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Abstract: Background: A hospital’s operating theater service system is a large-scale, complicated
system that must be carefully managed to offer the best possible results for its patients. Unlike
other industries such as manufacturing and logistics, system dynamics (SD) methodologies are not
extensively applied in hospital operating theaters. This study deals with the future development
and possible future scenarios for hospital operating rooms in Bangladesh. Methods: Due to demo-
graphic dynamics and demographic processes, increased pressures on hospital care are expected in
Bangladesh. The SD model anticipates possible future scenarios, reconciles service capacities and the
variability of patient demand, and reduces patient congestion and waiting times in the hospital area.
This study introduces a causal loop diagram to show a causal link between the hospital operating
theater system variables. It also introduces a stock flow diagram to understand the dynamic behavior
of the system. Results: The model validation testing reports that in extreme conditions, such as a
50% reduction in the patient arrival rate, the model is valid and runs as usual. Conclusions: This first
work of SD modeling for hospital operating theater systems can help healthcare managers, decision
makers, or researchers of any responsibility level make better predictions in order to reduce patient
waiting times and backlogs and make appropriate decisions.

Keywords: causal loop diagram; Forrester’s investigations; model validation; patient backlog; stock
flow diagram

1. Introduction

The sterile chamber in which surgical operations are performed is called an operating
room. The operating theater consists of operating rooms and post-operative care units.
The operating room system in a hospital is increasingly interconnected and interdepen-
dent. With the increase in competition and public health challenges along with dwindling
resources, it is increasingly important to deliver hospital services more efficiently. In
Bangladesh, hospital operating theater systems are complex, and long waiting times are
common phenomena. Offering proper treatment to the right patient at the right time is not
only the definition of high-quality care, but it is also essential for the long-term sustainabil-
ity of our healthcare system. However, the Bangladeshi hospital delivery system frequently
falls short of balancing the supply of hospital services with the demand for such care. Be-
cause of the extreme and natural volatility in demand, maintaining this synchronization for
any length of time is impossible. The most crucial problem at hand right now is changing
demand. To ensure that healthcare is coordinated to fulfill the highest levels of patient
demands, new governance structures and decision-makers must be established. Hospitals
must find, assess, and implement modern operating room management strategies if they
are to deliver efficient and high-quality healthcare services.
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Bangladesh is a densely populated country. Human diseases, as well as hospitals,
increase with the increase in population. However, due to the lack of an appropriate man-
agement system, patients in hospitals suffer very much. Sometimes, they are required to
wait for operating theater services for four, five, or even more days. Although waiting times
should depend on the urgency class of a patient, the absence of analyses and modelling for
capacity services and demand, along with the insufficient number of infrastructural and
professional facilities, makes it difficult for emergency patients to be treated within 24 h.
However, there is a general policy that emergency patients usually must be treated within
24 h; acute patients should be treated within a week, and elective patients within 4–6 weeks.
The availability of resources and appropriate professionals makes everything very unpre-
dictable. Also, post-operative care, such as intensive care units (ICUs) or post-anesthesia
care units (PACUs), plays a crucial role in determining patient backlog and patient waiting
times. Hence, there is a waiting time for most patients to be treated in an operating theater.
Patients’ lives become at risk, and hospital management fails to appropriately predict
patients’ demand for variety. As a result, management is unable to synchronize service
capacity and patient demand variability, resulting in an increase in patient backlog and
waiting times. We should contribute to the elimination or minimization of these difficulties
because both health and time are valuable resources.

Hospital care systems are complex, consisting of several dependent systems and
processes that adapt to the changing environment and operate non-linearly. Traditional
methods for evaluating and modeling often underestimate the wider impact of the hospital
system, which can be important in achieving the desired system goals and is often observed
in complex operating room systems in hospitals. Researchers and decision makers in
hospital operating rooms may underestimate or overlook the interactions between people,
processes, technology, and the facility design. Interventions in the hospital operating
room system must consider the dynamics and complexity of the context of the hospital
operating room system in which the intervention takes place. This article describes a way
for dynamically modeling the intervention system of a hospital operating room system,
which could be useful in certain situations.

Researchers and decision makers employ various approaches to reduce hospital com-
plexity, patient waiting times, and the patient backlog for service, including system dynam-
ics (SD) modeling, lean philosophy implementation, scheduling, etc. SD modeling is one of
the most suitable and efficient methods for addressing the issue by considering the dynamic
nature of the healthcare system. It is a computer-based simulation modeling methodology
that was developed at the Massachusetts Institute of Technology in the 1950s by J. Forrester
as a tool for managers to analyze complex problems [1]. SD can be briefly defined as a
methodology based on feedback systems borrowed from the control theory developed by
Forrester and is the most appropriate technique to easily handle non-linearity and time
delays, as well as the multi-loop structures of complex and dynamic systems to enhance
system thinking and system learning. Causal loop diagrams are used to represent feedback
loop systems diagrammatically, and they are a communication tool of feedback structures,
representing the principal feedback loops of systems, which generate the reference dynamic
behavior of such systems. Given that SD modeling can be applied qualitatively and has
strong connections to issue structuring methods, such as causal or influence correlation
diagrams, it can be used to gain a better understanding of the relationships between the
various components of a hospital operating service (HOTS) system. Furthermore, sys-
tem dynamics offers a rigorous approach for bringing the interconnectedness of different
processes into focus.

