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Abstract: Background: Over the past decade, the potential advantages of employing deep learning
models and leveraging auxiliary data in data-driven end-to-end (E2E) frameworks to enhance inven-
tory decision-making have gained recognition. However, current approaches predominantly rely
on feed-forward networks, which may have difficulty capturing temporal correlations in time series
data and identifying relevant features, resulting in less accurate predictions. Methods: Addressing
this gap, we introduce novel E2E deep learning frameworks that combine Convolutional Neural Net-
works (CNN) and Long Short-Term Memory (LSTM) for resolving single-period inventory ordering
decisions, also termed the Newsvendor Problem (NVP). This study investigates the performance
drivers of hybrid CNN-LSTM architectures, coupled with an evolving algorithm for optimizing
network configuration. Results: Empirical evaluation of real-world retail data demonstrates that our
proposed models proficiently extract pertinent features and interpret sequential data characteristics,
leading to more accurate and informed ordering decisions. Notably, results showcase substantial
benefits, yielding up to an 85% reduction in costs compared to a univariate benchmark and up to 40%
savings compared to a feed-forward E2E deep learning architecture. Conclusions: This confirms that,
in practical scenarios, understanding the impact of features on demand empowers decision-makers
to derive tailored, cost-effective ordering decisions for each store or product category.

Keywords: inventory optimization; newsvendor problem; deep learning; CNN-LSTM; evolving
algorithms; end-to-end approaches

1. Introduction

Companies have experienced a major shift from being operations-focused to becoming
technology- and digitalization-oriented. In the operations management field, prescriptive
analytics has become a noticeable hotspot of research that has been empowered by the
latest developments in digital technologies with access to big data. Recent studies on the
applications of data analytics in logistics and supply chain management confirmed the
beginning of the big data era in operations management [1].

The conventional method to achieve ordering decisions, i.e., the model-based ap-
proach, assumes a known distribution for the demand. However, this approach does not
conform to the current highly uncertain and rapidly fluctuating demand landscape. The
surge in data availability and the rapid development of information gathering mechanisms
have given rise to new data-driven methods, enabling more accurate and well-informed
decisions. In this contribution, we focus on the development of data-driven approaches
as prescriptive methods for achieving inventory ordering solutions, and we consider as
data-driven the models in which the available data is the main interface adopted to achieve
decisions [2].

The pivotal advantage of data-driven optimization over their traditional model-based
counterparts lies in the use of high volume and good quality data to explore external
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factors, also called features, covariates, or contextual information, to identify patterns
and relationships that affect demand, which is very useful to assortment planning and
inventory management problems affected by frequent disruptions. The current challenge
is how to best ponder this access to digitalization to optimize operational systems for
better decisions and to discern the scenarios in which data-driven methods outperform
conventional model-based approaches [3].

This study centers on the data-driven resolution of single-period inventory problems,
commonly known as the Newsvendor Problem (NVP). These types of problems require
precise decisions since they hinge on a delicate trade-off between ordering quantities for
perishable goods and mismatching costs. If there is more demand than the predicted order
quantity, stock-outs will occur, and customers will be unsatisfied. Conversely, if there are
more products than the expected demand, the company must bear the overstocking costs.

Data-driven solutions for the NVP can be achieved by a two-step framework, also
called separated estimation and optimization (SEO), that consists of first estimating the
demand and then considering the overstocking and understocking costs in the subsequent
optimization step. In this method, the prediction and the decision optimization problem
are linked sequentially by two unrelated loss functions. This framework is more flexible
since the loss function adopted is independent of the optimization problem. However,
we have two separate optimization problems that are not congruent, which may lead to
suboptimality [4]. Another way of achieving data-driven solutions is through a single-
step framework, also named end-to-end approaches (E2E), which consists of a single
optimization problem that integrates forecasting and optimization directly, considering the
expected cost mismatch in inventory decisions. It has the strength of directly linking the
features to a final decision. However, the framework must be tailored to a specific problem.

The existing body of research on data-driven E2E methods for the NVP is still in its
infancy, with the prominent studies focusing on linear decision mapping for the ordering
decisions, as in [5] with a linear programming approach and [6] with the development of
a framework based on the Empirical Risk Minimization (ERM) principle. Additionally,
machine and deep learning methods have proven to be powerful and flexible approaches
to modeling single-step inventory problems, as shown in [7–13]. However, the studies
that adopted neural networks as a data-driven solution for the NVP predominantly relied
on Multi-Layer Perceptron (MLP) architectures. While effective in many contexts, MLP
architectures may face challenges in accounting for the time correlation aspect of time series
data, potentially leading to inventory decisions with lower accuracy and higher variance.
Moreover, the adoption of evolving deep learning frameworks in the context of inventory
optimization, especially those combining hybrid neural network architectures, remains
understudied.

