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Abstract: Background: Each disaster has its specific resource requirements, varying based
on its size, location, and the affected region’s socio-economic level. Pre-disaster planning
and post-disaster dynamic resource allocation including material and human resources
is essential. Methods: To address the resource allocation challenges in disaster response,
a multi-objective two-stage stochastic programming model is developed for search and
rescue and first aid activities. The model aims to minimize the total unmet human demand,
the number of resources transferred between regions, and the total unmet material demand.
The proposed model was solved for a real case of an expected earthquake in Istanbul’s
Kartal district. The augmented epsilon constraint 2 algorithm was employed using the
CPLEX solver. A sensitivity analysis was made. Results: Most of the unmet demand occurs
in the first period. After that period, the unmet demand decreases with interregional
transfers and additional resources. The model is robust to scenario probability and penalty
value changes in the objectives. Conclusions: This is the first study that simultaneously
and dynamically allocates renewable and non-renewable material resources and human re-
sources, including the official rescue units and volunteers, for disaster response. Volunteers’
inclusion in teams considering their training and quitting behavior are unique aspects of
the study.

Keywords: humanitarian aid; disaster; multi-objective optimization; resource allocation;
stochastic programming; volunteer management

1. Introduction
A disaster is defined as “a sudden, calamitous event that seriously disrupts the

functioning of a community or society and causes human, material, and economic or
environmental losses that exceed the community’s or society’s ability to cope using its
resources”. by the International Federation of Red Cross and Red Crescent Societies (IFRC).
Hazards are natural and inevitable, but they escalate into disasters only when a community
lacks the necessary resources or organizational capacity to withstand the impact or when
its population is vulnerable due to poverty or social disadvantages, as stated in the World
Disasters Report 2020 [1]. Communities must reduce risks and become more resilient,
preventing natural events from causing disasters by being prepared. The recent epidemics
and pandemics crises experienced between 2020 and 2022 once again reveal the importance
of resource planning in disaster management.

The Marmara earthquake, which occurred on 17 August 1999 (Mw = 7.6), resulted in the
unfortunate loss of approximately 17,000 people and injured 50,000 people; there had never
been such a devastating earthquake in Turkey or the world until 2023. On 6 February 2023,
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Turkey again faced the harsh reality of an earthquake. The first earthquake struck
Kahramanmaraş with a magnitude of 7.7, and approximately nine hours following the
initial earthquake, a second earthquake with a 7.5 magnitude occurred in the region.
This caused widespread destruction not only in Kahramanmaraş but also in at least
ten other provinces along the fault line, extending to Syria. The Turkish Disaster and
Emergency Management Presidency (AFAD) reported approximately 45,000 fatalities and
110,000 injuries [2]. Roads were destroyed by the earthquake’s effects or closed due to
heavy snowfall, making it impossible to reach the disaster area. Since the earthquake
affected a considerable region, the provinces in the nearby areas could not help each other.

Turkey is in a seismic belt, and a 7.5 magnitude earthquake is expected to occur in the
Marmara region, which encompasses Istanbul. This earthquake can devastate more than
60 percent of the region’s production, industry, and trade, making it crucial to develop a
humanitarian logistics network to mitigate the consequences [3]. However, designing such a
network is challenging, as humanitarian supply chains are more complex and unpredictable
than traditional ones and are affected by unreliable and incomplete information about
delivery times, demand levels, and locations [4]. Therefore, resource planning in disaster
areas must be focused on optimizing the region’s resources and minimizing the need for
external assistance.

The resource allocation problem is the problem of prioritizing and allocating a set
of resources to a set of tasks. In a disaster, where many stakeholders will perform pre-
determined tasks, the resource allocation objectives should be based on three pillars,
according to Beamon and Balçık [5]. Both human resources and material supplies must be
delivered to the affected individuals as soon as possible (effectiveness) by using optimum
resources (efficiency) and without forgetting to consider fairness (equity). This is only possi-
ble if pre-disaster preparedness planning and response planning are carefully integrated [6].
Preparedness planning includes pre-locating resources, establishing a distribution network
structure, and securing supplies. Response planning consists of delivering resources to
the demand points, procuring extra supplies in case of unmet demands and outlining
the strategies for procuring these resources. Coordinating disaster relief poses various
challenges, including the chaotic post-disaster environment, involvement of numerous
actors, and limited resources [5]. These resources can be classified as human resources
(including rescue or aid teams and volunteers), renewable (such as equipment), and non-
renewable (consumable) material resources. The FEMA (Federal Emergency Management
Agency) aims to coordinate search and rescue teams and essential material resources during
disasters and identify and provide any additional resources needed. This enables a quick
response to disasters, the efficient use of resources, and enhanced community safety [7].

Human resources can be classified as professional paid aid workers and volunteers.
Aid workers (also known as development workers or humanitarian aid workers) are
professionals who help people affected by disasters. An aid worker is mainly responsible for
assessing emergencies, distributing supplies, building relationships with local communities
and staff, and coordinating volunteers.

Shin and Kleiner define a volunteer as “an individual who offers him/herself to
a service without an expectation of monetary compensation” [8]. In the aftermath of a
disaster, even if the system is appropriately planned, volunteers reach the disaster area
first. Moreover, survivors usually become volunteers and become more active and co-
operative than outsiders [9]. Between September 2020 and 2021, approximately 23.2%
of Americans, or 60.7 million people, formally volunteered for organizations. These vol-
unteers contributed approximately 4.1 billion hours, representing an economic value of
USD 122.9 billion [10]. Likewise, according to Garcia et al., volunteers carry out 90 percent
of the humanitarian work, and 95 percent of disaster relief workers are volunteers [11].
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The coordination of volunteers differs from that of professional and paid relief work-
ers [12]. In emergencies, teams must quickly assess the situation and provide necessary
interventions. Volunteers may have received specific training or be spontaneous individu-
als who live in or near the affected areas, including disaster survivors, and sometimes need
to be educated. Spontaneous volunteers account for 75% of search and rescue efforts [13].
Despite the invaluable contributions of volunteers in all aspects of post-disaster relief
and recovery efforts, one of the biggest problems that still needs to be considered is the
mismanagement of volunteers. Sometimes, the unconscious and uncoordinated crowd
may hinder the rescue units and volunteers from completing their tasks.

The most crucial point in volunteer management is assigning volunteers to tasks
appropriate to their preferences and skill levels. One of the irreversible consequences of
bad management is serious problems, such as the appointment of fewer volunteers than
necessary for specific tasks and a workforce surplus in some regions [14]. To mitigate these
issues, procedures should be developed to systematically allocate these volunteers to the
tasks after a disaster.

In post-disaster humanitarian logistics, various resource types must be effectively
managed for efficient logistics operations, including goods delivery, casualty evacuation,
and labor transfer [15]. During the preparedness phase, various emergency supplies are
pre-located in humanitarian supply chains, including renewable resources (RRs) and non-
renewable resources (NRRs) like medical supplies [16]. In disaster management, RRs, such
as human resources and equipment, can be used repeatedly, while NRRs cannot be reused.

This study focuses on developing a multi-objective stochastic programming model
for humanitarian disaster relief chain coordination integrated with official rescue units
and volunteers considering multiple regions, RRs, and NRRs. It aims to ensure optimum
human and material usage. For this purpose, we proposed a multi-objective stochastic
model for the dynamic resource allocation planning for disaster response. The objective
functions of the model are as follows:

• Minimizing the total expected unmet human resource demand.
• Minimizing the total number of resources expected to be transferred between regions.
• Minimizing the expected unmet RRs and unmet NRRs in all disaster regions.

The scope of this work includes the immediate delivery of resources to the disaster
area, conducting search and rescue operations, and providing first aid to disaster victims.
These activities were chosen because they are essential and time-sensitive tasks crucial in a
disaster’s immediate aftermath.

This study considers disaster scenarios involving different numbers of victims used to
estimate the resources needed during rescue from debris, the transfer of the victims to a
safe area, first aid treatments according to triage, and their transfer. Hence, the requirement
for rescue units and volunteers in different disaster scenarios and interregional labor
and resource transfer planning is performed under uncertainty in this study. Moreover,
the model was applied to a sub-district of Istanbul. In the model, RRs and NRRs were
pre-positioned before the earthquake, and it was decided that volunteers were to be
trained in advance. After the earthquake, volunteers, rescue units, RRs, and NRRS were
dynamically assigned to respond to a significant earthquake.

An important aspect of this study is allocating human resources based on the skills
of different professions. In particular, volunteers’ employment in disasters is a unique
aspect of this study since volunteers are usually a significant resource. As the model
established in this study addresses human needs with different skills and capabilities, it is
flexible enough to be used in other post-earthquake activities. In addition, the proposed
stochastic programming model is novel since human resources, including volunteers and
official rescue teams for first aid and search and rescue tasks, as well as the equipment
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and consumable materials required for these tasks, are planned in an integrated way for
pre-disaster and post-disaster stages simultaneously for the first time in the literature. The
training of the volunteers and pre-positioning of the material resources are decided before
the disaster, and dynamic resource assignments and transfers are decided post-disaster,
which reveals the strength of our model in pre-disaster and post-disaster resource allocation.
In addition, volunteers’ training before disasters and the consideration of their quitting
behavior are unique aspects of our study.