This article introduces dynamic system modeling methods for evaluating system inter-
ventions for operating room service delivery in hospitals. Unlike traditional assessments, a
dynamic system approach understands system complexity and anticipates bottom-up and
top-down consequences of changes in complex operating room service delivery systems.
This article is intended to help researchers and decision makers to decide whether these
simulation methods are suitable for addressing specific problems in the operating room
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system. It is a primer for researchers and decision makers in operating theater delivery
and implementation sciences who are confronted with complicated issues in providing
effective and efficient care that can be solved with system interventions. Only a few studies
have been conducted on modeling hospital operating theater systems that manage patient-
related issues. No study has been reported on the SD modeling of the hospital operating
theater system of Bangladesh. Also, system dynamics was chosen specifically for its ability
to (1) relate patterns of behavior to system structures, (2) quantify the causal links between
demand and patient waiting times, and (3) assess potential changes to system structure and
management decision heuristics that will improve system performance in the long term.
Thus, the goal of this study is to develop an SD model of a HOTS system of Bangladesh
with the following specific objectives: (i) to create an operating service system that reacts to
immediate service requirements; (ii) to examine the effects of improving resource flexibility
in a genuine medical service system with unpredictable demand fluctuations; and (iii) to
predict future events based on the hospital’s operating system factors.

The significance and objectives of this study are briefly discussed, along with the
relationship between industrial engineering and hospitals. Section 2 attempts to summarize
the literature review study and outline the key pieces of this study’s literature that provide
significant and essential information. Section 3 contains the causal loop diagram, stock-flow
diagram, parameter estimates, input data, and study model validation for the hospital
operating theater service system. Section 4 presents this study’s findings and discussions.
The conclusion section makes the final remarks and includes this study’s limitations and
recommendations.

2. Literature Review

Several studies on the topic of hospital services have been conducted to date. The
findings of these investigations are vastly different from one another. According to studies,
prices are not the most key factor in determining hospital demand [2–5]. Other research,
on the other hand, suggests that prices are a significant factor of hospital demand [6,7].
According to Ali and Noman [8], income levels have had a favorable impact on hospital
demand in Bangladesh. They did not mention the limitations of their work. Using time-
series data, Akbari et al. [9] assessed the demand for public hospitals in Pakistan and
discovered that the availability of services was undoubtedly the most important factor
of hospital demand. In a separate study by Turyamureba, M. et al. (2022) showed that
geographical location significantly influenced healthcare utilization [10].

In Ghana, Appiah-Kubi and Politics [11] discovered that education, location, and
socioeconomic all have an impact on hospital use. The challenge of predicting the need
for hospital with panel data was highlighted by Jochmann and León-González [12]. They
calculated the effect of individual treatment using the Markov chain Monte Carlo (MCMC)
technique to predict the demand model. According to Mwabu et al. [13], demand for the
medical treatment is inelastic in terms of the cost of use. According to Eme Ichoku and
Leibbrandt [14], waiting hours are not a significant barrier to hospitalization. Based on
panel data, Riphahn et al. [15] estimate the incentive effect on hospital demand in Germany.
The elasticity of demand for hospital treatment is low, and it is resistant to changes in
financial and non-financial opportunity costs, according to the researchers. In their model,
they also included an unpleasant decision and moral haze. In these investigations, several
demand determinants were employed, which were crucial in identifying appropriate
variables for this study.

Price, income, and education are the key factors for hospital treatment demand in
Bolivia, according to Li [16]. In Ghana, Lavy and Quigley [17] discovered that family
income is a key factor of demand for hospital care quality and intensity, while the price of
hospital care was found to be a less relevant determinant of demand for hospital care quality
and intensity. Low-income households in rural Kenya were more likely than higher-income
families to seek care, according to Mwabu et al. [18]. Price and travel time had a significant
role in the rationing of rural hospitals in Cote d’Ivoire, according to Lo [19]. On the Malay
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Peninsula, Heller and medicine [3] observed that income is a decisive factor for hospital
treatment demand. The factors that influence the demand for the hospital treatment are
crucial for optimizing hospital utilization and developing appropriate policy framework
of this industry. Furthermore, the extent to which these factors influence demand is also
important in determining the performance of the hospital supply chain. Most studies have
focused on applying various econometric methodologies to pick recipients of healthcare
from various providers. In this study, a new hospital application definition was created
to address these concerns. The demand for hospital operating room services was directly
anticipated, thanks to the system dynamics model, which better explains the elements
driving the demand. Hence, developing a proper management strategy is the key for
sustainable performance of the operations theater.