To address this gap, we turn to Long Short-Term Memory (LSTM) and Convolutional
Neural Networks (CNN), which are better suited to model time series data that is attached
to external features with different demand patterns across hundreds of products. These
architectures have demonstrated promising results in passenger demand [14], finance [15],
traffic prediction [16], price forecasting [17], e-commerce [18], and retail sales [19]. The
challenge of efficiently modeling time series data with external features, however, remains
understudied in the context of inventory optimization.

Furthermore, it remains an open question in which settings the data-driven approaches
are more accurate and applicable than their model-based counterparts, and under what
scenarios the single-step E2E solutions outperform the two-step methodologies. This
study seeks to explore an operations research problem through the lens of integrating
multiple features of information to reach solutions. For that, this contribution focuses on
the development of evolving hybrid deep learning E2E solutions for the NVP. We delve
into the performance drivers of hybrid CNN-LSTM architectures in conjunction with an
evolving algorithm for determining the optimal neural network configuration.

Given the identified research gaps, this study aims to address the following research
question: “Can evolving hybrid deep learning models, specifically the ones based in
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the CNN-LSTM architecture, effectively address the challenges of single-step inventory
decision-making by efficiently utilizing time series data with external features and dynami-
cally adapting network configurations?”.

To answer this question, we propose two hybrid deep neural network architectures
based on CNN and LSTM that consider both temporal and external variables to reach the
newsvendor decisions in a single E2E step. We design parallel (P-CNN-LSTM) and stacked
(S-CNN-LSTM) architectures to make the best use of the data available in each module. In
addition, our models adopt the principle of evolving networks by adopting a Grey Wolf
Optimizer (GWO) algorithm to choose the best architecture configuration according to the
input data and the cost settings. Our approaches were empirically tested on a dataset from
a retail company and outperformed the model-based and data-driven benchmarks.

This work advances the literature in several key aspects: (1) It introduces a single-step
E2E framework that automatically determines the best newsvendor order quantity for
several products based on various demand characteristics. This is achieved through an
innovative deep neural network design that captures the temporal sequence aspect of
the time series and identifies the relevant external features and cross-product interactions
that influence demand. (2) To the best of our knowledge, this is the first work in data-
driven inventory optimization based on deep learning that adopts an evolving hybrid
deep architecture for single-step newsvendor decisions, automatically configuring the best
network based on the available data. (3) We study in which circumstances the data-driven
approaches lead to better quality results when compared with the traditional model-based
methods and explore the characteristics and performance drivers of the single and two-step
methods to identify which is better replicable in a real-world setting and leads to better
decisions. (4) Our E2E model streamlines the decision-making process for the supply chain
industry, with potential applications extending beyond it as it adeptly generalizes various
demand patterns and replenishment strategies.

The remainder of the paper is organized as follows: the related literature is detailed in
Section 2. In Section 3, we introduce the deep neural network foundations that support
the deployment of the proposed methods. Additionally, the big data-driven single-period
inventory model is described, and details about the evolving CNN-LSTM architectures
are presented. Section 4 evaluates the empirical results for the case study and compares
them with a set of benchmark models. Lastly, the conclusions, managerial implications,
and future research directions are highlighted in Section 5.

2. Related Literature

Single-period inventory problems are traditionally solved by assuming that the de-
mand follows a specific probability distribution [20], which is unlikely to happen in realistic
scenarios that have multiple products with complex time dependencies and external infor-
mation attached to the demand data. Therefore, there are two large groups of approaches
to solving inventory problems with unknown demand distribution: the parametric and
nonparametric approaches [21].

In the first group, the Bayesian approach corresponds to the earliest solutions that
were developed [22], which assumes that the unknown demand belongs to a parametric
distribution family to reach the newsvendor solution in two separate steps for parameter
estimation and inventory optimization. Operational statistics is another parametric ap-
proach that was designed to perform demand estimation and optimization simultaneously,
as in previous literature [4,23–25]. The assumption that the decision-maker knows which
distributional family the demand belongs to is still a limitation of this method.

Our focus is on the nonparametric approaches since they require no demand distribu-
tion assumptions and rely only on empirical information to achieve solutions. They are
also referred to in the literature as data-driven. This study follows the big data terminology
adopted in [6] that classifies multi-variate data-driven methods as big data, meaning that
exogenous variables are directly considered in the decision model. Conversely, univariate
data-driven methods only take into account the product demand information itself. In
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real-world scenarios, demand data is often dependable for a set of features, highlighting
the need to evaluate if data-driven models based on feature data indeed improve accuracy
in decision-making.

