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Abstract: Background: What are the cumulative influences of pricing, promotions of commodities,
order size-based discount opportunities, and alternative warehousing scenarios on effective decision-
making concerning inventory management? It is observed that the prices and promotion of products
influence the demand rate. The shortage can be partially backlogged, and the backlogging rate
depends on the waiting time. Also, discount and trade credit facilities may be available when pur-
chasing items. This paper describes a novel inventory control model regarding optimal warehousing
decision-making scenarios. Methods: This paper includes the facts in its hypothesis and examines the
overall impact of the mentioned issues on profitability. The inventory carrying scheme associated
with the proposed model consists of both rented and owned warehouse facilities in which the cost
increases linearly with time. The numerical and visual simulation succeeds the mathematical ap-
proach to analyze the proposed inventory model in Mathematica software. Results: The results show
that a price hike enhances profit despite the negative impact on demand creation. Also, promotion
frequency favors profitability, suppressing the corresponding costs. Another managerial intuition
is revealed through the numerical result that the stock should be held in a rented warehouse when
deterioration in the owned warehouse increases, despite the cost of a rented warehouse. Conclusions:
Besides several mentioned management insights, this study includes several existing models as
particular cases and tackles challenges in the analytical optimization approach. This study leads
toward the consequences of future research scopes with industry-based raw data.

Keywords: selling price; advertisement; EOQ model; price discount; time-dependent holding cost;
warehouse; rented warehouse; partially backlogged shortage

1. Introduction

The idle stock of physical items, which has economic value that an organization keeps
in various forms, such as raw materials, means that the goods that are used in manufac-
turing, work-in-progress goods (that is, the goods that are still being manufactured), and
finished goods that are awaiting packaging, transit, usage, or sale in the future can be
defined as an inventory. Managing these goods, which comprise a significant portion of the
organization’s capital, is essential for maximizing profit or minimizing loss. Many small
businesses cannot identify the specific losses brought on by lousy inventory control. There-
fore, effective inventory control is crucial in everyday life. In the history of the inventory
control problem, Haris [1] initially introduced the classical economic order quantity model
(EOQ) concept. Therefore, proper inventory management is the subject of extensive and
in-depth research. The effective management of inventories depends on numerous aspects.
We have taken a few of them in this current model.
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Demand is an essential aspect of marketing. Demand is typically assumed to be
constant in inventory problems. Still, in reality, demand may be dependent on one or
more decision variables such as time [2], selling price [3], stock level [4], the frequency of
advertisement [5], the green level of the product [6], deterioration [7], and the warranty
period of the product [8]. Retailers are very concerned with determining the best prices
for the products they will be selling. The retail price significantly influences the design
of consumption. In a developing country, a consumer typically pays close attention to a
product with a low price. In the food industry, the demand for fresh products, including
fish, meat, eggs, vegetables, fruits, and various processed foods in restaurants and hotels,
is typically determined by price. Retailers could provide lower prices to increase consumer
demand. The average profit may be at its best at a high demand rate. Therefore, the average
gain is connected to the unit selling price throughout demand. Thus, the selling price is a
very crucial decision variable.

On the other hand, in today’s aggressively competitive globe, marketing advertise-
ments are widely recognized as they are crucial in enhancing the potential for business and
entering new markets. In addition to leaving a long-lasting impression on a customer’s
memory, successful advertising promotes brand loyalty over time. Advertising has a sig-
nificantly more significant impact on new markets and products since it helps consumers
become aware and informed, which ultimately changes their thinking. Therefore, the
demand function for a product may depend on the unit selling price and the promotion of
the product simultaneously [9].

Researchers have recently been quite interested in inventory models with a price
discount policy. Suppliers sometimes provide quantity discounts to motivate retailers or
buyers to order more. In control theory, suppliers typically provide mainly one or two deals,
such as incremental and all-unit quantity discounts. The all-unit discount policy gives
consumers a discount on each unit of the product, whereas in the incremental discount
policy, the consumers receive a discounted price for the additional units they buy after
crossing some fixed levels and keep paying the total cost of each of the initial units until
they reach the said certain level. The presence of all-unit discounts is one of the charming
features of the small business setting. Because marketing strategies are being implemented
worldwide, all-unit discount facilities are essential in the competitive business.

A holding cost is typically seen as a constant in inventory control policy [10]. However,
this presumption about deteriorating goods is only sometimes valid. This is because
holding costs rise with time due to deterioration. Keeping costs increase over time for
pharmaceuticals, fruits, vegetables, etc. Therefore, it is essential to consider the time
dependency of the holding cost function in the inventory control problem.