Health maintenance and recovery receives special attention from people because it
is undeniably the most significant issue in life, both personally and socially. Delivering
services correctly at the right time improves patient satisfaction, but it depends on a lot
more than just the latest technology. When planning and scheduling operation theater
services, surgical clinics, or operating theaters must consider a variety of human resources
and facilities [20,21]. As the performance of the healthcare system is impacted by numer-
ous stakeholders, operation theater planning and scheduling processes are particularly a
very complex task [22]. For instance, proper delivery of the healthcare services result in
patient satisfaction, which cannot be obtained only through technology; the conduct and
the performance of the personnel also have a significant impact [23]. Heydari, M. et al.
(2022) demonstrated that attempts to reduce healthcare costs by reducing the number of
hospital beds, healthcare worker salaries, reimbursement to healthcare providers, number
of workforce, or by using any other strategy that affects supply and demand for health-
care services may result in unforeseen consequences or even be counterproductive [24].
However, implementing an effective operations management strategy involves developing
models that assist hospital managers in improving operations theater scheduling policies,
demand forecasts, and medium- and short-term staffing plans while taking into account
how demand evolves in a networked manner [24]. In this study, a system dynamics model
was developed to enhance the operations management strategy.

According to Sterman, “System dynamics is a method to enhance learning in complex
systems” [25]. A hospital operating room is a complex system due to its various dimensions,
procedures, and underlying dynamics. The demand for the healthcare services is deter-
mined by the complex demographic dynamics. Additionally, the availability of medical
workers is influenced by numerous factors making an extensive list of complexities. As a
result, SD is a viable technique for improving the comprehension as well as the quality of
planning contained within the operating room system.

In his book “The Logic of Failure”, Dorner [26] wrote, “ Failure does not strike like a
bolt from the blue; it develops gradually according to its own logic“ [26]. Policy makers
dealing with complex systems must understand the dynamic logic of the systems in which
they participate. Due to misconceptions about how the operating room system would
evolve, a potential failure of the hospital operating room system is likely to develop over
time. The major goal of hospital administrators is to make sure that medical resources
are used as efficiently as possible. Surgeries are performed when necessary, and the
patient flow is maximized without adding unnecessary expenses or having too long patient
waiting times. These goals can be achieved through appropriate planning and operations
management as most of the surgery delays or cancellations are due to the ineffective and
erroneous planning and scheduling of operation theater time [21]. It is vital to gain a deeper
understanding of the operating room system. As the literature analysis reveals, health
authorities have lost their interest in the future demands of the hospital sector. A strategy
based on SD has the potential to improve learning and prevent future errors.

Homer and Hirsch [27] argue that “The System modeling methodology is well suited
to address the dynamic complexity that characterizes many public health issues” [27]. It is
further suggested that “System dynamics shows promise as a means of modeling multiple
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interacting diseases and risks, the interaction of delivery systems and diseased populations,
and matters of national and state policy” [27]. Homer and Hirsch [27] underline the fact
that “many public health interventions fall short of their goals because they are made in
piecemeal fashion, rather than comprehensively and from a whole system perspective”.
An SD model of a hospital’s operating room system in Bangladesh provides a complete
and comprehensive picture of the system that could be a useful tool in preventing future
shortages in Bangladesh’s elderly care.

Taylor and Dangerfield [28] stress that SD is well fitted for analyzing feedback effects.
“The system dynamics method is specifically designed for the analysis of feedback mech-
anisms” [28]. In the context of hospital care in Bangladesh, several key feedback effects
play a role, and these are accounted for in the modeling exercise provided in this work.
González-Busto and García [29] address the subject of reducing patient waiting times in
the hospital service system in their paper Waiting Lists in Spanish Public Hospitals: An
Approach to the Dynamics of Systems. While their research focuses on Spanish hospitals,
the dynamics at play are also applicable to Bangladeshi hospitals. Waiting lists, according
to the article, are a sign of inefficient hospital service. Several guidelines for lowering
waiting lists are described in this article. However, it emphasizes that political counsel is
crucial. When public institutions are extremely behind, González-Busto and García [29]
recommend outsourcing private services. This strategy could be essentially for the future
surgical service of hospitals in Bangladesh.