In the group of data-driven approaches that do not consider external information,
Sample Average Approximation (SAA) is a method that replaces the demand assumptions
with empirical data and was first studied to solve the NVP by [26]. Ref. [27] extends this by
proposing a tighter bound on the probability that the regret exceeds a threshold.

In the group of data-driven approaches that do consider external information, there is
a recent research stream that focuses on adopting machine learning (ML)-based methods to
determine ordering policies in the NVP, where the policy that maps the feature space to the
decision space can be treated as a hypothesis to be learned through a learning algorithm
following the Empirical Risk Minimization (ERM) principle [28].

Following this line of work, ref. [5] designed the optimal inventory levels in the
first study that proposed an integrated single-step procedure as the decision variables of
linear programming. Ref. [29] extended this approach by studying censored demand
and price-dependent scenarios. Ref. [6] proposed a linear hypothesis for the feature map
based on the ERM with regularization and derived sample performance bounds for the
out-of-sample costs.

Ref. [8] built a Multi-Layer Perceptron (MLP) neural network solution for the multi-
feature NVP. The authors highlighted that the NVP-integrated solution is equivalent to
quantile regression (QR). Ref. [10] presented a similar MLP architecture solution for the
multi-feature NVP and a heuristic to solve a multi-item NVP with a capacity constraint.
Ref. [30] proposed a double parallel feed-forward network as a single-step method for
quantile forecasting and tested their model to solve the NVP.

Ref. [9] developed a multi-step local regression method based on a few ML methods
and proposed a coefficient of prescriptiveness to measure the efficacy of an operations
policy. Ref. [12] reproduced a kernel Hilbert space to propose a global ML method to
predict the objective and optimizer.

Ref. [11] developed an end-to-end solution for the multi-item NVP by transforming
the traditional NVP formulation into a loss function for a deep learning approach. The
MLP-based model indeed outperformed other ML approaches, even with a small number
of data points or high fluctuations in demand, which was a significant limitation in [8].

Ref. [7] also studied the NVP loss function for an end-to-end deep learning solution
based on MLP. They highlighted the need to study how product demand relates to each
other and how these relations evolve over time, characteristics that might be ignored due
to the nature of MLP architectures that overlook the sequence aspect of time series data
or have difficulty identifying and filtering relevant external information attached to the
data. We intend to address this issue by proposing neural network architectures that are
designed to simultaneously consider the time aspect of the data and capture the relevant
features across different products and stores.

Recently, ref. [13] proposed an algorithm integrating neural networks and hidden
Markov models to solve the data-driven NVP. Lastly, ref. [31] extended the [6] method
to the non-linear case by maximizing the profit instead of minimizing the expected cost
and conducted experiments with ARIMA models. Figure 1 presents an overview of the
literature that was discussed in this section to correlate the mentioned studies and position
our contribution.
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3. Methodology

The details of the big data-driven NVP are presented in Section 3.1; a brief explanation
of deep neural networks is introduced in Section 3.2; and the proposed approaches are
exhibited in Section 3.3.

3.1. Problem Description

Single-period inventory problems are designed to achieve ordering decisions for goods
that have a limited selling season, such as dairy products, fashion and technology goods,
newspapers, and airline tickets. The decision-maker purchases the goods at the beginning
of the selling season and assumes that they will all be sold during this specific time window.
A cost of overage Co per unit is incurred at the end of the selling season if there are excess
goods remaining. On the other hand, a cost of underage Cu per unit occurs if there is a
stock-out of the product and the demand cannot be completely fulfilled. Therefore, the
company aims to achieve ordering decisions that will minimize the expected sum of these
costs, known as the mismatch cost. Readers are referred to [20,32] for further details. The
optimal order quantity is obtained by solving an optimization problem where d is the
random demand, q is the order quantity, Co and Cu are the holding and stock-out costs
per unit, respectively, and ( f )+ := max{0, f }. This optimization problem is formulated in
Equation (1).

minC(q) =
q

Ed

[
Cu(d− q)+ + Co(q− d)+

]
(1)
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It is well known that the solution for newsvendor-like problems is given by a particular
quantile of the cumulative demand distribution, where Cu/(Cu + Co) is the optimal service
level represented in Equation (2).

q∗ = F−1
(

Cu

Cu + Co

)
(2)

In traditional solutions to this problem, the demand distribution and its parameters
are assumed to be known, but this approach does not reflect realistic, complex scenarios.
This contribution studies the big data-driven NVP, meaning that no demand distribution
assumptions are made and the data is attached to external features as represented below.
There are n historical observations about z products with m features, where xp

i ∈ Rm and
dp

i ∈ R for i = 1, . . . , n and p = 1, . . . , z.{(
x1

i , d1
i

)
, . . . , (xz

i , dz
i )
}n

i=1

Therefore, in this paper, we train our proposed deep neural network models with a
modified loss function that directly considers the operational costs of reaching inventory
decisions in a single step, without demand distribution assumptions or the need to perform
the point forecast estimation and inventory optimization steps separately. In the training
phase, the demand observations (dp

i ) and their related features (xp
i ) are adopted to calculate

the NVP costs and update the weights in the network in a direction to minimize the average
costs. The modified loss function is expressed in Equation (3).