For effective disaster management, it is necessary to plan the pre-disaster (risk mitiga-
tion) and post-disaster (response) events together because these are interrelated problems
that mutually affect each other. In our study, we discussed the decisions to be taken before
the disaster and the decisions to be taken after the disaster using our two-stage stochastic
programming model. The model will be valid for any situation where the scenarios cover
the disaster situation that will occur. Regional disaster management centers can implement
the decisions taken in constant information exchanges with other management centers.

This paper is organized as follows: The literature is comprehensively reviewed in the
next section. In Section 3, model assumptions, multi-objective mathematical models, and
the solution methodology are proposed. Section 4 explains the computational study of a
real case in Istanbul. Later, in Section 5, the results of the case study are discussed in detail,
and the managerial implications are explained. Finally, the conclusion and future studies
are presented in Section 6.

2. Literature Review
Humanitarian aid logistics has garnered significant interest, particularly in recent

years. Although the terms humanitarian logistics and disaster management are often used
interchangeably in the literature, there are slight differences. In contrast, humanitarian
logistics covers all activities. A disaster is a situation where local resources are insufficient
to cope. The main areas of work in humanitarian logistics are facility location, network
flow, and inventory management, and the reader may refer to detailed studies from the
literature [17–20]. This section will discuss the studies associated with the resource alloca-
tion problem in disasters, including material, equipment, and human resources. Studies
dealing with the volunteers are especially examined as well.

By the end of October 2024, we found 53 studies in Scopus that included the keywords
“Resource Allocation” and “Humanitarian Logistics” and 24 studies that included the
keywords “Volunteer” and “Humanitarian Logistics”. There were only two studies that
included all three keywords (resource allocation, humanitarian logistics, and volunteer)
at the same time [11,21]. We analyze the mentioned resource allocation literature in the
Human Resource Allocation and Material Resource Allocation Subsections.

2.1. Human Resource Allocation

One humanitarian logistic challenge that needs more attention is the difficulty of
coordinating numerous human resources effectively. Only 6% of previous studies are
allocation problems, while other humanitarian logistics studies are location and routing
problems [11]. Although studies on resource allocation exist, their scope is primarily related
to equipment and tools, and, except for a few articles, the issue of human resource allocation
is rarely touched upon.

Falasca et al.’s study was one of the first multi-objective models of volunteer manage-
ment in humanitarian aid [4]. They developed a multi-criteria optimization model to assign
volunteers to tasks. Falasca and Zobel [22] provided a new approach to voluntary man-
agement, using decision-maker preferences and information in the voluntary assignment
process to examine tradeoffs between conflicting objectives.
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Lassiter et al.’s study [14] minimized the total unfulfilled task demands for different
task groups, considering the uncertainty of the demand and voluntary task matching,
which aligns the skill levels of tasks and the volunteers. In Mayorga et al.’s [23] study,
human resource planning was addressed, considering the uncertainty in voluntary arrivals
and departures to represent voluntary behaviors.

Garcia et al.’s MIP model addressed the problem of distributing tasks to volunteers
and other RRs and NRRs, especially in severe situations [11]. The research highlights
notable distinctions between available voluntary resources and requests due to frequent
fluctuations in requirements. Abualkhair et al. [1] optimized help center performance based
on beneficiary, donor, and voluntary idle times measurements. The system is analyzed
in an agent-based simulation environment to evaluate the effectiveness of spontaneous
volunteers in the queues of various volunteer policies.

Chen et al. [24] suggested a new perspective on human resource allocation problems
by introducing two-sided decision-making models considering rescue tasks and volunteers’
individual choices. Before dispatching, volunteers were grouped based on gender, profes-
sional skills, physical ability, and practical experience to form different volunteer teams in
the study.

While relatively few studies explicitly focus on aid workers, some address rescue
units and urban search and rescue (USAR) teams. Chen and Miller-Hooks [25] proposed
a multi-stage stochastic programming model to maximize the number of people rescued
while dynamically deploying USAR teams to disaster areas partially or wholly due to
need and shortage. Zhang et al. [26] developed a multi-stage dynamic allocation model for
organizing rescue teams and suggested specific disaster scheduling strategies. Similarly,
the algorithm for the scheduling of relief teams (ASRT) has been approached as a routing
and scheduling problem by Wex et al. [27] and Nayeri et al. [28]. Nayeri et al. [29] built a
decision support model for USAR teams to allocate and schedule the rescue units as an
unrelated parallel machine scheduling problem considering time windows for incidents.
Rodríguez-Espíndola [30] developed systems for emergency preparedness with the in-
volvement of multiple organizations, which shows how a lack of collaboration causes a
significant performance decrease in the system. Shin et al. [31] proposed a repair crew
problem that minimizes the last transportation time of the entire demand nodes. In
Sarma et al.’s [32] study, the model aimed to minimize the total cost and time of the
relief logistics operation with the collaboration of resource collection by the NGOs. In their
proposed model, Li et al. [33] considered multiple disaster areas and departure places to
reflect the best rescuers’ effects, preferences, and competence degrees. Satisfaction degrees
are calculated depending on the intention (preference list), competence degrees, profes-
sional skills of rescuers, and requirements of tasks. Rauchecker and Schryen [34] proposed
a model for scheduling rescue units for disaster incidents, minimizing the (weighted) sum
of completion times. An exact branch-and-price algorithm was used to solve the NP-hard
problem. Çağlayan and Satoğlu [35] proposed a multi-objective, two-stage stochastic pro-
gramming model for casualty transportation systems in large-scale disasters, considering
the deterioration of the casualties’ condition. They developed a data-driven decision sup-
port tool for managing ambulances and hospitals. Öksüz and Satoğlu [36] proposed a
post-disaster emergency medical response system that addresses the deterioration of the
conditions of disaster victims. This multi-objective stochastic model includes the location
planning of medical centers, casualty allocation, and medical staff assignment.

2.2. Material Resource Allocation

The most suitable inventory and management strategies for relief commodities differ
based on the commodities’ specific attributes [16]. Sometimes, several emergency supplies
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(such as tents, blankets, and kitchenware) are packaged in standard kits/pallets and
considered a single item [37]. These kits are prepositioned in critical locations for quick
mobilization during emergencies.

The prepositioned resources for Hurricane Rita in 2005 were insufficient or conve-
niently located, leading to a shortage of supplies in the affected areas. With the lesson
learned, it has been noted that appropriate prepositioning for various disasters helps signif-
icantly improve disaster response [6]. On the other hand, even if medical kits are delivered
on time, patients may not be treated appropriately because no first aid teams are available
to use these kits to treat the affected people. Learning from past experiences and focusing
on synchronizing RRs and NRRs for effective disaster management is essential to address
these challenges.

Scholars have suggested different models and approaches to efficiently organize
and distribute crucial relief supplies during emergencies. Tzeng et al. [38] developed a
fuzzy multi-objective programming model for emergency relief distribution to decrease
expenses, minimize travel duration, and maximize satisfaction to improve the effectiveness
and fairness of delivering relief supplies to needy areas. Rawls and Turnquist [39] built
a model for planning shelters after a disaster. The study highlights the complexity of
decision-making in preparing for natural disasters, including determining the locations and
capacities of emergency distribution centers and allocating inventories of relief supplies.
Rezaei-Malek et al. [40] proposed a model that combines location–allocation and distri-
bution planning by identifying the most suitable location for storing and distributing
perishable commodities in the pre-disaster phase. Pradhananga et al. [6] proposed scenario-
based, two-stage stochastic programming to deliver supplies to disaster victims in a timely
and cost-effective manner while minimizing social costs. Yu et al. [41] aimed to simultane-
ously improve resource allocation efficiency, effectiveness, and equity by considering the
human suffering caused by delivery delays in the proposed model.

Rodríguez-Espíndola et al. [42] suggested a bi-objective dynamic model to support
disaster responses involving using human and material resources for multiple organi-
zations, aiming to investigate the tradeoff between resource usage and service levels.
Sabouhi et al. [43] propose a mixed-integer linear programming model for the evacuation
and distribution process during emergencies by simultaneously planning vehicle routes
and schedules to minimize the total arrival time of vehicles at affected areas, shelters,
and distribution centers. Ghasemi et al. [44] developed a mathematical framework in-
corporating various factors, including resources, periods, and uncertainties, to minimize
costs associated with facility selection, distribution, and inadequate relief materials in
earthquake response. Shao et al. [45] analyzed the supply and demand of relief materi-
als for various types and severities of disasters, offering detailed lists of comprehensive
relief requirements. Shaw et al. [46] proposed a multi-objective optimization model for
optimal distribution center placement, aiming to maximize service coverage while mini-
mizing cost and time, incorporating triangular type-2 fuzzy numbers to handle uncertainty.
Das et al. [47] developed a multi-objective location–allocation model employing fuzzy logic
for the uncertain parameters.

In addition, some studies recommend pre-positioning inventory, service outsourcing,
and delivery option contracting in relief material supply chain management to ensure
the availability and flexibility of the optimal quantity of relief commodities to be ordered
before and after a disaster [48,49]. This is the first study in which volunteers, official rescue
units, and renewable and non-renewable material resources are planned and dynamically
assigned, and resource transfers between regions are made. Another contribution of this
study to the literature is that it dynamically assigns all these resources synchronously,
addressing both pre-disaster and post-disaster, different regions and periods, through our
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two-stage stochastic programming model considering uncertainty in many parameters
such as demand, resources, and transport durations.