Two groups exist in the systemic literature on hospital services: one focuses on specific
diseases while the other addresses more general political and managerial issues. Disease-
oriented literature includes oral health [30]; cardiovascular diseases [31,32]; diabetes [33,34];
obesity [35]; smoking [36]; and chronic diseases in general [37,38]. Management-focused
literature includes the adoption of EHIR [39]; telecare [40]; patient flow [41]; safe design
capacity [42]; and waiting lists [43]. We position our work as an expansion on existing work
and managerial modeling, i.e., management-focused modeling. The strategies required to
develop system dynamics capabilities in hospital environments are covered in this paper.

The aforementioned literature highlighted the dynamic characteristics of the hospital
service systems in Bangladesh and other countries, along with the applicability of SD
as a tool for modeling the hospital system. It is observed that no research has focused
on SD approach to model the operating room service systems of Bangladeshi hospitals.
SD captures significant feedback effects and enables a comprehensive understanding of
complex systems. Yet systems analysts played only a nominal role in the planning and
strategy for the hospital’s operating room. A model and analysis of the system’s dynamics
can provide valuable information. Additionally, there are currently no simulations or
empirical evidence that can shed light on the extent to which Bangladeshi healthcare
professionals and patients can benefit from the dynamic system modeling in terms of
reduced patient backlogs, shorter patient waiting times, and improved care capacity in the
healthcare operating room.

3. Materials and Method
3.1. Description of the Case Study

Patients in Bangladesh must wait for extended periods of time in the hospital, the
backlog of patients is growing, and service providers are frustrated by the mismatch
between patient demand and service availability. A well-known hospital, which is in
Jashore, Bangladesh, is the case study of this paper. The findings of this study are based
on a combination of direct observation, semi-structured interviews, SD simulations, and
empirical analysis. We received immediate access to the participants and data from the
hospital’s operating room service system in a well-known hospital system. It is preferred to
have a healthcare system providing the right care to the right patient at the right time along
with the long-run viability of the system. However, Bangladeshi hospitals have delivery
systems that frequently fail to balance the demand for healthcare with the provision of
hospital services. This can be attributed to the demand variability that makes it impossible
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to maintain the synchronization for any length of time. The most critical issue currently
facing operating theater delivery may be demand unpredictability. To ensure that the
supply of care can be synchronized to match the peaks and troughs of patient demand, new
management structures and decision heuristics must be developed. Defining, assessing,
and implementing innovative hospital operating theater service delivery management
techniques is essential for developing efficient and effective healthcare systems.

3.2. System Dynamic Model

There are seven key steps involved in developing a system dynamic model that are
shown in Figure 1. System dynamic modeling is an approach to understanding the behavior
of complex systems over time. It deals with internal feedback loops and time delays that
affect the behavior of the entire system. It is described as an analytical modeling approach
whose roots could be said to lie in the theoretical approach of general systems. Using
SD simulations allows us to see not just events but also patterns of behavior over time.
Sometimes the simulation looks backward to historical results. On the other hand, it
looks forward to the future to predict possible future results. Understanding patterns
of behavior, in lieu of focusing on day-to-day events, can provide a radical change in
perspective. It shows how a system’s structure is the cause of its successes and failures.
This structure is represented by a series of causal linked relationships. Here, Vensim PLE
for windows version 8.2.1 software and STELLA® software, version 8.0 for Windows, were
used to construct a system dynamic simulation. STELLA®, version 8.0 software was used
to develop a stock flow diagram of the hospital operating theater service (HOTS) system
whereas Vensim PLE, version 8.2.1 software provided us with the causal loop diagram of
the HOTS system. In this model following STELLA, version 8.0 software specifications
were used:
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One day is considered as the least-time unit for this model. The duration of the
dynamic behavior in this study was assumed to be 90 days. This was assumed to be
sufficient although the system parameters are subject to uncertainty.
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3.3. Causal Loop Diagram of HOTS System

A causal loop diagram is a causal diagram that depicts the relationships between
the various variables in a system. Figure 2 shows a causal loop diagram of the hospital
operating theater service system created with VENSIM PLE, version 8.2.1 software. This
figure displays three closed or feedback loops B1, B2, and B3 refer where B1, B2 are
counterclockwise and B3 is clockwise. All of them are negative feedback loops, also
referred to as balancing loops [25]. It is obvious, from Figure 2, that the HOTS system
causal loop diagram does not include a reinforcing loop.
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A causal loop diagram is used to represent the feedback loops of a system diagrammat-
ically and evaluates system components and variables. It defines the elements of the system,
causal relationships, and direction in system elements. Table 1 summarizes the HOTS sys-
tem’s balancing loops (B1, B2, and B3), elements in loop and the causal relationships and
direction in the elements of the HOTS system.

Table 1. Summary of the causal loop diagram of the HOTS system.

Loop ID Types of Loop Elements of the Loop Elements Cause Effects or Dependency

B1 Counterclockwise balancing

Patient backlog, desired care
capacity, hiring, service

capacity, patient care
completion rate.