Li = min
q1

i ,..., qz
i

1
z

[
z

∑
p=1

(
Cu

(
dp

i − qp
i

)+
+ Co

(
qp

i − dp
i

)+) ]
(3)

Li is the loss value of the i-th observation, i = 1, . . . , n that minimizes the cost of the
ordering quantities q1

i , . . . , qz
i . Given that at least one of the two terms in the loss function

must be zero, it can be rewritten as in Equation (4).

Lp
i ≡ Cu

(
dp

i − qp
i

)+
+ Co

(
qp

i − dp
i

)+
=

 Co

(
qp

i − dp
i

)
, qp

i ≥ dp
i

Cu

(
dp

i − qp
i

)
, dp

i ≥ qp
i

(4)

The order quantity qp
i is optimized in the training process based on the weights of the

neural network being updated iteratively following the loss function that directly considers
the trade-off between underage and overage costs instead of only predicting the demand dp

i
as in the SEO method that first performs the forecasting step to then solve an optimization
problem in the second step with two unrelated loss functions.

3.2. Deep Neural Networks

The proposed end-to-end inventory decision model consists of two main components:
the hybrid CNN-LSTM network and the GWO method. CNNs were developed to identify
and extract the most relevant features and correlations that impact the model outputs. For
that, the convolution operation is responsible for detecting the feature maps by sliding
filters over the input data [33]. The convolution kernels are then responsible for the matrix
multiplications, and the selected feature maps are aggregated and compressed in the
pooling layer. Each convolutional layer is responsible for extracting 1-D convolutional
features from the time series of a product.

LSTM, which is a recurrent network variation, was developed to interpret long-term
temporal dependencies. It is based on the principle of a gradient calculation structure
that is updated at every step of the training process, which reduces the probability of
vanishing [34]. This type of architecture is controlled by memory cells in the hidden layers
that monitor the flow of information with three gates: forget, input, and output. The
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weights of the connections during the training process determine the operation of these
gates [35]. These characteristics in the training process enable LSTM to learn long-term
dependencies and effectively model sequences [36], making it the best suited for complex
time series forecasting problems with external data. For comprehensive reviews of deep
learning architectures, we refer readers to [37].

GWO is adopted to reduce the time-consuming and computationally expensive activity
of manually engineering the parameters of the proposed neural network architectures for
each cost combination and target service level. This technique is based on evolutionary
algorithms to optimize the network configuration used to predict ordering decisions. GWO
explores the parameter space of the hybrid CNN-LSTM architectures to determine the best
configuration for each problem circumstance. GWO is a swarm intelligence algorithm
proposed by [38] that acts based on the idea of social hierarchies and hunting habits of
grey wolves. We refer the readers to [38] for the formulations and further technical details
about GWO that are beyond the scope of this paper. This work is the first to adopt GWO
as a search algorithm for the CNN-LSTM architecture in the context of inventory problem
optimization.

3.3. The Proposed Evolving CNN-LSTM Models

In the proposed models, the CNN is combined with LSTM to construct accurate feature
map representations while preserving the temporal aspects embedded in the time series
data and removing irrelevant or redundant variations. A fully connected layer is adopted
subsequently for the nonlinear transformations on the extracted features to produce the
outcomes. In addition, an evolving process based on GWO is adopted to establish the
optimal configurations of the hybrid network, i.e., the number of hidden nodes and kernel
size. Then, the optimized CNN-LSTM chosen for a specific target service level is adopted
to produce the ordering decisions.

We begin by determining two base architectures for the hybrid CNN-LSTM models
that later will have their parameter configuration tailored by the GWO algorithm. The
first one is a parallel organization of the layers, which separates the CNN and LSTM as
two different pipelines that are concatenated at the end of the process to reach the out-
puts. The second architecture is stacked, with both pipelines being organized sequentially.
Figures 2 and 3 represent the parallel and stacked architectures, respectively.
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In the recurrent module of both architectures, two LSTM layers are followed by a
dropout and a fully connected layer. Dropout [39] is a strategy adopted at the end of each
module to prevent overfitting during training by removing a few units that will assist the
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model generalize better. In the convolutional module, there are three 1D convolutional
layers that are followed by average pooling layers with padding. The selected feature maps
are then flattened and applied to a dropout layer, followed by a fully connected layer. In
the parallel architecture, the outputs of both modules are united by a concatenation layer
to produce the final predictions.
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Two different architectures are proposed to evaluate whether the parallel model makes
better use of the data available in each pipeline when compared with the conventional
stacking of layers. Ref. [16] empirically demonstrated that a parallel CNN-LSTM architec-
ture outperforms its stacked counterpart in a model for metro ridership prediction. Since
the research on hybrid deep learning approaches for inventory decisions is still in an early
stage, we constructed a parallel model to evaluate its performance for the end-to-end NVP
solution with a multi-feature time series dataset.