Our study significantly contributes to volunteer human resources planning for disaster
response. We have proposed a hybrid structure that includes volunteers in the search and
rescue and medical teams for disaster response and training the volunteers in advance
before the disaster. In addition, the prepositioning of all renewable and non-renewable
resources before the disaster and the allocation and transfer decisions of these material
resources after the catastrophe are carried out, and the human resource (teams) allocations
are made. This novel approach has never been studied before. In addition, we conducted
a comprehensive study on search and rescue and first aid tasks, including the sub-tasks
these activities consist of, the workforce requirements, and the expected duration. This
application adds to the literature and provides a comprehensive guide for practitioners in
dynamic resource management in major disasters.

3. Methodology
This section defines the problem and proposes a dynamic resource allocation system.

Then, the assumptions, the multi-objective stochastic programming model, and the solution
methodology are proposed and explained in the following subsections.

3.1. Problem Definition

Following large-scale earthquakes, existing resources are not capable of meeting the
needs. Therefore, additional resources are required. The selection of these resources and
how they are delivered are also important.

Before the disaster, resources are planned according to the expected value estimated
based on the scenarios. After the disaster, according to the actual scenario, the demands
in the disaster zones are realized, and additional resources and transfers are decided. The
determination of demands for the pre-disaster and post-disaster resource assignments made
accordingly is explained in the flow chart in Figure 1. As Figure 1 implies, in the pre-disaster
stage, the expected demand for human resources (including rescue and first aid teams and
volunteers) and renewable and non-renewable resources is estimated based on all scenarios.
According to these, the materials are pre-positioned, and the volunteers’ training plans are
made. In the post-disaster stage, according to the actual demand, dynamic assignments
and transfers of human and material resources and additional resource allocations from
outside the disaster zones are made periodically. Regional disaster management centers
responsible for disaster preparedness and responses make these decisions. The bold arcs
represent the actual or realized demand.

A dynamic resource planning study is carried out for search and rescue and first aid
activities, focusing on saving human life in order of importance. Each activity is divided
into tasks to define workforce requirements, and the required task after an earthquake is
presented in detail in Figure 2. There are eight tasks that need to be completed after an
earthquake for search and rescue and first aid purposes, as shown in the figure. Those
pertaining to the search and rescue group are rescuing from the surface (S1), rescuing from
debris (S2), dispatching to a safe zone (S3), dead victim removal (S4), and triage of the
victims (S5). In addition, first aid tasks for minimal casualties (T1), delayed casualties (T2),
and immediate casualties (T3) must be provided. These tasks are also shown in Figure 2.
All these tasks need different amounts of human and material resources that vary according
to the nature of the task.



Logistics 2025, 9, 41 8 of 30Logistics 2025, 9, x FOR PEER REVIEW 8 of 30 
 

 

 

Figure 1. Pre-disaster and Post-disaster demands and resource requirements. 

Renewable, non-renewable, and human resources must be simultaneously planned 
during the pre-disaster prepositioning, post-disaster assignment, and transfer decisions 
in the model because the considered tasks require all of them simultaneously. Without 
any of these, the tasks cannot be performed. This requirement is reflected in the proposed 
mathematical model. Figures 1 and 2 also imply that these resources are required for the 
tasks simultaneously. 

Just as search and rescue missions are prioritized over food distribution in the imme-
diate aftermath of a disaster, missions can also be prioritized based on their importance 
[14]. In this regard, it can be concluded that the value of the loss that will occur if a task is 
not completed will vary depending on its vitality. The model reflected this situation as the 
penalty cost of unmet demands. Casualties are classified based on NATO’s triage rule into 
minimal (requiring outpatient treatment), delayed (requiring short-term hospital treat-
ment), and immediate (requiring long-term hospital treatment). This classification affects 
the necessary number of human resources for medical treatment. 

The first 72 h after the earthquake are critical in saving the injured before their con-
ditions deteriorate further. Therefore, the study was conducted considering this time win-
dow for disaster response. This time window was split into four parts, namely 0–12, 12–
24, 24–48, and 48–72 h, and was considered in this way throughout this study. 

Rescue units consist of government-appointed employees with a variety of roles and 
professions. On the other hand, volunteers can either spontaneously come forward or 
have acquired specific skills through training. Rescue units come together at the disaster 
management center (DMC) immediately after the disaster and are transferred to the re-
quired region in line with the needs. Additional human resources are also sent to disaster 

Figure 1. Pre-disaster and Post-disaster demands and resource requirements.

Logistics 2025, 9, x FOR PEER REVIEW 9 of 30 
 

 

areas through DMCs in the following periods. In the first period, volunteers start working 
in the predetermined disaster areas. Then, they are transferred to the required areas in 
subsequent periods, just like rescue units. 

 

Figure 2. Search and rescue and first aid tasks required after an earthquake. 

The possibility of road failure is also considered during these transfers. The model 
was established so that additional rescue units and volunteers could reach the disaster 
area from outside and start working from the second period. In disaster management ac-
tivities, rescue units and volunteers working in disaster areas may leave their jobs due to 
various problems. In our study, different rates of quitting behaviors of volunteers and 
rescue units were determined in their transition to the next period. Regarding material 
resources, the aim is to classify resources as renewable (RR) and non-renewable (NRR) 
and plan them accordingly so they can be assigned synchronously with human resources 
according to task type and requirement. While interregional transfers can be made for 

Figure 2. Search and rescue and first aid tasks required after an earthquake.



Logistics 2025, 9, 41 9 of 30

Renewable, non-renewable, and human resources must be simultaneously planned
during the pre-disaster prepositioning, post-disaster assignment, and transfer decisions
in the model because the considered tasks require all of them simultaneously. Without
any of these, the tasks cannot be performed. This requirement is reflected in the proposed
mathematical model. Figures 1 and 2 also imply that these resources are required for the
tasks simultaneously.

Just as search and rescue missions are prioritized over food distribution in the immedi-
ate aftermath of a disaster, missions can also be prioritized based on their importance [14].
In this regard, it can be concluded that the value of the loss that will occur if a task is
not completed will vary depending on its vitality. The model reflected this situation as
the penalty cost of unmet demands. Casualties are classified based on NATO’s triage
rule into minimal (requiring outpatient treatment), delayed (requiring short-term hospital
treatment), and immediate (requiring long-term hospital treatment). This classification
affects the necessary number of human resources for medical treatment.

The first 72 h after the earthquake are critical in saving the injured before their condi-
tions deteriorate further. Therefore, the study was conducted considering this time window
for disaster response. This time window was split into four parts, namely 0–12, 12–24,
24–48, and 48–72 h, and was considered in this way throughout this study.

Rescue units consist of government-appointed employees with a variety of roles and
professions. On the other hand, volunteers can either spontaneously come forward or have
acquired specific skills through training. Rescue units come together at the disaster man-
agement center (DMC) immediately after the disaster and are transferred to the required
region in line with the needs. Additional human resources are also sent to disaster areas
through DMCs in the following periods. In the first period, volunteers start working in the
predetermined disaster areas. Then, they are transferred to the required areas in subsequent
periods, just like rescue units.

The possibility of road failure is also considered during these transfers. The model
was established so that additional rescue units and volunteers could reach the disaster area
from outside and start working from the second period. In disaster management activities,
rescue units and volunteers working in disaster areas may leave their jobs due to various
problems. In our study, different rates of quitting behaviors of volunteers and rescue units
were determined in their transition to the next period. Regarding material resources, the
aim is to classify resources as renewable (RR) and non-renewable (NRR) and plan them
accordingly so they can be assigned synchronously with human resources according to task
type and requirement. While interregional transfers can be made for renewable resources
and rescue teams starting from the second period, transfers for NRRs are not allowed.

The following assumptions are made in the model:

• Each region’s resource requirements are in the center of the neighborhood, and re-
sources are transferred to these locations.

• For each region, casualties rescued from the surface in that area originate from slightly
and moderately damaged buildings, and the casualties that need to be rescued from
the debris are from heavily damaged buildings.

• A health worker treats patients whose condition is minimal and who can be treated on
an outpatient basis in a place close to the triage area without transferring them to the
hospital. Other injured people are transferred to the hospitals.

• Volunteers can work on predetermined tasks.
• Skilled volunteers who received volunteer training from certain occupational groups

can immediately start working at the scene in case of disaster and fulfill some tasks.
However, the DMC sends rescue units to disaster areas.
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• A team, which consists of the people required for a task, will not disperse until the
task is completed.

• It is assumed that there is no vehicle resource constraint for the transfer
between regions.

3.2. Proposed Multi-Objective Stochastic Programming Model

A multi-objective, two-stage stochastic programming model was developed for re-
source allocation in humanitarian relief chain coordination. The model is integrated with
volunteers and official rescue units and considers multiple regions, RRs, and NRRs.