The patient backlog grows as the patient arrival
rate rises and decreases as the patient care
completion rate rises. As the patient’s backlog
grows, so does the desired capacity. Hiring
increases with the increase in desired care capacity
and decreases with the increase in time to adjust
the workforce. With more people hired, service
capacity grows. The rate of patient care
completion rises as service capacity rises.
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Table 1. Cont.

Loop ID Types of Loop Elements of the Loop Elements Cause Effects or Dependency

B2 Counterclockwise balancing Hiring, service capacity.

Hiring increases with the increase in desired care
capacity and decreases with the increase in service
capacity and time to adjust the workforce. Service
capacity increases with the increase in hiring.

B3 Clockwise balancing
Patient backlog, maximum

completion rate, patient care
completion rate.

The patient backlog grows as the patient arrival
rate rises and decreases as the patient care
completion rate rises. The maximum completion
rate rises as the patient backlog grows but falls as
the minimum care time increases. The completion
rate of patient treatment rises as the maximum
completion rate rises.

3.4. Stock Flow Diagram of the HOTS System

The HOTS system’s stock-flow diagram is developed from the hospital operating
theater service system’s causal loop diagram (Figure 2). Patient backlog and service
capacity are state variables in the causal loop diagram, and they are represented by the stock.
The patient arrival rate represents an influx (patient/day) into the stock-patient backlog,
whereas the patient completion rate represents an outflow. The intake (patient/day) into
the stock-service capacity is measured by the workforce recruiting or firing rate. Figure 3
depicts the stock-flow diagram for the HOTS system obtained from the causal loop diagram.
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The stock flow diagram represents integral finite difference equations involving the
variables of the feedback loop structure of the system and simulates dynamic behavior of
the system. The stock-flow diagram of the HOTS system has 13 elements. They are two
stocks, three flows and eight converters. The elements or parts of the stock flow diagram of
the HOTS system (Figure 3) are introduced and categorized in Table 2.

Table 2. The parameters of the Stock flow diagram of the HOTS system.

Sl No. Element or Part Meaning of Element Category

1. Patient backlog Number of incomplete patients who are waiting to start
receiving health care service Stock

2. Service capacity Number of patients who can receive health care service
per day Stock

3. Patient arrival rate Number of patients arriving every day Flow

4. Patient completion rate Number of patients start receiving health care service
and completed in a day Flow

5. Hiring or firing rate Number of workforce changing per day Flow

6. Patient arrival Number of patients arrive Converter (boundary value)

7. Time to adjust the workforce Time for planning workfoce and hiring professionals Converter (boundary value)

8. Minimum care time Minimum time from the start of receiving health care to
completion Converter (boundary value)

9. Maximum completion rate Maximum Number of patients complete per day Converter

10. Target service time Target time to patient care
completion Converter

11. Desired care capacity Desired number of patient who can receive health care
in a day Converter

12. Gap Difference between desired service capacity and service
capacity Converter

13. Waiting time A patient’s average waiting time in hours before
receiving health service Converter

The STELLA Equations of the Stock Flow Diagram

The STELLA equations of the stock flow diagram are given below:

patient_backlog(t) = patient_backlog (t − dt) + (patient_arrival_rate −
patient_completion_rate) × dt

(1)

INIT patient_backlog = 12

A mismatch between the number of patients requiring care and the number of professionals
and infrastructures providing care affects the care capacity. If there is a higher number
patients who require health care service compared to the care capacity, then there will always
be some patient waiting to receive health service. This incomplete number of patients is
called patient backlog and for the case hospital of this study found the patient backlog to be
12 patients.

INFLOWS:

patient_arrival_rate = patient_arrival (2)

OUTFLOWS:

patient_completion_rate = MIN(service_capacity,maximum_completion_rate) (3)

service_capacity(t) = service_capacity(t − dt) + (hiring_or_firing_rate) × dt (4)
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INIT service_capacity = 2

Service capacity is the maximum number patients who can receive health service in a day.
Considering the amount of professionals and infrastructure the case hospital can provide
service to two patients per day only.

INFLOWS:

hiring_or_firing_rate = gap/time_to_adjust_workforce (5)

desired_care_capacity = patient_backlog/target_service_time (6)

gap = desired_care_capacity-service_capacity (7)

maximum_completion_rate = patient_backlog/minimum_care_time (8)

minimum_care_time = 1/3

target_service_time = 1.5

time_to_adjust_workforce = 20

Planning for the workforce and patients is performed every day. It requires future demand
forecasting, understanding the dynamic behavior of the organization for the variety of
variables. Adjusting the workforce is about hiring new professionals that requires a lot of
time and meticulous effort. Minimum time to adjust the workforce was found to be 20 days.

waiting_time = (patient_backlog/patient_completion_rate) × 24 (9)