In stacked architectures, when adopting the strategy to begin the model with CNN
layers to feed the LSTM with the selected features, such as in [40,41], we cannot ensure that
both models are aligned, and relevant data for the LSTM might be discarded during the
CNN process since their outputs may not represent the original temporal sequence from the
time series. In other words, the focus of the CNN is to reduce the data dimensionality by
choosing the most relevant features, which may impact the feature-temporal information in
sequential types of data. Therefore, for the stacked architecture, we begin the model with
two LSTM layers to then feed the CNN.

In comparison with pure deep learning architectures, our proposed hybrid architecture
presents a more complex interaction between hyperparameters of the CNN and LSTM
modules, therefore requiring a careful choice for the network structure that is automatically
performed by the GWO algorithm. There is a range of hyperparameters that can be tuned
by search algorithms, e.g., learning rate, dropout rate, pooling size, number of hidden nodes
and filters in each layer, filter size, etc. However, the larger the number of parameters and
their search range, the longer the training of the neural network. The decision-maker needs
to consider this trade-off when building the models, since a search algorithm with too many
parameters to be decided can become very computationally expensive, time-consuming,
and infeasible for decision systems with hundreds or thousands of products.

The goal of this study is to propose a robust method that can be replicated in complex
real-world settings. Therefore, we opt for adopting GWO to choose the best structure
defined by the number of hidden nodes in each layer and kernel size, which will simplify
the search process and reduce the training time while producing a network with very good
results. Figure 4 depicts the overall ordering decision process.

The parameter search for the CNN-LSTM model occurs as follows: The GWO pop-
ulation is randomly initialized, with each individual (wolf) representing a possible con-
figuration for the CNN-LSTM model. Each of these models is trained using the training
dataset. With the validation set, the decision mismatch cost is computed by adopting the
newsvendor loss function that directly considers the cost of underage and overage for the
ordering quantity calculation. The three best-scoring solutions are employed to guide the
wolf population toward global optimality. The optimal network configuration obtained
is the final CNN-LSTM model. Lastly, the model is trained again, adopting the training
and validation sets to be evaluated with the test set. The pseudo-code for the GWO-based
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CNN-LSTM model is detailed below in Algorithm 1. Section 4 empirically studies the
performance of the parallel and stacked architectures tailored by GWO and compares them
with benchmarks.
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Algorithm 1: GWO-based CNN-LSTM Training

Input: Train and validation datasets containing product sales information and external features
with their respective labels
Output: Optimized model to be used for predicting ordering decisions
Initialization
1: Start a grey wolf population with a specific CNN-LSTM structure being represented by each
individual.
2: Given training, validation, and test sets
3: for each wolf i in the population do
4: decode i into a CNN-LSTM model
5: train the network with the training set
6: evaluate the model’s performance based on the mismatch cost

with the validation set
7: end for
8: Identify the three leader wolves (xα, xβ, xδ) with the best performance
9: while y ≤ Itermax do
10: evolve the wolf population following the mechanism described

in lines 3–7
11: end while
12: Output the solution with the best result (xα)
13: Decode (xα) into its corresponding CNN-LSTM model
14: Train the optimized network with the training and validation sets
15: Evaluate the network with the test set
16: Output the results
17: end
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4. Experimental Design and Discussion of Results

In this section, the performance of the proposed hybrid GWO-based CNN-LSTM
models is tested using a real-world retail dataset from the Kaggle platform [42]. Section 4.1
details the dataset used and its preparation. Section 4.2 describes the benchmarks that
are adopted for comparison. Section 4.3 details the experimental setup for training the
CNN-LSTM models and the different benchmarks. Section 4.4 presents the results and
managerial implications.

