on the availability, quality, and diversity of input
datasets. This study uses a single primary data source (Mergent Intellect) chosen for its
reliability and domain-specific coverage of Pennsylvania’s biopharma sector. While this
ensures quality for the proof-of-concept, reliance on one source limits coverage, gener-
alizability, and the completeness of the knowledge graph. Missing or incomplete data
may impact relationship discovery and reduce robustness. Furthermore, automating data
ingestion remains a challenge that could impact scalability if not addressed through dedi-
cated pipelines, as noted in prior work [33,38]. Expanding data sources and developing
automated ingestion pipelines would strengthen coverage, resilience, and applicability.

Second, the targeted manual query validation was limited in scope, involving a
stratified random subset of enterprises. This approach served as a proof-of-concept to
confirm the feasibility and correctness of the knowledge graph’s querying methodology.
However, larger-scale and more exhaustive validation would improve the robustness and
generalizability of the conclusions. This could be addressed by developing automated
validation tools, which are not currently available.

While the current implementation of the knowledge graph framework demonstrates
robust performance on curated datasets, its scalability to larger networks warrants careful
consideration. For instance, a comprehensive evaluation of graph database systems across
three computing architectures and four scaling factors ranging from 1 GB to 1 TB revealed
that Neo4j, while efficient for smaller datasets, exhibits performance bottlenecks for com-
plex queries as graph size approaches 1 TB [66]. Although the study reported occasional
query timeouts in certain scenarios, Neo4j was generally able to execute queries within
approximately 1000 s at the largest tested scale [66]. These findings suggest that knowledge
graph frameworks can be extended to handle larger datasets; however, increasing the
scaling factor further, particularly beyond several million nodes and edges, may intro-
duce challenges related to query execution time, timeouts, and performance degradation.
Addressing these challenges may require alternative implementations, hardware optimiza-
tions, or architectural adjustments to ensure consistent performance as dataset sizes grow.
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Additionally, extending this framework to other sectors or regions would require address-
ing variations in data availability, domain-specific ontologies, and sector-specific regulatory
requirements, which could impact both scalability and applicability.

Additional limitations relate to data confidentiality and legal considerations, which
pose significant challenges for sharing RDF triples between platforms. Confidential busi-
ness information embedded in RDF graphs raises privacy concerns, necessitating measures
such as data anonymization, secure sharing protocols, and role-based access control. Fur-
thermore, legal and regulatory restrictions such as intellectual property rights and data
protection laws may limit RDF data exchange across organizations and jurisdictions. Ad-
dressing these issues is essential to fully realize the potential of RDF-based knowledge
graphs for cross-platform supply chain integration.

6. Conclusions

This study developed a knowledge graph-driven framework for modeling and analyz-
ing supply chain networks, using the Pennsylvania biopharma sector as a case study. The
approach demonstrated that a curated, domain-specific knowledge graph implemented in
Neo4j, converted to RDF, and aligned with Schema.org can significantly enhance visibility,
interoperability, and discovery of complex inter-enterprise relationships. Key strengths of
this work include support for multi-hop queries, real-time updates, and semantic interop-
erability, which together enable faster and deeper supplier discovery compared to existing
platforms such as Wikidata and Thomasnet.

Stakeholders stand to benefit in several ways: large enterprises gain improved access
to reliable, structured SME information for partner scouting and risk mitigation, while
SMEs gain enhanced visibility and integration opportunities in larger supply chains. This
addresses critical gaps in supply chain resilience and fosters dynamic collaboration, partic-
ularly in sectors where rapid adaptation to disruptions is essential.

While the findings provide strong proof-of-concept evidence, limitations in data scope,
scalability, and automated validation highlight opportunities for future work. Future
research should move beyond the manual proof-of-concept validation by developing
automated methods to improve scalability and accuracy. Extending the RDF-serialized
knowledge graph for integration with external systems such as Linked Open Data or
supplier discovery portals could further enhance interoperability and broaden its applica-
bility across platforms. Since Neo4j performance may degrade at extremely large datasets,
addressing scalability through optimization, alternative graph platforms, or distributed
architectures will be essential for large-scale adoption. Additional opportunities include ex-
panding data sources to improve generalizability across regions and industries, automating
ingestion pipelines to reduce manual effort, developing user-friendly query interfaces such
as natural language processing (NLP) to increase accessibility for non-technical users, and
integrating predictive analytics and Al-driven insights to enable proactive supply chain
risk management.
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Appendix A
Mathematical Definition and Example of Knowledge Graph Structure

A knowledge graph is a labeled property graph (LPG) comprising nodes (entities),
edges (relationships), and associated labels and properties that semantically enrich the data
for advanced querying and analysis. Mathematically, a knowledge graph can be expressed
as a tuple: G (V, E, s, p, ), where

V represents a finite set of nodes or vertices.