3.5. Model Parameter Choice

This study of SD includes Forrester’s investigations of parameter determination based
on descriptive information acquired from system modeling participants. This type of data
is known as disaggregated data. Estimating parameters with disaggregated data can be
accomplished through a variety of methods, including a time-consuming technique, an
examination approach, interviewing relevant experienced persons, researching literature
and historical data, and so on. Disaggregated data from this study can be used to evaluate
the workforce adjustment period, minimal care time, target service time, patient backlog,
and service capacity. The equations for STELLA’s patient backlog and service capacity are
shown in Equations (1) and (4), respectively. Since the average value can be estimated using
data that can be generated from disaggregated data, the equation is not used to calculate it.
Only the model’s operation needs to be described by the equation.

Input Data

A reputable hospital provided the input data. For this investigation, we obtained
90 calendar days of patient arrival rate data from a HOTS system. The gathered results
are shown graphically in Figure 4. The hospital manager supplied us with rough average
statistics on the patient backlog, service capacity, minimum care time, target service time,
and time to adjust the workforce because other relevant data are not available.

Table 3 lists the essential parameter values. The model’s structural consistency is
checked, and it yields plausible behaviors.

Table 3. Parameter values of the model.

Parameter Descriptions Values

Patient backlog 12 patients

Service capacity 2 patients per day

Target service time 1.5 days

Time to adjust the workforce 20 days

Minimum care time 1/3 days
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3.6. Sensitivity Analysis

The parameters of the model were given numerical values and stated in terms of equa-
tions along with the parameter values to simulate the model once the dynamic hypothesis
was developed, which involved mapping the model’s stock and flow diagrams. One of the
key stages in model design is parameter estimation. A reliable estimate of parameters is
crucial for providing consistent system behavior throughout time. A sensitivity analysis of
the parameters is also necessary to comprehend how parameter values affect the system
behavior as well as appropriate calculation of model the parameters. Additionally, using
sensitivity analysis, one may determine the level of accuracy needed for the parameter
estimate so that the model is dependable and practical.

3.6.1. Sensitivity to Parameter Target Service Time

The parameters of an SD model contain uncertainty. As a result, sensitivity analysis is
a critical step in ensuring the correctness of simulated results and the model’s resilience
to changes in parameter values. Calculating the sensitivity of the important parameters
is a smart idea as it shows the fluctuations in output due to the fluctuation in input. The
sensitivity analysis was performed using STELLA.

Model target service time is one of the critical parameters affecting the model behavior
in this investigation. Figures 5–7 show the variations in waiting times, patient backlogs,
and the service capacity, respectively, for the target service times of 0.5 (line-1), 1.5 (line-2),
and 2.5 days (line-3). Although the patient backlog and service capacity were assessed
in terms of the number of patients per day, the waiting time in this case was calculated
in hours.

From Figures 5–7, it is obvious that with minor changes in service capacity, there are
corresponding adjustments in patient waiting times, patient backlog, and service capacity
with a higher sensitivity observed for patient wait time. In Figure 7, the service capacity is
higher for a smaller number of target service times.
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3.6.2. Sensitivity to Parameter Time to Adjust Workforce

The time it takes to adjust the workforce is one of the crucial components of this
research model. Figures 8–10 show the period to adapt the workforce of 15 days (line-1),
20 days (line-2) and 25 days (line-3), the change in waiting time, patient backlog, and
service capacity, respectively.
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From Figures 8–10, it is obvious that with minor changes in time to adjust the work-
force, patient wait time, patient backlog, and service capacity change. Higher sensitivity is
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observed for patient wait time. In Figure 10, service capacity is higher for a smaller amount
of time to adjust the workforce.

3.7. Model Validation

The validity and utility of dynamic models should be compared to the descriptive and
dynamic models instead of comparing models against a hypothetical ideal [44]. Validation
along with the sensitivity analysis is one of the major tests for building trust in the SD
model. Thus, it is the process of developing confidence in the model’s soundness. The
following tests can be used to build confidence in SD models:

i. Structural tests;
ii. Behavior tests;
iii. Policy implications tests.

It is vital to remember that not all tests should be run while validating a model, instead,
only the tests required to determine the model’s credibility should be performed. In this
study, three types of structural tests and one type of behavior test were performed for
model validation.

• Structural Tests of the model

The structure validity tests are the initial step in validating a SD model. The validity
of the model structure is determined by comparing the model structure to real-world data
in direct validation structure tests. It is performed by comparing mathematical equations
and logical relationships to real-world knowledge. There is no need to simulate the model.
Structure confirmation tests are the most difficult to do because we must directly compare
the model’s equations with the information of the real system. It is the model’s qualitative
validation. Three tests were run in this instance, including the structure validation test,
parameter validation test, and the extreme condition test.