4.1. Dataset Overview and Preparation

The public dataset was acquired from the Kaggle online platform, and it corresponds
to daily point-of-sale information for 500 hundred products divided into 10 retail stores
over a period between 2013 and 2017, comprising of 1826 data points for 500 time series.
Figure 5 illustrates the point-of-sale data of product 1 from store 1 over one year to reflect
the nature of the dataset.
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The focus of this study is to evaluate the performance of the proposed hybrid architec-
tures in a big data environment, which means that the data is attached to external features
that may impact the learning process. Therefore, the dataset is enriched with categorical
features in a one-hot-encoding format (each category is indicated by a binary variable)
representing the day of the week, month of the year, and United States of America holiday
calendar. In addition, the sales information is regrouped in such a way that the product
information is combined per day, which will enable the model to evaluate if the daily sales
have a relationship between products and stores. After, the dataset is divided into training,
validation, and test sets and scaled to a 0 to 1 range, which will assist the models in deriving
better results and reducing the training period.

4.2. Benchmark Methods

In addition to implementing our end-to-end deep learning models (P-CNN-LSTM and
S-CNN-LSTM), several benchmarks are implemented for comparing the performance, as
described next.

A key contribution of this paper is to study whether the integrated approaches are
superior and better replicable than the traditional separated estimation and optimization
(SEO) methods. In addition, we want to evaluate whether data-driven methods are indeed
superior to their model-based counterparts. Therefore, to provide a fair analysis of the
proposed integrated CNN-LSTM methods, we compare two variations of SEO methods:
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model-based and data-driven. In the model-based SEO method, once the point forecast
is estimated with one of the CNN-LSTM architectures, we assume a normally distributed
error distribution and solve the order quantity q∗(x) by estimating a specific quantile of
the distribution. Consider d̂(x) as the mean forecast based on x features, with µ̂ and σ̂ as

the estimated parameters of the error distribution
∼
F(.). The order quantity is calculated

following Equation (5):

q∗(x) = d̂(x) + in f
{

y :
∼
F(y, µ̂, σ̂) ≥ Cu

Cu + Co

}
(5)

For data-driven SEO, once the point forecast is estimated with one of the CNN-LSTM
architectures, the error distribution is determined by empirical forecast errors ε1, ε2, . . . , εn
instead of assumptions. The newsvendor order quantity q∗(x) becomes as in Equation (6).

q∗(x) = d̂(x) + in f

{
y :

1
n

n

∑
i=1

I(∈i≤ y) ≥ Cu

Cu + Co

}
(6)

Another contribution of this study is to compare the hybrid CNN-LSTM architectures
with the MLP architectures adopted in studies for end-to-end inventory decisions. In
this aspect, a deep neural network MLP model similar to the ones proposed by [7,11] is
adopted. We evaluate this architecture for the integrated method (MLP-E2E) and for both
model-based (MLP-Normal) and data-driven (MLP-Empirical) SEO methods.

Moreover, we adopt a Naïve approach based on demand forecasting with Lasso
regression to make demand predictions and directly adopt them as order quantities without
considering the underage and overage costs to reach the decisions. This baseline method
is valuable to analyze the effects of not considering demand uncertainty on inventory
decision costs. Lastly, the Sample Average Approximation (SAA) proposed by [26] is
implemented to evaluate the effects of not considering data features on big data-driven
inventory problems.

4.3. Experimental Setup

The data preparation and deployment of the proposed models are executed in Python,
adopting the Keras Framework [36] with a TensorFlow backend [43]. The neural network
weights are optimized using Adaptive Moment Estimation-based algorithm (ADAM) [44]
on an AMD Ryzen R5-3600 CPU at 3.6 GHz and 32 GB of RAM with an Nvidia RTX2060
GPU. The deep learning benchmarking models are also implemented with Keras. The
Naïve and SAA methods are executed in Python, and the latter is solved with Gurobi
Optimizer [45].

The main structure and the training procedure for the GWO-based CNN-LSTM models
are explained with further details in Section 3. For the integrated end-to-end methods,
the newsvendor loss function is adopted for training, as in Equation (3). In the separated
estimation and optimization methods, the demand estimation models are trained adopting
Mean Squared Error as the loss function, and the following NVP is solved either assuming a
normal distribution or adopting the empirical error distribution as in Equations (5) and (6),
respectively.

Once the dataset is prepared and the architectures’ main structure is defined, it is
time to establish the hyperparameters. As mentioned in Section 3, the GWO algorithm
was adopted to determine the best configuration in terms of the layer and kernel size, but
other parameters are manually pre-determined with the aim of reducing the search space
in the algorithm and training time. The values of dropout, batch size, learning rate, and
weight initialization are strategically chosen for the models to generalize well and converge
quickly. Table 1 describes the hypermeters and their range values considered. Table 2
details the search parameters in the GWO algorithm for the network structure.
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Table 1. Hyperparameters considered.

Hyperparameter Chosen Value Range Considered

Learning Rate 0.001 [0.0001, 0.001, 0.01]

Weights Initialization µ = 0, σ = 0.05
Gaussian [Gaussian, Uniform]

Std. Deviation 0.05 [0.01, 0.02, 0.03, 0.04, 0.05]
Dropout rate [0.2, 0.3] [0.1, 0.2, 0.3, 0.4]

Batch size 32 [32, 64, 128, 256]

Table 2. Search range for the GWO algorithm.