E represents the finite set of edges, where VN E = @.
s: E — (V X V) represents a total function.

p: (V' U E) — Labels represents a total function.

SIS

r: (V.U E) X Properties -+ Values represents a partial function

Figure Al illustrates a knowledge graph comprising two nodes (labeled as Company A
and Company B), each enriched with attributes such as company size, name, and location.
The relationship between the nodes includes details such as the quantity of materials
supplied from A to B.

Quantity : 1000

Small Manufacturer Large Manufacturer

Name: CENTURY THERAPEUTICS INC. Name: GLAXOSMITHKLINE LLC
City: PHILADELPHIA State: PA

Figure A1. Knowledge graph comprising two nodes and their attributes.

The Knowledge graph shown in Figure Al consists of the following elements:

V = {vq, v} p(v1) = “Small Manufacturer” p(vy) = “Large Manufacturer”
E = {e, e} p(e1) = “Works With” p(ez) = “Supplies”

s(e1) = (va, v1)  s(e2) =(v1, v2)

r(vi, “Name”) = “CENTURY THERAPEUTICS INC.”

r(vy, “City”) = “PHILADELPHIA”  r(vp, “Name”) = “GLAXOSMITHKLINE LLC”
r(vy, “State”) = “PA” r(ep, “Quantity”) = 1000

Appendix B
Formal RDF Definitions and Serialization Examples

Assume three disjoint infinite sets L, B, W corresponding to the set of all Literals, Blank
Nodes (BNodes) and URIs (Uniform Resource Identifiers), respectively. A URIis a unique
link to a web resource, Blank Node is any anonymous resource that has no URI label, and
Literal is anything with a value associated with it such as string, number, currency, date,
etc. An RDF triple can be represented using a tuple t = (s, p, 0) where s € W U B is the
subject, p € W is the predicate, o € L U B U W is the object. Therefore, a subject can be
a Blank Node or a URI, predicate can be a URI, and object can be a Blank Node, URI or
a Literal. An example of an RDF representation (or serialization) in Turtle data format is
shown below:

@prefix sch: <http://www.example.org/schema/>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix xmls: <http://www.w3.0rg/2001/XMLSchema#>.
<entity:1>
a sch:Company;
sch:Works_With <entity:2>;


http://www.example.org/schema/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2001/XMLSchema#
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sch: Zip_Code

sch: Works_With

sch:City “CARLISLE”;
sch:Zip “17013” “*xmls:long.

<entity:2>

a sch:Company;
sch:City “CANONSBURG”;
sch:Zip “15317” “*xmls:long.

In this RDF code snippet, the first three lines denote the prefix definitions and start
with @prefix. A prefix definition (e.g., sch) is used as a placeholder for lengthy URIs (e.g.,
http:/ /www.exmple.org/schema/, (accessed on 13 May 2025)). Therefore, a full URI like
http:/ /www.exmple.org/schema/City (accessed on 13 May 2025) can be abbreviated as
sch:City using the prefix definition. The BNodes are denoted by __: followed by a number,
e.g., entity:1. The BNodes do not have an URI but have a local node index (NodelD) for
reference purposes and this index is denoted by the number assigned to the Blank Node.
Finally, the Literals are classified into two types: (i) simple literal, which is a string (e.g.,
“CANONSBURG”) and (ii) a typed literal which comprises a datatype URI along with the
string (e.g., “15317” “"xsch:long). There can be many possible combinations of RDF triples
(s, p, 0); in the above code snippet depicts three kinds of valid RDF triples: (i) (Blank Node,
UR], Literal), e.g., (entity:1, sch:City, “CARLISLE”), (ii) (Blank Node, URI, Blank Node),
e.g., (entity:1, sch:Works_With, entity:2), and (iii) (Blank Node, URI, URI), e.g., (entity:1,
rdf:Type, sch:Company).

The RDF triples can be represented as a graph to visualize the connection between the
subject, predicate and object effectively as shown in Figure A2. Here, the nodes represent
the subject and/or the object and the edges represent the predicate.

rdf: Type

CARLISLE

17013 ~~xmls:long

sch: City CANONSBURG

sch: Zip_Code

15317 ~~xmls:long

Figure A2. Graphical representation of RDF triples.

In Figure A2, the URI nodes and BNodes are represented by elliptical nodes. This
can be either “subject” or “object” elements of the RDF triple. The Literal nodes, which
are invariably the “object” elements, are represented by rectangular nodes. The Literal
values can either be a text (such as the City name: “CANONSBURG”) or a number (such as
the Zip: “15317”). The “predicate” elements are represented by the arrows or connections
and denote the property of the nodes (such as Name, City, Zip represented as a URI) or
relationships between nodes (such as Works_With relationship represented again as a URI).
This means that in an RDF representation, the data are broken down to the maximum
possible extent, separating out the entities, their relationships and properties, and the
literal values.


http://www.exmple.org/schema/
http://www.exmple.org/schema/City
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