The inventory system assumes that the retailer or any organization has a total storage
capacity for holding items. However, the retailer’s warehouse can only keep a certain
amount of inventory due to some limitations like funds, land investment, and worker input.
Also, all organizations aim to enhance their consumer bases by adopting various actions at
any given time. It is crucial to have enough and simple access to the products in the system
so that customers are not turned away during periods of high demand. Most business
organizations aim to retain enough stock to prevent any shortage situations. Additionally,
it was assumed in this article that the supplier offers a price discount policy. Retailers are
motivated to place additional orders to take full advantage of this policy. They need big
spaces to maintain and store appropriate items to achieve these. Business organizations
may depend on a two-warehouse system to deal with these issues. A warehouse that is
owned by the organization is known as an owned warehouse (O.W.), and a warehouse that
is acquired on a rental basis to keep additional inventory is known as a rented warehouse
(R.W.). It is a realistic and accepted practice to assume that the costs associated with
maintaining inventory and depreciation are higher in an R.W. than in an O.W. due to
considerations like shifting items, material handling, operating charges, etc. Because of
this, the inventory managers store products in an O.W. before an R.W. but use up the R.W.
stocks first, that is, before using up the O.W. stocks.
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In general, it is noted that buyers or retailers must complete a full payment for the
items they buy from a manufacturer or supplier. However, in the current extremely
aggressive business environments, manufacturing companies give a variety of offers to
buyers/retailers to capture their attention and increase product sales. There are various
sorts of strategies that have been outlined by numerous researchers in the existing literature.
One of the most widely used policies in inventory research is the credit policy or trade
credit policy approach. Suppliers or manufacturers use a trade credit policy strategy to
give their retailers several options to grow their organizations through specific deals. The
suppliers or manufacturers give their retailers a certain amount of time to pay for the goods
they have bought. This kind of idea is typically called the “single-level trade credit policy
approach” or “permissible delay in payment” [11,12]. Additionally, when sellers offer their
customers a credit facility, this kind of credit facility is known as the “two-level trade credit
policy approach” [13,14]. The buyer does not need to pay any extra amount as interest on
the credit amount within the period of credit, and an appeal will be charged if the credit
period exceeds. However, the supplier has the benefit of encouraging the customer to buy
more of their goods. As a result, a trade credit policy will increase the supplier’s profit and
reduce the cost of holding. In addition, because there is less stock invested for the trade
credit facility, the buyer may earn interest from the selling amount.

In this paper, we aim to analyze an optimal purchasing–warehousing–retail strategy
where the following points are taken as research questions:

1. The selling price and advertisement frequency are two significant demand-impacting
variables. Also, a hike in demand may favor profit enhancement. What will be the
overall impacts of on-average profit enhancement?

2. A demand hike may cause a need for a big purchasing order size. However, carrying
the warehouse may lead to additional costs for the retailer. What is the optimal
scenario that can ensure the best profit?

3. There may be two different warehousing scenarios available. The warehouse may be
rented or owned. Rented warehouses are taken to ensure inventory for uninterrupted
supply and deterioration-related issues, but this adds costs. What will be the best
scenario for choosing the tenure of owned and rented warehouses?

To trace these fundamental questions, this paper describes an EOQ model with the
assumptions listed in Section 3. This present paper studies the cumulative influences of the
pricing, promotion of products, discounts during purchasing, trade credit, deterioration,
and alternative warehousing facilities on the profit maximization objective.

2. Literature Review

This segment contains a literature review on pricing policy while considering different
kinds of demand functions, inventory models based on price discount policies, inventory
models with time-varying holding costs, two-warehouse inventory models, and inventory
models based on trade credit policy. At the end of the survey, we find the gaps and
motivation of this present study.

2.1. Inventory Model with Various Kinds of Demand Function

Demand is a business or enterprise’s most important component. Over the past few
years, scholars have examined the many types of demand. As an outcome, the investigators
have built inventory models that account for diverse types of demand. For instance,
Shah et al. [15] introduced a deteriorating economic order quantity model for non-instantaneous
products in which the demand function is nonlinear and dependent on the unit selling
price and frequency of advertisement simultaneously. Bhunia et al. [16] introduced a
worsening inventory model that considers demand as a function of the selling price,
advertisement frequency, and time. An EOQ model for a production system that produces
defective items, considering that the demand function decreases exponentially with time,
was investigated by Jaggi et al. [17], who found that this model is suitable for business
environments where new products are introduced every day. Tripathi [18] developed an
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EOQ model by using a quadratic time-dependent demand as a variable. Namdeo et al. [19]
presented a deteriorating pricing model whose demand is simultaneously dependent on
the items’ prices and on-hand stock level. Shaikh et al. [20] prepared an EOQ model
with a time-dependent ramp-type demand rate. Handa et al. [21] examined the inflation
effect in their production inventory policy, in which they considered that the market
demand depends on the time and selling price. An EOQ model for perishable products was
examined by Mishra [22], taking stock and time-dependent demand as variables. Recently,
Khan et al. [23] presented an inventory model whose demand is nonlinear and dependent
on stock. After this, Shah and Shroff [24] proposed a pricing model with time-dependent
trapezoidal-type demand.