Index and sets:
t Tasks (t∈T)
w Professions (w∈W)
s Possible scenarios (s∈S)
p Periods (p∈P)
b Regions/disaster areas (b∈B)
r Renewable resource types (r∈R)
n Non-renewable resource types (n∈N)
T Set of tasks
W1 Set of professions that only volunteers operate (W1∈W)
W2 Set of professions that only rescue units operate (W2∈W)
W Set of professions
S Set of scenarios
P Set of periods
R Set of resources
N Set of non-renewable resources

Deterministic Parameters:
Vpwpb: Volunteer with profession (w) number already trained to perform to be de-

ployed in disaster region (b) in period (p).
RUwp: Rescue unit with profession (w) number to be deployed in period (p).
TCw: Training cost of volunteers to perform profession (w).
Pentp: Penalty cost for unmet demand of task (t) in period (p).
ttimebb′ : Traveling time from region (b) to region (b′).
Reqtw: Human resource requirement from profession (w) to accomplish task (t).
RReqtr: The number of renewable resources (r) required to accomplish task (t).
NRReqtn: The number of non-renewable resources (n) required to accomplish task (t).
d f reqp: The frequency of distribution for non-renewable resources in period (p).
PLp: Length (duration) of period (p).
Vmaxp: Allowed working hours for volunteers in period (p).
RUmaxp: Allowed working hours for rescue units in period (p).
Nrr: The existing total number of renewable resource (r) in the disaster area at

the beginning.
Nnrn: The existing total number of non-renewable resource (n) in the disaster area at

the beginning.
usgn : The ratio of the usage time of non-renewable resource (n) to the total duration

of the task in which it is used.
Uncertain Parameters:
Prs: Occurrence probability of scenario (s).
Castpb

s: Casualty number, requiring task (t) in disaster region (b) in period (p) accord-
ing to scenario (s).

duras
t : Duration of task-t according to scenario (s).
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l f bb′
s: Traveling time increase ratio of the road (b to b′) according to scenario (s) due to

road failures.
Dwpb

s: Demand for profession (w) in the disaster region (b) in period (p) according to
scenario (s) (man × hours).

Dwpb
s = ∑

t∈T
Castpb

s × Reqtw × durat
s; (w ∈ W), (∀p ∈ P), (∀b ∈ B), (∀s ∈ S)

RDrpb
s: Demand of renewable resource (r) in period (p) in region (b) according

to scenario (s).

RDrpb
s =

∑t∈T Castpb
s × RReqtr × durat

s

PLp
; (∀r ∈ R), (∀p ∈ P), (∀b ∈ B), (∀s ∈ S)

NRDnpb
s: Demand of non-renewable resource (n) in period (p) in region (b) according

to scenario (s).

NRDnpb
s = ∑

t∈T
Castpb

s × NRReqtn × dfreqp; (n ∈ NR)(p ∈ P)(∀b ∈ B)(∀s ∈ S)

Scalars:
Pc3: The penalty–cost ratio for the unmet demand for renewable resources relative to

the unmet demand for non-renewable resources.
Vq: Volunteer quitting rate.
RUq: Rescue unit quitting rate.
Ratv: Ratio of the number of additional volunteers to be accepted to the disaster area

to the current number of volunteers.
Ratr: Ratio of the number of additional rescue units to be accepted to the disaster area

to the current number of rescue units.
Decision variables:
First-Stage Decision Variables:
VExpwb: Additional volunteer number to be trained before the disaster to meet the

demand in profession (w) to be deployed in the disaster region (b).
MRrb: Amount of renewable resource (r) prepositioned to meet the demand in disaster

region (b).
MNRnb: Amount of non-renewable resource (n) prepositioned to meet the demand in

disaster region (b).
Second-Stage Decision Variables:
UDwpb

s: Unmet demand of human workforce with profession (w) in region (b) in
period (p) according to scenario (s) (man-hour).

VAwpb
s: Volunteer with profession (w) that is assigned to region (b) in period (p)

according to scenario (s) (man-hour).
RUAwpb

s: Rescue unit with profession (w) that is assigned to region (b) in period (p)
according to scenario (s) (man-hour).

Vaddwpb
s: Additional volunteer number with profession (w) to region (b) from outside

of the disaster area in period (p) according to scenario (s) (man).
RUaddwpb

s: Additional rescue unit number with profession (w) to region (b) from
outside of the disaster area in period (p) according to scenario (s) (man).

VTrwpbb′
s: Transferred volunteer number with profession (w) in period (p) from region

(b) to region (b′) according to scenario (s) (man).
RUTrwpbb′

s: Transferred rescue unit number with profession (w) in period (p) from
region (b) to region (b′) according to scenario (s) (man).
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ARRrpbs: Additional renewable resource (r) number required to meet the demand in
disaster region (b) in period (p) according to scenario (s) (unit).

ANRRnpbs: Additional non-renewable resource (n) number required to meet the
demand in disaster region (b) in period (p) according to scenario (s) (unit).

RTrrpbb′
s: Transferred renewable resource (r) number in period (p) from region (b) to

region (b′) according to scenario (s) (unit).
RUDrpb

s: Unmet demand of renewable resource (r) in period (p) of region (b) according
to scenario (s) (unit).

RArpb
s: Assigned renewable resource (r) number in period (p) to region (b) according

to scenario (s) (unit).
NRUDnpb

s: Unmet demand of non-renewable resource (n) in period (p) of region (b)
according to scenario (s) (unit).

NRAvanpb
s: Available non-renewable resource (n) in period (p) in region (b) according

to scenario (s) (unit).
NRAsnpb

s: Assigned non-renewable resource (n) number in period (p) to region (b)
according to scenario (s) (unit).

Objective 1 (Z1) (minimize total unmet human resource demand (man × hour))

Minimize ∑
s∈S

Prs

[
∑

w∈W
∑
t∈T

∑
b∈B

∑
p=1

(Dwpb
s −

(
VExpwb + Vpwpb

)
Vmaxp − RUwpRUmaxp)Pentp

+ ∑
w∈W

∑
t∈T

∑
b∈B

∑
p∈2..P

UDwpb
sPentp

] (1a)

Objective 2 (Z2) (minimize the number of transfers between regions (unit))

Minimize∑s∈S Prs
[
∑w∈W ∑p∈P ∑b′∈B ∑b′∈B

(
VTrwpbb′

s + RUTrwpbb′
s
)
+∑r∈R ∑p∈P ∑b∈b ∑b′∈B

(
RTrrpbb′

s
)]

(1b)

Objective 3 (Z3) (minimize total unmet material resource demand (unit))

Minimize ∑s∈S Prs
[
∑r∈R ∑p=1 ∑b∈B

(
RDrpb

s − MRrb

)
Pc3+ ∑n∈N ∑p=1 ∑b∈B NRDnpb

s − (MNRnb−

NRAvanpb
s
)
+∑r∈R ∑p∈P ∑b∈B RUDrpb

sPc3+∑n∈N ∑p∈P ∑b∈B NRUDnpb
s
] (1c)

Subject to
Demand Constraints:

UDwpb
s = Dwpb

s −
(

VExpwb + Vpwpb

)
× Vmaxp − RUwp × RUmaxp;

(∀w ∈ W), (p = 1), (∀b ∈ B), (∀s ∈ S)
(2)

UDwpb
s = Dwpb

s + UDw(p−1)b
s − VAwpb

s − RUAwpb
s;

(∀w ∈ W), (p = 2...P), (∀b ∈ B), (∀s ∈ S)
(3)

(
VExpwb + Vpwpb

)
× Vmaxp = VAwpb

s;

(∀w ∈ W), (p = 1), (∀b ∈ B), (∀s ∈ S)
(4)

RUwp × RUmaxp = RUAwpb
s;

(∀w ∈ W), (p = 1), (∀b ∈ B), (∀s ∈ S)
(5)

VAwpb
s = VAw(p−1)b

s × (1 − Vq) +
(

Vaddwpb
s + Vpwpb + ∑

b′∈B
VTrwpb′b

s − ∑
b′∈B

VTrwpbb′s

)
× Vmaxp

− ∑
b′∈B

VTrwpb′b
s × ttimeb′b(1 + fb′b

s)

(∀w ∈ W1), (p = 2...P), (∀t ∈ T), (∀b ∈ B), (∀s ∈ S)

(6)
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RUAwpb
s = RUAw(p−1)b

s × (1 − RUq) +
(

RUwp + Raddwpb
s + ∑

b′∈B
RUTrwpb′b

s − ∑
b′∈B

RUTrwpbb′
s
)
× RUmaxp

− ∑
b′∈B

RUTrwpb′b
s × ttimeb′b(1 + fb′b

s)

(∀w ∈ W2), (p = 2...P), (∀t ∈ T), (∀b ∈ B), (∀s ∈ S)

(7)

Renewable Resource Constraint:

∑b∈B MRrb ≤ Nrr; (∀r ∈ R) (8)

RArpb
s ≤ MRrb; (∀r ∈ R)(p = 1)(∀b ∈ B)(∀s ∈ S) (9)

RArpb
s ≤ RAr(p−1)b

s + ARRrpb
s + ∑b′∈B RTrrpb′b

s − ∑b′∈B RTrrpbb′
s;

(∀r ∈ R)(p = 2 P)(∀b ∈ B)(∀s ∈ S)
(10)

RUAwpb
s + VAwpb

s ≥ ∑
t∈T

(RReqtr × Reqtw × durat
s)× RArpb

s;

(∀w ∈ W) (r ∈ R) (∀p ∈ P)(∀b ∈ B)(∀s ∈ S)
(11)

RUDrpb
s = RDrpb

s − RArpb
s; (r ∈ R)(∀p ∈ P)(∀b ∈ B)(∀s ∈ S) (12)

Non-Renewable Resource Constraint:

∑b∈B MNRnb ≤ Nnrn; (n ∈ NR) (13)

NRAvanpb
s = MNRnb − NRAsnpb

s; (n ∈ NR)(p = 1)(∀b ∈ B)(∀s ∈ S) (14)