Hyperparameter Range Considered

LSTM hidden nodes [50–500]
CNN number of filters [50–500]

Dense layer [100–500]
Kernel size [1–5]

4.4. Empirical Results and Performance Analysis

To verify the robustness of our approach among different cost combinations, the
experiments are conducted with different pairs of underage and overage costa that reflect
a specific service level. Underage cost is assumed to be higher than overage cost in most
of the settings to reflect real applications in which the opportunity cost and customer
satisfaction are more valuable than the waste value. Table 3 displays the monthly average
mismatch cost, reflecting the ordering decisions of the 500 products. The results are also
displayed compared to the best-performing method for each Cu and Co combination.

Table 3. Inventory performance analysis.

Cu,Co (1,1) (2,1) (8,2) (20,1)

Algorithm Cost (%) Cost ($) Cost (%) Cost ($) Cost (%) Cost ($) Cost (%) Cost ($)

Naïve 31.30 6.68 75.20 12.51 161.61 48.36 384.18 70.48
SAA 59.60 8.12 76.46 12.60 84.58 34.12 81.29 26.39

MLP-Normal 61.29 8.21 34.65 9.61 36.97 25.32 34.90 19.64
MLP-Empirical 35.00 6.87 39.95 9.99 34.91 24.94 30.41 18.98

MLP-E2E 34.80 6.86 40.51 10.03 32.02 24.40 37.14 19.96
S-CNN-LSTM-Normal 10.22 5.61 10.31 7.88 8.95 20.14 9.37 15.92
P-CNN-LSTM-Normal 2.52 5.22 2.11 7.29 3.11 19.06 0.51 14.63

S-CNN-LSTM-Empirical 11.77 5.69 8.88 7.77 18.14 21.84 16.39 16.94
P-CNN-LSTM-Empirical 7.29 5.46 5.01 7.50 5.04 19.42 0.30 14.60

S-CNN-LSTM-E2E 36.62 6.95 15.33 8.24 18.72 21.95 13.21 16.48
P-CNN-LSTM-E2E 0.00 5.09 0.00 7.14 0.00 18.49 0.00 14.56

The results show that the proposed end-to-end model based on the parallel architecture
(P-CNN-LSTM-E2E) outperforms the other models for every Cu and Co combination, with
an average monthly mismatch cost of 5.09, 7.14, 18.49, and 14.56. The other proposed
end-to-end model based on the stacked architecture (S-CNN-LSTM-E2E) does not perform
as well, especially in circumstances with lower cost combinations, but still outperforms
the MLP, SAA, and Naïve approaches. These outcomes corroborate the results in [16] that
parallel neural network architectures are better suited to the problems in which the data
corresponds to time series attached to external information. With a parallel model, there is
no loss of information, and the CNN and LSTM modules run independently before being
concatenated to provide the outputs, which in our application is fundamental to effectively
interpreting the sequential aspect and possible correlations among products and stores.
Additionally, these results confirm that MLP neural network architectures, as adopted
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in [7,8,10,11], underperform for problems that adopt time series data enriched with data
features to solve the inventory problem.

The GWO-based CNN-LSTM architectures outperform the MLP architectures in most
of the scenarios, confirming that it is outstanding to employ an appropriate deep learning
architecture according to the type of data in consideration. In addition, the adoption of
GWO is paramount to automatically choosing the best network configuration for each cost
combination. Merging CNN and LSTM and empowering with GWO is ideal for this type
of application with time series with external features.

Figure 6 illustrates the average cost of the decisions adopting the (2,1) combination
of Cu and Co. To facilitate understanding, the products in the picture are sorted by their
respective decision costs. Figure 7 illustrates the order quantity decisions for the month
and compares them with the real demand.
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The Naïve results attest to the importance of considering underage and overage costs
in inventory decisions since they only consider the point forecast to achieve the ordering
decisions. Since this method tries to predict the mean of the data, it does not adapt well on
days with large spikes in demand. The experiments with the (8,2) and (20,1) combinations
of Cu and Co confirm this, given that when we heavily penalize stockouts, the decision
cost becomes more than 300% higher than the proposed methods.