3.7.1. Structure Validation Test

The model’s equations are empirically compared to relationships found in the real
world using the structural validation test. The relationships between the equations in
the model should match the system’s descriptive knowledge. The aims, pressures, and
constraints of the real system should be reflected in the structure of the model. Compared
to certain other tests, verifying a model’s structure is easier and requires less expertise.
Table 4 contrasts the correlations in the real world with the model equations.

Table 4. Comparing the equations of the model with relationships in the real system.

STELLA Equation No. STELLA Equation Relationships Exist in the Real System
Based on Knowledge and Literature

1
patient_backlog(t) = patient_backlog (t − dt) +
(patient_arrival_rate − patient_completion_rate)
× dt

Patient backlog is the backlog of patients waiting
for service. It is calculated by the summation of
previous and present values.

2 patient_arrival_rate = patient_arrival The patient arrival rate is the arrival rate of
patients per day.

3 patient_completion_rate = MIN
(service_capacity, maximum_completion_rate)

The completion rate of patients is the lesser of the
maximum rate or the potential rate at which a
provider sees patients.

4 service_capacity(t) = service_capacity (t − dt) +
(hiring_or_firing_rate) × dt

The rate at which tasks are completed is affected
by service capacity, which is influenced by hiring.
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Table 4. Cont.

STELLA Equation No. STELLA Equation Relationships Exist in the Real System
Based on Knowledge and Literature

5 hiring_or_firing_rate =
gap/time_to_adjust_workforce

The rate at which people are hired or fired is
determined by the difference between desired and
actual service capacity, as well as the speed with
which managers can adjust capacity.

6 desired_care_capacity =
patient_backlog/target_service_time

Capacity for providing care to complete demands
as desired within the specified time frame, the
backlog divided by the target time must equal the
completion rate.

7 gap = desired_care_capacity-service_capacity The disparity between desired and actual
completion rates is known as the gap.

8 maximum_completion_rate =
patient_backlog/minimum_delivery_delay

The backlog and the minimal time to finish the
request determine the maximum completion rate.

9 waitting_time =
(patient_backlog/patient_completion_rate) × 24

According to Little’s law, waiting time is
computed by dividing the patient backlog by the
patient completion rate. We multiply day units by
24 to convert day units to hour units.

The linkages in the equations of our study model structure are consistent with the
descriptive information of the system, as shown in Table 4. All the equations are supported
by evidence and based on available data. The model’s structure corresponds to the real
system’s observable goals, pressures, and restrictions.

3.7.2. Parameter Validation Test

The second structure test, called the parameter confirmation test, compares constant
parameters to actual data conceptually and numerically. In the actual world, each constant
(and variable) should have a separate meaning. The objectives of the two tests, structural
and parameter verification, are related and shared. Sensitivity analysis has already finished
the model’s parameter validation tests. The desired service time (according to Figures 5–7)
and the time to adapt to the workforce (according to Figures 8–10) are two parameters
that were validated. Based on the findings of the sensitivity analysis, the graphs show the
expected results.

3.7.3. Extreme Condition Test

This is an important direct structural test for the model’s robustness under direct ex-
treme situations, which analyzes the validity of the equations by comparing the plausibility
of the generated values to what would happen in real life under similar conditions. It is
simple to predict which variables and what values they will take in a real-world system
under extreme conditions. To detect a problem in the model structure and to improve
the model’s usefulness for policy research, the model of the HOTS system is evaluated
under extreme situations. One extreme condition for the HOTS system may certainly be a
50% reduction in patient arrival rate. Figure 11 shows the simulated waiting time, patient
backlog, and service capacity under a 50% reduction in patient arrival rate. Since the patient
arrival rate is reduced by 50%, the waiting time, patient backlog, and service capacity are
reduced in this diagram. The reductions are compared to the results shown in Figure 12,
which are obtained under normal conditions. The outcomes followed the expected patterns
of outcomes and reality. As a result, the model was proven to be dependable and valid in
extreme conditions.
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• Behavior Tests of the model

The behavior validity tests are the second critical phase in the validation of an SD
model, and they should be performed after the structural validation tests. A behavior
sensitivity test is run to show how responsive the model behavior is to variations in
parameter values. This is like the sensitivity analysis where variations in output are
measured with respect to input. The parameter sensitivity test assesses whether or not a
model would fail previously passed behavior tests when realistic changes in parameter
values occur. To address the effects of the two parameters, target service time and time to
adjust the workforce, a sensitivity analysis of the HOTS system was simulated. Figures 5–7
depicted the effect of target service time, whereas Figures 8–10 depicted the effect of
workforce adjustment time. The system dynamic model of the HOTS system parameters
was found to be sensitive to the changes in input parameter values of the target service time
and the time to adjust the work force. This can be attributed to the model of a real system.