NRAvanpb
s = NRAvan(p−1)b

s − NRAsnpb
s + ANRRnpb

s; (n ∈ NR)(p > 14)(∀b ∈ B)(∀s ∈ S) (15)

NRUDnpb
s = NRDnpb

s − NRAsnpb
s; (n ∈ NR)(∀p ∈ P)(∀b ∈ B)(∀s ∈ S) (16)

RUAwpb
s + VAwpb

s ≥ ∑t∈T NRReqtn × Reqtw × durat
s × NRAsnpb

s × usgn;
(∀w ∈ W)(n ∈ NR)(∀p ∈ P)(∀b ∈ B)(∀s ∈ S)

(17)

Other Constraints:

Ratv × Vaddwpb
s × Vmaxp ≤ VAw(p−1)b

s; (∀w ∈ ov)(p > 1)(∀b ∈ B)(∀s ∈ S) (18)

Ratr × Raddwpb
s × Vmaxp ≤ RUAw(p−1)b

s; (∀w ∈ or)(p > 1)(∀b ∈ B)(∀s ∈ S) (19)

∑w∈W ∑∀b∈B VExpwbTCw ≤ Budget (20)

VTrwpbb
s = 0 (∀w ∈ W), (∀p ∈ P), (∀b ∈ B), (∀s ∈ S) (21)

RUTrwpbb
s = 0 (∀w ∈ W)(∀p ∈ P), (∀b ∈ B), (∀s ∈ S) (22)

VTrwpb′b
s = 0 (∀w ∈ W), (p = 1),

(
∀b, b′ ∈ B

)
(∀s ∈ S) (23)

Binary and positive variables:

VExpwb, RUTrwpbb′
s, Vaddwpb

s, Raddwpb
s, MRrb, MNRnb, RArpb

s,
ARRrpb

s, ANRRnpb
s, NRAsnpb

s, NRAvnpb
s, RUDrpb

s, NRUDnpb
s ≥ 0 and integer

(24)

UDwpb
s,RUAwpb

s, VAwpb
s,VTrwpbb′ , RTrrpb′b

s ≥ 0 (25)

As a first-stage decision, regardless of the scenarios, the number of expected volunteers
that need training and the number of resources that should be pre-positioned in the regions
to meet the RR and NRR demand for the first period of the disaster are decided. As a
second-stage decision, after the disaster occurs, the levels of interregional resource transfer
and additional resource allocation to the regions are chosen according to the needs of the
regions. The first objective function (1a) aims to minimize the unmet demand (man-hour),
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which is a non-negative variable that describes the demand that cannot be met by the
total working hours of volunteers (volunteer pool and additional required volunteers) and
rescue units. For a better understanding of the equation, the unmet demand calculation for
the first period and the following periods are expressed separately.

In Equation (1a), the Vpwpb parameter represents the number of volunteers already
trained in profession (w) to be deployed in disaster region (b) in period (p), and VExpwb is
the decision variable for the number of volunteers to be trained before the disaster. So, the
total number of available and to be trained volunteers is multiplied with the maximum
number of work hours of a volunteer in period (p) (Vmaxp) to find the total volunteer
workforce capacity. In addition, RUmaxp, representing the allowed working hours for
rescue units in period (p), is multiplied with the RUwp, namely the rescue unit (people)
with profession (w) to be deployed in period (p), which yields the total available official
rescue units’ hourly capacity. The total volunteer and rescue units’ available capacity is
subtracted from the total workforce demand (Dwpb

s) to find the unmet workforce demand
(in hours) in the first period, according to the scenario (s), in the first term. The second term
in this objective is the unmet demand in the following periods according to each scenario,
which is computed in constraint 2. Both terms are multiplied with a penalty value for
each period.

Since the urgency level of the tasks are different, penalty costs are applied such that
the unmet demand coming from more important tasks in different periods are assigned
higher penalty values. The second objective function (1b) minimizes the number of human
resources and RR transfers between regions. As for the third objective function (1c), the
total unmet demand for material resources (RRs and NRRs) is minimized.

Constraint 2 demonstrates that the total unmet demand equals the required demand
minus the volunteer and rescue units assigned for the first period. Constraint 3 states
that the total unmet demand after the first period can be determined by subtracting the
human resource assigned in that period from the sum of the total demand for that period
and the unmet demand from the previous period. Constraint 4 demonstrates that the
total assignable workforce for volunteers in the first period is equal to the total volunteer
number in the volunteer pool (volunteers that are already trained) and expected volunteers
(first-stage decision variable), multiplied by the time allowed for volunteers to work in the
first period. Constraint 5, likewise, shows an assignable workforce for rescue units for the
first period. Here, only the rescue units available before the disaster can be assigned.

Constraint 6 states that, starting from the second period, the total assignable workforce
(in hours) for volunteers is determined by computing the workforce assigned to that region
in the previous period multiplied by one minus the quitting ratio, plus the additional
volunteers assigned to the region, plus the workforce transferred to that region from other
regions, and minus the workforce transferred from that region. The time spent on the
road from that region to other regions is also considered. This constraint also considers
volunteers’ quitting behavior and maximum working hours. Similarly, constraint 7 shows
the total assignable workforce provided for rescue units, following a similar calculation
approach as constraint 6.

Constraint 8 ensures that the total number of RRs prepositioned to the regions is less
than the initial number of RRs. Assigned RR numbers for the first period are calculated in
constraint 9, while those from the second period are shown in constraint 10. Constraint
10 ensures that the RR number assigned in any period in a region (b) is smaller than the
resources allocated in the previous period, plus any additional resources transferred to the
region minus the resources transferred from that region.

Constraint 11 stipulates that the rescue teams and volunteers assigned to a disaster
region must be at least as much as that needed by the renewable resources allocated to
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a region in a certain period. In other words, renewable resources are not assigned if no
human workforce, including rescue units and volunteers, is assigned to a region in a period.
Hence, simultaneous human and renewable resource (RR) assignment is attained. The
utility of simultaneous assignment is that valuable human resources can exploit renewable
resources (equipment, vehicles, etc.) to perform the tasks. The unmet RRs are calculated by
subtracting the assigned number from the demand of the RRs in constraint 12.

The constraints used for NRRs are constraints 13–17. Constraint 13 ensures that the
total number of NRRs prepositioned to the regions is less than the initial available number.
Constraint 14 calculates the remaining available NRRs from the first period by subtracting
the assigned ones from the total. In contrast, in constraint 15, the available number of NRRs
after the first period is calculated by including additional assignments. The level of unmet
NRR demand is shown in constraint 16, such that the assigned NRR number in each region
is subtracted from that region’s demand.

By constraint 17, no more NRRs than the assigned human workforce can use for
each period can be assigned because NRRs are used by human resources during tasks.
In other words, if no human resource is assigned to a disaster region in a period, no
NRRs are assigned there. Hence, the simultaneous NRR and human resource assignments
are attained. The reason for simultaneous assignment is that valuable human resources
can only exploit non-renewable resources, and the associated tasks can be performed.
Therefore, this constraint stipulates the simultaneous assignment of human and NRR
resources. For volunteers in constraint 18 and rescue units in constraint 19, the additional
human workforce from outside the disaster area was ensured to be no more than the
predetermined percentage of the workforce assigned in the previous period. This is due to
security reasons and the intension to prevent the crowd in the disaster regions.

Constraint 20 aims to allow for the training of volunteers as much as the budget
allows. It was stated that, in constraint 21 for volunteers and constraint 22 for rescue
units, there was no labor transfer within the district in all periods. Constraint 23 prevents
volunteer transfers in the first period since this resource is already assigned to that district.
Constraints 24 and 25 are non-negativity and integer constraints.

To solve the multi-objective models, the ε-constraint method was developed that
iteratively increases constraint bounds [50–52]. Later, Mavrotas [53] enhanced this using
slack variables, and called it AUGMECON Algorithm. Mavrotas and Florios [54] further
improved it to AUGMECON2 with small changes in the objective, which was employed in
this study.

4. Case Study
We proposed a stochastic model and conducted a case study for the Kartal dis-

trict of Istanbul. This is one of the most crowded districts of Istanbul, with nearly
470,000 inhabitants, 20 sub-districts (demand points), and 1 Disaster Management Center.
Another reason for choosing the Kartal district is data availability. There are detailed
studies dealing with the expected casualties and disaster scenarios in this district in case of
a major Istanbul earthquake. The Earthquake Hazard and Risk Analysis report in Istanbul
was created based on the Japan International Cooperation Agency (JICA) report [55] and
the Possible Earthquake Loss Estimates Booklet prepared by Istanbul Metropolitan Mu-
nicipality and Kandilli Observatory [56] for district-specific analyses and mappings. We
utilized these reports to estimate the expected casualty numbers in different scenarios.

4.1. Data Collection for Expected Casualty Numbers and Scenarios

Multiple scenarios representing different disaster severity levels are considered in the
model. The JICA [55] proposed four possible earthquake scenarios for Istanbul (Model A,
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B, C, and D). Five scenarios were generated from each of the main scenarios of JICA and
twenty scenarios were obtained [57]. These are presented in Table 1.

Table 1. The magnitudes, probabilities, damage/casualties’ multiplier ratios, and travel time increase
ratios associated with each disaster scenario.