The largest benefit of end-to-end methods is that they directly achieve the solutions,
which is a considerable advantage in settings with hundreds or thousands of products
that require daily inventory decisions. In the SEO method, these two steps are performed
separately, which may be time-consuming and computationally expensive in realistic
applications. Corroborating the key takeaways in [11] about the better performance of
integrated single-step inventory decisions, it can be observed that the strength of the
proposed integrated approach comes from its end-to-end nature and not only due to the
better performance of the deep learning architectures, given that all the variations of SEO
adopting the CNN-LSTM architectures still cannot perform as well as the end-to-end
approach.
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The SEO methods show a very similar performance between assuming normally
distributed errors or adopting the empirical error distribution. This is mainly due to
the performance of the neural network architectures in the forecasting method. It can
be noticed that when MLP architectures are used to forecast demand and input in the
optimization problem, the MLP-Normal results are worse than the MLP-Empirical. For
the cases where CNN-LSTM architectures are adopted as the forecast method, the outputs
of the optimization problem are very similar, corroborating the findings in [6,8] that in
SEO approaches, the forecasting method is the most relevant instrument that impacts the
accuracy of the ordering decisions.

The effects of not considering data features in the decisions are also analyzed by
executing the SAA method, as in [26]. This approach underperforms all the other data-
driven methods, showing the importance of considering external information in decisions.
If a company has access to multiple features, it is advisable to base the solutions on the full
information available by adopting big data-driven models. Even simpler methods, such
as MLP-Empirical, will result in an increase in prediction accuracy from the introduction
of features in the analysis. In realistic scenarios, the supply chain manager of this retail
chain may benefit from knowing how the features impact demand and derive tailored
ordering decisions for each store or product category. Figure 8 brings insights about how
each feature may impact the results in our case study, with the average order quantity
being displayed in terms of each product in a store, per day of the week, and per store.

Lastly, we execute a Naïve method that adopts the point forecast as the ordering
decision, ignoring the mismatch costs and demand uncertainty for the inventory solutions
and, as expected, providing the worst results. This approach is still largely adopted in
real-world settings due to its simplicity or the lack of data availability, computational
power, or domain knowledge of the decision-maker. It is important to emphasize that
although the proposed end-to-end methods indeed bring the best outcomes in all the
circumstances studied, it is advisable to choose an appropriate data-driven model for a
specific problem. For instance, if the main objective is to only estimate the relationship
between the dependent variables and their features, simple neural networks can produce
satisfactory outcomes. However, to solve a big data-driven operations research problem in
which mismatch costs are also considered, it is required to use more complex models than
the ones proposed in this study.
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5. Conclusions

This contribution studied the different aspects of data-driven approaches to inventory
decisions. In particular, evolving hybrid deep learning architectures were proposed as
an end-to-end solution for the newsvendor problem. The results showed that indeed
the GWO-based CNN-LSTM architectures, especially the parallel variation, outperform
the other benchmarking methods, with up to an 85% reduction in costs compared to a
univariate benchmark and up to 40% savings in contrast to an alternative end-to-end deep
learning architecture.

The largest advantage of single-step models relies on the possibility of achieving
inventory decisions directly from the available data, which is very useful in realistic
scenarios with a large number of products that need to be simultaneously evaluated on a
daily basis. The proposed single-step models reduce the complexity of manually tuning
the neural network for each combination of product features, which is a limitation for
decision-makers who do not pursue the required expertise or have to deal with hundreds
or thousands of products together.

In addition, the use of GWO to automatically choose the best network configuration
for each set of cost coefficients is another considerable benefit of the proposed approaches.
The experimental results confirmed that it is outstanding to employ an appropriate deep
learning architecture according to the type of data in consideration.

Our empirical results reiterate that if a company has access to data with multiple
external features, it is advisable to base the solutions on the full information available
by adopting big data-driven models. Even simpler neural network benchmark methods
demonstrated an increase in prediction accuracy consequential to the introduction of
features in the analysis. In realistic scenarios, the decision-maker may benefit from knowing
how the features impact demand and design ordering decisions for each store or product
category.

This contribution presents the natural limitation existing in neural networks of relying
on data quality and availability. In cases where the organization does not have access
to clean and complete datasets to train the models, their prediction performance might
be affected. In addition, the methods executed in this study assumed a certain stability
of external factors, such as consumer behavior and possible product substitution, and
therefore variations in these factors that were not explicitly considered may influence the
accuracy of the predictions. Lastly, this study concentrated on the single-period inventory
problem. The performance of the proposed models in multi-period scenarios, which
introduce additional temporal complexities, was not considered.

Therefore, an interesting extension to this study is to apply the GWO-based CNN-
LSTM architectures to multi-period inventory problems. For that, a new loss function
considering the inventory levels at the time of the decision needs to be developed. Another
research direction would be to analyze the effects of product substitution on inventory
decisions, adopting the proposed architectures as a learning framework. Lastly, since the
case study is based on a retail dataset, it would be valuable to analyze the scalability of the
proposed approaches for other supply chain problems with substantially different demand
patterns or inventory management dynamics.
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