4. Results and Discussion

A system dynamic model of HOTS was developed to identify and accurately foresee
patient demand for diversity promptly and match the service capacity with the fluctuating
patient demand. It was realized that the model can predict future situations and it is valid.
So, it will help maintain service capacity and make better decisions. If the service capacity
of the HOTS system can satisfy the patient demand variation, the patient backlog and
patient waiting time will be reduced.

According to the causal loop shown in Figure 2, patient backlog rises with higher
patient arrival rates and falls with higher patient care completion rates, while desired care
capacity rises with higher patient backlogs. Similarly, hiring rises with higher desired
care capacity and falls with higher time to adjust the workforce, and service capacity rises
with higher hiring. The patient care completion rate also rises. The HOTS’s causal loop
diagram makes it easier to see how different variables in the system are connected. The
managers of the healthcare operating theater system will be able to better grasp the links
and dependencies among operating theater variables.

From the sensitivity analysis, it is obvious that with minor changes in input parameters,
such as target service time and time to adjust workforce, the patient waiting time, patient
backlog, and service capacity change. This can be observed in Figures 5–10 and all the
graphs indicated predicted results.

Patients are currently complaining in substantial numbers about the HOTS system,
which is solely the result of poor management and poor planning. Patients may have
to wait four, five, or even more days to begin receiving their healthcare service, which
increases the risk of patient death. The inability of the HOTS system’s management to
match service capacity with fluctuating patient demand leads to a backlog of patients and
lengthy wait times. Our model is accurate and can forecast future events. As a result, it
will help with decision making and maintaining the service capacity. If the service capacity
can accommodate the variation in patient demand, the patient backlog and waiting time
will be reduced.

5. Conclusions

Because of the aging population and increasing demand for hospital services, operat-
ing theater managers in Bangladeshi hospitals are having serious capacity planning issues.
Traditional approaches to dealing with hospital mismanagement can lead to severe conse-
quences because of the increased patient backlog and longer waiting time. Hence, there is a
need to route the patient’s treatment path toward a properly managed and well-organized
healthcare system.

This study used conceptual modeling to depict patients’ treatment paths. Our qualita-
tive model helps researchers better understand the resources needed during their journeys.
The SD model was developed to help in understanding the dynamic complexity induced by
various aspects of HOTS system. The causal loop diagram displays the problem’s feedback



Logistics 2023, 7, 85 19 of 21

structure and highlights the connections between the pertinent variables. The flow of
patients from the HOTS system’s input point to exit point is then depicted in a stock-flow
diagram. The model can be helpful to policymakers in their efforts to understand and solve
issues with hospital operating room patients, service capacity, and projecting the outcomes
of prospective related initiatives, despite its small size and complexity.

The SD model is extremely useful for anticipating the impact of future events on
service performance. Its key advantage is its capacity to qualitatively evaluate numerous
hypothetical scenarios because of the ease with which acute and post-acute care capacities,
as well as the model’s parameters, can be adjusted. Combining a stock and flow system
appears to be more efficient than utilizing either method independently. Stock measures,
such as expanding post-acute capacity, may only briefly alleviate the situation and may
even drive increased demand, which may seem counterintuitive. A combination of stock
and flow interventions, on the other hand, was proven to be potentially extremely beneficial
in lowering constraints on acute service supply.

The SD model is helpful for predicting how future events may affect the performance
of a HOTS. Due to the ease with which acute and post-acute care capacities, as well as
the model’s parameters can be changed, it can qualitatively evaluate a wide range of
speculative scenarios. Combining a stock and flow system is more effective than using
each strategy separately. Expanding post-acute capacity is one example of a stock measure
that may only temporarily improve the situation and may even boost demand, which may
seem paradoxical. On the other hand, it was demonstrated that a combination of stock and
flow interventions has the potential to be incredibly helpful in reducing supply bottlenecks
for acute services. Academics and planners can gain valuable insights from these findings.
This outcome also illustrates the value of advanced planning approaches like SD and how
they can be applied to assess suggested strategies prior to implementation. Continuous
data gathering must be required in each local community for the model to help decision
makers identify the essential local level efforts.

Only the relevant hospital patients and operating theater service systems are included
in the model. Another significant obstacle is the difficulty of data collection, as most of the
hospitals did not have all the previously significant data on file. Based on their experiences,
the hospital management provided us with approximate average numbers for multiple
parameters. Our model was assessed using only three distinct structural tests and one
behavior test. Further research can be conducted on the SD modeling of hospital operating
theater service systems, building on existing studies.

Future research could broaden this study’s scope to encompass all patients and the
entire hospital system. All significant information that may be needed for management,
development, or future research should be retained by the hospital. More research on a
hospital operating theater model should be performed using precise data for each parameter
to ensure more trustworthy results. All tests that increase confidence should be taken into
consideration in further studies.
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