Scenarios Magnitude of
Earthquake

Occurrence
Probability

Casualties Multiplier
Ratio

Travel Time Increase
Ratio

S1 6.9 0.1 1 0.27
S2 6.9 0.08 1.1 0.18
S3 6.9 0.07 1.2 0.25
S4 6.9 0.09 1.3 0.2
S5 6.9 0.05 1.5 0.09
S6 7.4 0.07 1.6 0.21
S7 7.4 0.04 1.8 0.21
S8 7.4 0.06 1.9 0.21
S9 7.4 0.03 2.1 0.24

S10 7.4 0.02 2.4 0.14
S11 7.5 0.05 2.6 0.19
S12 7.5 0.04 2.9 0.1
S13 7.5 0.06 3.1 0.3
S14 7.5 0.03 3.5 0.11
S15 7.5 0.04 3.8 0.16
S16 7.9 0.05 4.2 0.13
S17 7.9 0.06 4.6 0.26
S18 7.9 0.02 5.1 0.11
S19 7.9 0.03 5.6 0.23
S20 7.9 0.01 6.1 0.13

The occurrence probabilities of the scenarios are assumed to change between 0.01 and
0.1, and scenarios that are most likely to occur in the main scenarios of JICA. While creating
the scenarios, it was assumed that the situation worsened by 10% in each scenario starting
from S1; that is, the expected number of casualties increased by 10%. In this study, we used
the probabilistic link failure approach, considering the distance increase according to the
damage rates of the roads. Table 1 provides the uniformly distributed travel time increase
ratios for each scenario.

The distance between disaster regions was found using Google Maps by taking the
shortest path. The traveling time model is formed based on Ambulance Travel Times [58].
For routes shorter than 4.13 km, the travel time duration is calculated by multiplying
2.42 ∗ d1/2, where d is the distance and m (d) is the ambulance’s traveling time. Interregional
transfers (for volunteers and rescue units) are made at the beginning of each period. When
the distance is greater than 4.13 km, it is equal to 2.46 + 0.596 ∗ d.

m(d) =
{

2.42
√

d i f d ≤ 4.13 km; 2.46 + 0.596d i f d > 4.13 km
}

The Turkish Statistical Institute provides the population in demand points. The
JICA [55] and DEZIM [56] reports provide the casualty numbers. The casualty numbers
are distributed across periods based on the rates provided in the study by Rawls and
Turnquist [39], which outlines the demand occurrence rates for the first 72 h. The casualty
emergence rates for 0–12 h, 12–24 h, 24–48 h, and 48–72 h are 0.6, 0.25, 0.10, and 0.05,
respectively. This means that 60% of this region’s disaster victims can be reached in the
first 12 h. This is presented in Table 2.
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Table 2. Expected casualty number for base case scenario (Scenario-1).

Period1 Period2 Period3 Period4 Total

Tasks 0–12 h 12–24 h 24–48 h 48–72 h 72 h

Casualty Emergence Rate
60% 25% 10% 5% 100%

Expected Casualty Number
S1—Casualties rescued from surface 605 252 101 50 1008
S2—Casualties rescued from debris 468 195 78 39 780
S3—Casualties dispatched to safe zone 1500 625 250 125 2500

S4—Death casualties 106 44 18 9 176
S5—Triaged casualties 1073 447 179 89 1788

T1—Minimal casualties first aid 689 287 115 57 1148
T2—Delayed casualties first aid 332 138 55 28 553

T3—Immediate casualties first aid 52 22 9 4 87

4.2. Data Collection for the Profession Requirements of the Tasks

Table 3 provides the requirements for volunteers, rescue units, and RRs and NRRs
based on the task types. The table shows that some professions planned to be included in
the study can only be operated by volunteers or rescue units, and both workforce types can
operate some. For the people planning to participate in the teams formed for the model, the
task profession requirement table was created based on the USAR medium and hard-level
rescue teams from the INSARAG Guidelines [59]. To complete these tasks, a specified
number of people from each profession must be present in the disaster area to form a team.
Volunteers and rescue teams must work actively for several hours each period. Since the
period lengths differ, the active working times allowed for the human resources also differ.

Table 3. Task/profession requirement table.

Human Resource Requirements of Tasks Material Resource
Requirements of Tasks

Profession 1 2 3 4 5 6 7 8 Renewable
Resources

Non-
Renewable
Resources

Rescue Unit
Team

Comman-
der

Search and
Rescue
Officer

Communication
Officer

Equipment
Manager Doctor Paramedics Ambulance

Driver

Volunteer
Search and

Rescue
Volunteer

Professional
Healthcare
Volunteer

First Aid
Volunteer

Spontaneous
Volunteer
(Support

staff)

S1—Rescue
from Surface 1 2 1 1 0 0 0 1 0 0

S2—Rescue
from Debris 1 3 1 1 0 0 0 1 0 0

S3—Dispatch to
Safe Zone 0 0 0 0 0 0 0 1 0 0

S4—Death
Removal 1 2 0 1 0 0 0 1 0 0

S5—Triage 0 0 0 0 0 1 0 0 0 0
T1—Minimal

Casualties First Aid 0 0 0 0 0 1 0 1 0 1

T2—Delayed
Casualties First Aid 0 0 0 0 1 1 1 1 1 1

T3—Immediate
Casualties First Aid 0 0 0 0 1 1 1 0 1 1

In the study, volunteers are assumed only to work as a team member in certain tasks
and under the supervision of rescue units. While trained volunteers are already expected
to receive pre-disaster security training, spontaneous volunteers are aimed to be assigned
to lower-risk tasks. In addition, the number of volunteers assigned is limited, considering
the safety of volunteers.
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Volunteer levels are taken from the AFAD volunteer training program. In addition to
the three-level training defined in the AFAD training program, the spontaneous volunteer
level was added to the model. It is known that there are pre-determined volunteers in the
disaster areas who have been planned to work in a certain period and region at the time
of the disaster. Since the training time required for each volunteer level is different, the
training costs of volunteers also vary according to their level of expertise. It is planned
that these volunteers are transferred between regions if necessary or to accept additional
volunteer support from outside of the disaster area.

Similar task assignment planning is adopted for rescue units. Unlike volunteers, the
region to which rescue teams will be assigned is not determined in advance and will be
assigned to the regions upon request. In the same way as volunteers, it is agreed that
the optimal numbers of interregional transfers and additional rescue unit support will be
assigned. Within the available budget, the aim is to increase the number of volunteers
(expected volunteers) by providing pre-disaster training at the expense of a cost. The arrival
times of rescue units and volunteers may vary for various reasons (such as road failures
and psychological and physical problems). At the end of each period, quitting behavior
may occur due to various reasons for both the volunteer and rescue units considered.
This quitting rate is expected to be higher for volunteers as they work voluntarily. In
line with the needs, interregional transfers are planned to start from the beginning of the
second period.

5. Results and Discussion
In the following subsections, we present the results of the case study, perform a

sensitivity analysis, and propose some managerial insights.

5.1. Results for the Case Study

The model has been solved in IBM CPLEX Optimization Studio 22.1.0. All computa-
tional work was performed on a 64-bit operating system, Intel Core™ i7-6500U 2.50 GHz
CPU, and 8.00 GB RAM personal computer. Pareto optimal solutions of the proposed
multi-objective model were obtained for the case study. CPU times for solutions range
from 330 s to 1510 s. First, the model was solved for all three objectives separately, and the
payoff table was constructed as shown in Table 4. Table 4 shows that if the unmet demand
(z1) is minimized, its value will be 65,767.7. It indicates that 65,767.7 man*hour of unmet
demand will arise even if minimized. The resource transfer (z2) will be 1165.7, and the
unmet material resources (z3) will be 24,181.

Table 4. Payoff table.

Minimized Objective Function z1 z2 z3

Min Z1 (Unmet human resource, man-hour) 114,367.0 17,128.2 24,181.0
Min Z2 (Resource transfer, unit) 2,058,460.3 0.0 24,181.0

Min Z3 (Unmet material resource, unit) 1,825,928.6 13,650.0 9526.5
Range (Max–Min) 17,128.2 14,654.5

On the other hand, if the z2 is minimized, z1 will be 2,058,460.3, z2 will be 0, and
z3 will be 24,181. If the z3 is minimized, z1 will be 1,825,928.6, z2 will be 13,650, and z3
will be 14,654.5. Based on the payoff table, the ranges of the second and third objective
functions are R2 = 17,128.2 and R3 = 14,654.5, respectively. Ranges are divided into
100 equal intervals (q). The AUGMECON2 process for all grid points is as follows [53,54]:

For i = 0–100;
E3 = 9526.5 + i × 146.5;
For j = 0–100;
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E2 = 0 + j × 171.3;
Solve model;
Next j;
Next i.
Subsequently, constraints for the second and third objectives were added to the model,

with the right-hand sides of these constraints (e2, e3) changing at each iteration. This ap-
proach yielded pareto optimal solutions across 100 grid points. The decision maker selects
one of these solutions (trade-offs) based on priorities and makes decisions accordingly.
In our pareto optimal solutions, after a point, any worsening of other objective functions
will not improve objective 1. We evaluated the pareto optimal solutions and choose Ex-
periment 3 where z1 = 114,842.5, z2 = 514, and z3 = 9966, since the primary purpose of
disaster management is to save as many people as possible and respond to the victims’
needs as quickly as possible. Since it was observed that the objective function did not
change with the improvements made in (z2), the model was run again assuming z2 = 100,
z1 = 114,840.7, and z3 = 9966. According to the results obtained for Experiment 3, the num-
ber of transferred resources (z2) slightly affects the number of unmet material resources (z3).
The unmet demand in each region is very high, and resource transfers (z2) have little effect
on the total unmet human (z1) and material resources (z3) demand. According to the
findings, most unmet demand occurs in the first period. While unmet human demand
originates mainly from the first, second, and fourth professions, namely team commander,
search and rescue officer, and equipment manager, it is naturally high in all resources in
the worst-case scenarios S20 and S19. Although resources are abundant in some occupa-
tions, task groups still need to be completed, and demand needs to be met due to these
deficiencies. After the first period, unmet demand decreases with interregional transfers
and additional resources. Table 5 shows the results of unmet demands for the 1st period,
which constitutes most of the unmet demands, and for the 20th and 19th scenarios, which
represent the most pessimistic values, on a regional basis.

Table 5. Unmet demand in the first period for scenario 20 (a) and scenario 19 (b).
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Table 5. Cont.
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6 147 10 130 8
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8

1 650 366 4 561 346 16
1 561
3 448
2 489

9 154 7 138 6
10 221 13 196 11

11

4 687 326 17 4 591 335 1
1 687 1 591
2 562 2 610

3 464
12 239 13 213 11
13

14

2 702 249 144 4 437 223 12
4 935 513 29 4 430 458 24
1 935 1 430
3 775
2 719
8 601

15 2 946 353 19 4 606 313 18
4 706 1 606
3 58 2 542

3 481
16 4 547 347 17 4 472 315 16

1 547 1 472
17 1 715 466 25 2 541 499 24

4 886 3 606
2 828
3 709

18 187 10 167 8
19 2 1157 561 30 4 950 500 26

4 1098 1 950
1 1098 3 798
3 921 2 699

20 3302 17 270 15

The results reveal that, despite minor variations, unmet demands exhibit significant
parallels across regions. This highlights the necessity for synchronized resource utilization
and indicates that, in some instances, an abundance of specific resources may still be
ineffective if there are shortages in others. For example, in region 1, in the first period,
the human resources with professions 1, 2, and 4, renewable resources (ambulances), and
non-renewable resources are insufficient in both scenarios. In region 2, human resources
for professions 1, 2, 3, and 4 are inadequate and renewable and non-renewable resources
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are lacking. The similar situation is also valid for the regions 11, 14, 15, 17, and 19. Human
resources with the required professions are available in the rest of the regions in the first
period, but renewable or non-renewable resources are lacking. However, after the first
period, unmet demand decreases with interregional transfers and additional resources.

Table 6 shows how resource assignments for RRs and NRRs will be pre-positioned
in each region at the beginning of the first period. It has been observed that there is no
direct relationship between material resource distribution and neighborhood population,
but there is a relationship with the casualty numbers. Moreover, it can be deduced that
assignments are parallel with allocating the human resources needed to utilize them.

Table 6. Prepositioned renewable and non-renewable resources before disaster.

Region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Prepositioned Renewable Resource Amount
(Ambulances) 3 3 3 3 2 2 3 3 2 2 3 2 3 5 3 3 5 2 5 3

Prepositioned Non-Renewable Resource Amount
(Medical kits) 193 213 196 167 157 107 164 214 90 143 214 172 162 341 209 194 338 119 410 197

Table 7 shows the number of volunteers expected to be trained from each profession
before the earthquake, in addition to the existing volunteers, based on the budget allocated
for volunteer training. Volunteers are expected to be trained in various numbers in different
regions, mainly from the second (search rescue officer) and eighth (support staff) profession.
Red Cross and Red Crescent societies also suggested that public media campaigns must be
held before the disasters [60] to encourage people to become volunteers and to train them
in advance. The guideline of the organizations [60] stipulate that a limit must be set for
the volunteering hours considering the disaster conditions and legislations, psychosocial
support must be provided to the volunteers in emergencies, spontaneous volunteers must
be applied orientation and training, and these must be registered and screened. These
measures must be taken to better manage the volunteers in disaster environments.

Table 7. Required number of trained volunteers before the disaster.

Regions

Professions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Search and Rescue Officer (Search and
Rescue Volunteer) 47 66 54 25 26 10 35 58 2 18 56 28 9 64 23 42 79 0 90 12

Doctor (Professional Healthcare Volunteer) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Paramedics (First Aid Volunteer) 7 0 2 6 0 0 5 8 0 2 8 0 3 12 9 6 3 0 0 0

Support Staff (Spontaneous Volunteer) 42 66 51 33 33 5 34 58 3 22 61 33 36 85 65 32 95 3 127 41

The most significant additional resource requirements for the scenarios are reported
in Table 8. As seen in Table 8, additional supports are spread over different regions and
periods for each resource type. For example, the extra human resources for the search and
rescue officer, profession 2, equals 22 people for the second region in the second period. In
addition, 55 additional search and rescue volunteers are required for the second period of
the 19th region. Additional ambulance and medical kits required are also denoted in this
table. According to this table, the command center may request additional resources from
governmental or non-governmental organizations.

Table A1 in the Appendix A presents the transfers of the volunteers, rescue units, and
renewable resources starting from the second period. At each row, the number of resources
transferred from a region to another region according to each scenario in a certain period is
reported. For instance, 94 working hours of spontaneous volunteers (profession 8) should
be transferred from region 1 to 16 in the second period, according to scenario 16.
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Table 8. Additional resources needed out of the disaster regions.

Additional Rescue Units Additional Volunteers Additional RR (Ambulance) Additional NRR (Medical Kit)
Profession Period Scenario Region Value Profession Period Scenario Region Value Period Scenario Region Value Period Scenario Region Value

4 2 20 4 18 2 2 20 19 42 3 20 7 25 2 20 19 410
3 2 20 17 16 2 2 19 19 42 3 19 14 25 2 19 19 410
2 2 20 17 14 2 2 18 19 42 4 19 6 25 2 18 19 410
2 2 18 15 13 2 3 20 3 30 4 17 20 25 2 17 19 410
2 2 17 15 13 2 2 20 14 30 4 16 10 25 2 16 19 410
3 2 18 17 12 2 2 19 14 30 2 13 14 21 2 19 14 341
2 3 20 15 12 2 2 18 14 30 2 14 7 16 2 18 14 341
2 2 19 15 11 2 2 17 14 30 2 20 19 9 2 17 14 341
6 2 20 19 9 2 2 20 11 27 2 15 14 8 2 16 14 341
2 2 19 17 9 2 2 20 2 27 2 19 19 7 2 15 14 341
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Considering the concentrated demand in the first period, the model is sensitive to the
emerging casualty number parameter. The model is also susceptible to task requirements
and working time parameters, which impact the determination of human and other resource
demands. The penalty cost for not meeting the RR was chosen considering that the
ambulance in our case study has priority over the NRR medical kit. In our case, since an
ambulance is required to use the medical kit, the penalty cost was decided to give priority
to meeting the ambulance needs first. With the changes that can be made to the parameter,
the priorities of the resources relative to each other can be determined.

Since our model covers only one district of Istanbul and the routes to be traveled
are short, it has been observed that the time spent on the road during transfers and
the damages that may occur do not significantly impact the model regarding assignable
resources. However, as the transportation times will be stochastic in a disaster environment,
variability in this parameter may significantly affect the results in different disaster settings.

Although the Kartal district was selected as the region in this study, the proposed
model is applicable for other crowded districts and even all of Istanbul. Therefore, it is
scalable. However, when large data sets such as all districts of Istanbul are considered,
the mathematical model may not be solved by using a standard solver in a reasonable
computational time, as it is a mixed-integer stochastic programming model. In larger cases,
multi-objective meta-heuristic algorithms, such as the Non-Deterministic Sorting Genetic
Algorithm (NSGA-II) [61] or a Reference Vector Guided Multi-Objective Evolutionary
Algorithm [62], should be employed.

In addition, when the type of disaster changes, the tasks may also change and the
types and amount of resources needed may change accordingly. For example, search and
rescue tasks in the case of a flood and an earthquake probably require different resources,
but even if the type and amounts of the required resources change, our mathematical model
is still applicable, as it is flexible to be adapted to different disasters and associated tasks.

5.2. Sensitivity Analysis

As the model results may change according to the parameters, a sensitivity analysis
based on the scenario probabilities and the penalty values in the first objective function are
made separately. In the sensitivity analysis, the penalty values in the first objective function
were all assumed to be equal to one. Hence, differences among the weights of different
decision variables are neutralized. In addition, to understand the impact of the scenario
probabilities, by retaining the original penalty values, the probabilities of the scenarios
were changed as shown in Table 9. Here, the bad scenarios were given higher probabilities
to see the impact of this parameter on the results.

Table 9. Scenario probabilities in the original model and sensitivity analysis model.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original 0.1 0.08 0.07 0.09 0.05 0.07 0.04 0.06 0.03 0.02 0.05 0.04 0.06 0.03 0.04 0.05 0.06 0.02 0.03 0.01

Sensitivity analysis 0 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.1

The objective function results obtained for the two cases of sensitivity analyses are
presented in Table 10. The results imply that changes in the penalty values affected the
values of the first objective, as these parameters are the multipliers in the objective. For
the sensitivity analysis based on the scenario probabilities, we may conclude that the total
expected unmet human resource demand increased. However, as the scenario probabilities
are the multipliers of objective function 1, to better understand this change, the decision
variables of unmet human resource demand should be further analyzed.
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Table 10. Objective functions of the original model, penalty values, and scenario probability sensitivity
analysis models.

Objective 1 Objective 2 Objective 3

Original Model 114,840.7 100 9966
Penalty Values Sensitivity Model 65,512.7 100 9966

Scenario Probability Sensitivity Model 279,913.1 100 18,813.1

The results of the decision variable of the unmet human resources demand in the
original model and those results obtained by equalizing all penalties into one are presented
in Table 11 below. Here, the highest 16 values among all results of the unmet human
resource demand for all regions, scenarios, and periods are reported, and the rest of the less
significant values were not presented. When the values in the columns named “Original”
and “Penalty Sensitivity” are compared, out of the sixteen values, seven values did not
change, six of them decreased, and five of them slightly increased. The unmet demand
values that did not change or slightly increased (12 values out of 16) after the penalty values
changed belong to scenarios 19 and 20, which are the worst scenarios. This was because
the human resources were insufficient and better results could not be achieved. In addition,
some of the variable values decreased only around 20%. In terms of the second and third
objectives, penalty values did not cause any change, as seen in Table 10. Consequently, the
model is not sensitive to penalty value changes.

Table 11. Sensitivity analysis results for the unmet human resource demand variable.

Profession Period Scenario Region
Unmet Human Resource Demand (Man-Hours)

Original Penalty Sensitivity Scenario Probability
Sensitivity

2 1 20 19 1157 786 947
4 1 20 19 1098 1098 1098
1 1 20 19 1098 1098 1098
4 1 19 19 950 735 950
1 1 19 19 950 950 950
2 1 20 15 946 556 796
4 1 20 14 935 935 936
1 1 20 14 935 935 936
3 1 20 19 921 921 922
4 1 20 17 886 740 886
2 1 20 17 828 665 882
2 1 20 14 719 983 917
1 1 20 17 715 883 886
2 1 20 14 719 983 917
2 1 20 11 562 778 574
3 1 20 14 775 775 775

In addition, as seen in Table 9, the probabilities of the relatively bad scenarios, num-
bered 14–20, increased from 24% to 53%, respectively, and this caused the total unmet
human resource demand (Objective 1) to increase, as shown in Table 10. When we analyze
the impact of changes in the scenario probabilities on the unmet human resource demand,
in Table 11, it may be concluded that the increase in the scenario probabilities of the bad
scenarios resulted in no change or very little increases in the decision variables. However,
due to the scenario probabilities’ increase, the first objective function value increased from
114,840 to 279,913. In terms of the second objective, the penalty value change had no impact.
However, the third objective (expected material resource unmet demand) doubled. This is
because of the increase in the bad scenarios’ probability increases, as explained above. Since
in bad scenarios, the unmet material demand is higher than the other scenarios values,
giving higher probability to them caused a higher expected total unmet material demand.
The non-renewable resource demand did not change at all, but the renewable resources
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demand changed slightly. The highest renewable resource unmet demand values in all
regions, scenarios, and periods for the sensitivity analysis are presented in the Appendix A
in Table A2. One can see that the unmet demand values did not experience any significant
change in cases of penalty value changes or scenario probability changes. Consequently,
the model is also robust the changes in the scenario probabilities.

5.3. Managerial Implications and Insights

The findings provide valuable information to the Disaster and Emergency Manage-
ment Presidencies responsible for human resource planning and coordination in disasters.
These will also give regional authorities ideas about storing the necessary resources in
advance and delivering them to the regions in need after the disaster.

This study can help organizations better allocate resources and plan volunteer re-
cruitment efforts to address service gaps. By identifying trends in volunteer qualification
requirements, NGOs can ensure they have the right skills and expertise to meet post-
disaster needs. Some academic and managerial implications arising from this study are
as follows:

• Integrated decisions for pre- and post-disaster stages are crucial for potential disaster
scenarios, as they help determine the expected resource requirements. Improper pre-
disaster decision-making will affect post-earthquake decisions, leading to a shortfall
in meeting demand.

• Developing a dynamic resource allocation software that uses our model would be
beneficial to disaster management agencies and policymakers. The proposed mathe-
matical model can be embedded into an API (Application Programming Interface),
which is a software intermediary that allows us to extract and share data within and
across organizations.

• Volunteers are a crucial part of the workforce in disaster response. Therefore,
governmental and non-governmental organizations must encourage and support
volunteer training.

• While the first 72 h are critical in disaster response, our model results show that
most unmet demands occur in the first 12 h. Given the high rate of deterioration in
the injured condition during this time, more preliminary preparation is needed for
effective pre-disaster resource planning.

• As the model’s results show, the lack of even one resource will prevent the completion
of a task. Therefore, an information system that dynamically transmits the number
of available resources in the regions to the command center will be highly beneficial
for facilitating the management of the process with optimum resources by preventing
excess resources from coming into the disaster regions. This requires pre-disaster
planning for accurate data flow from disaster areas to the command center to convey
information about the current situation.

• To ensure coordination, especially regarding material resources, their distribution
should be planned regionally, and local authorities should be informed in advance.

6. Conclusions
Each disaster situation has its specific resource requirements and structure. The

number of casualties, injuries, financial needs, and aid requirements vary depending
on the magnitude and type of disaster. In all disasters, pre-disaster resource planning,
including material resource prepositioning, volunteer people’s training, and post-disaster
resource assignment and transfers, are vital coordination activities for disaster preparedness.
Without any of the required resources, the tasks cannot be fulfilled. Volunteers are usually
the initial responders to disasters; their contribution is imperative.
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This study proposed a multi-objective, two-stage stochastic programming model for
dynamic resource planning and allocation, including volunteers, rescue units, and renew-
able and non-renewable resource requirements, especially for the search and rescue and
first aid activities. Its first objective aims to minimize the unmet human resource demand
using existing government rescue units, volunteers, and additional human resources. As
a second objective, the resources were intended to be utilized efficiently by considering
trade-offs between transferring the resources between regions and employing an additional
human workforce. In addition, as the third objective, the total unmet demand for renewable
and non-renewable resources is minimized. The decisions pertain to pre-disaster volun-
teer training, prepositioned renewable and non-renewable resources, disaster response,
the assignment of the volunteers, rescue units, renewable and non-renewable resources,
and their transfers between the regions. Here, the assignment of all human and material
resources is simultaneously planned, as a lack of any resources disrupts the tasks.

To reveal the utility of the proposed model, a real case study was conducted to decide
and assess resource allocation after the expected significant earthquake in the Kartal district
of Istanbul. Demand assessments were made based on the official reports, considering
the number of buildings expected to be damaged or destroyed and the number of victims
expected to suffer minor or severe injuries. The multi-objective model was solved for the
case study with the AUGMECON2 algorithm, the pareto optimal solutions were obtained,
and the results were analyzed. As a result, some managerial insights for the resource
allocation planning of human and material resources are presented.

This study is the first in the literature to consider volunteers’ training and assignment
in disaster response teams besides the official rescue staff. It plans all required renewable,
non-renewable, and human resource pre- and post-disaster allocation and transfers. The
real case study also revealed its rigor. Our model helps address the issue of people
struggling to find the right teams, necessary materials, and vehicles for help after a disaster,
ultimately reducing the delay in providing aid. Therefore, our methodology can be utilized
by disaster coordination agencies to effectively coordinate and manage resources, including
mobilizing volunteers, in the crucial early hours.

This study focused on earthquake disasters. Future studies can focus on resource
allocation for other disasters that affect societies. In addition, tasks other than search and
rescue and first aid for the victims can be concentrated in the future. Although we have
applied the model for the first 72 h, periods covering a more extended time interval can be
considered to manage the resource allocation problem for the recovery period.

Moreover, the proposed mathematical model can be embedded into an API (Applica-
tion Programming Interface), which is a software intermediary that allows us to extract and
share data within and across organizations. As the disaster management requires multiple
parties to collaborate, including governmental and non-governmental organizations, input
data collection, decision-making, and output data transmission related to the decisions by
means of this API will be beneficial for resource allocation in future disasters.
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Appendix A

Table A1. Volunteers, rescue units, and renewable resource transfers.

Volunteer Transfer Rescue Unit Transfer Renewable Resource Transfer
Profession Period Scenario Region Region Value Profession Period Scenario Region Region Value Period Scenario Region Region Value

8 2 20 1 16 94 4 2 20 4 8 71 0 0 0 0 0
8 2 20 12 16 78.4 2 3 20 20 13 19 0 0 0 0 0
8 2 20 5 1 78 2 2 20 21 5 15 0 0 0 0 0
2 3 20 3 1 57.6 2 2 19 21 5 15 0 0 0 0 0
2 3 20 5 14 36.4 6 2 19 21 15 15 0 0 0 0 0
6 3 20 4 2 18.1 6 2 20 21 5 14 0 0 0 0 0
2 3 14 3 20 27.5 2 3 20 10 14 13 0 0 0 0 0
2 4 20 18 7 1 4 2 20 15 3 11 0 0 0 0 0
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Table A2. Unmet renewable resource demand values in the sensitivity analysis.

Period Scenario Region Original Penalty Values
Sensitivity

Scenario Probability
Sensitivity

1 20 19 30 30 32
1 20 14 29 30 29
1 19 19 26 26 28
1 20 17 25 25 25
1 19 14 24 25 24
1 19 17 22 22 22
1 18 19 22 22 24
1 20 2 21 21 20
1 18 14 21 22 21
1 20 15 19 19 19
1 18 17 19 19 19
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