2.2. Inventory Model with Quantity Discount

Hadley and Whitin [25] first incorporated the notion of a quantity discount in an eco-
nomic order quantity model. Suppliers sometimes provide quantity discounts to motivate
retailers or buyers to order more. In control theory, suppliers typically provide mainly
one or two discount policies, such as incremental and all-unit discounts. Researchers have
recently been quite interested in inventory control theory, considering an all-unit price
discount strategy. For instance, Shi et al. [26] established an inventory policy in which
the demand function is price-dependent and additive stochastic by considering that the
supplier provides all-unit quantity discounts to buyers or retailers through a mixed integer
nonlinear programming model and a generalized disjunctive programming model. An
inventory model with an all-unit discount was presented by Taleizadeh and Pentico [27],
and they illustrated the model by comparing the EOQ models without a discount and
with an all-unit discount. An EPQ model where the demand function is dependent on
the stock level of the product was addressed by Alfares [28], considering the all-unit
quantity discount. Shaikh et al. [29] discussed an EOQ model while assuming that the
all-unit price discount policy and demand rate are dependent on the stock level and unit
selling price. After that, this work was explored by Khan et al. [30], taking the holding
cost as being linearly dependent on time and assuming that the unit carrying charge is
directly proportional to the unit purchase cost. Rahman et al. [31] added an EOQ model
while considering deterioration, demand patterns, purchasing cost, etc., as interval-valued
numbers by considering two scenarios: one with shortages and one without shortages
in all-unit quantity discount environments. A decision support framework for install-
ment prepayments in an inventory system with a power demand rate was investigated by
Khan et al. [32], incorporating all-unit discounts from the manufacturer or supplier to
the retailer. They explored that when the total capital cost of a prepayment is less than
the transaction cost of a single installment, the retailer should prefer a single installment
prepayment policy. Recently, Momena et al. [33] presented a learning-based EOQ model
while considering an all-unit price discount facility in a fuzzy environment. Khan et al. [34]
examined how applying an all-unit discount impacts the total average profit of an inventory
model with power demand patterns. All-unit quantity discounts from the supplier were
taken into account for this article.

2.3. Inventory Model with Time-Varying Holding Cost

A holding cost is typically seen as a constant in inventory control policy [10]. However,
this presumption about deteriorating goods is only sometimes true. Therefore, it is vital to
linearly consider that the holding cost is time-dependent when making inventory decisions.
In this regard, Ferguson et al. [35] first introduced an inventory policy for perishable
products, nonlinearly considering the holding cost rate per unit as a function of time.
By taking cost as a linear function of time, Mishra [36] incorporated an EOQ model. A
partial back-ordering inventory strategy for perishable products was studied by Dutta and
Kumar [37]. In this article, they assumed that the carrying cost depends on time and found
that low stock levels should be maintained to avoid high holding costs. Pervin et al. [38]
explored an integrated supply chain design by considering that time is dependent on the
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holding cost. Garai et al. [39] discussed a pricing model by analyzing the time-varying
carrying cost in a fuzzy environment through trapezoidal fuzzy numbers. Pando et al. [40]
formulated an inventory model by assuming a linear and nonlinear price-dependent
demand in both time and stock levels. Furthermore, Swain et al. [41] investigated the
EOQ design for perishable items by taking the holding cost as a function of time under
consideration. A green pricing strategy was developed by Paul et al. [42], taking variable
holding costs into account. Recently, Kumar et al. [43] discussed the combined effect
of advertisement and selling price on customers in the inventory model by considering
time-dependent carrying costs. The holding cost for this current article is taken as a linear
function of time and is directly proportional to the unit purchasing cost.

2.4. Two-Warehouse Inventory Model

Numerous research articles have been published in the previous few decades incorpo-
rating the two-warehouse concept into different inventory models. Hartley [44] suggested
the first two-warehouse model for the inventory system in his book, Operations Research: A
Managerial Emphasis. Other researchers also tried to create issues with the two-warehouse
arrangement. In this area, Yang and Chang [45] introduced a two-storage inventory design
for perishable products with an allowed payment delay, considering that the inflation
effect and shortages are partially back-ordered. After that, Bhunia et al. [46] explored the
study by Yang and Chang [45] by considering that time depends on the partial backlogging
rate and analyzing different cases on the trade credit time. Xu et al. [47] discussed a two-
storage inventory model by comparing other dispatching policies such as last-in-first-out,
modified last-in-first-out, and first-in-first-out policies. Tiwari et al. [48] analyzed a two-
warehouse inventory model using particle swarm optimization’s meta-heuristic algorithm.
Chakraborty et al. [49] investigated a two-warehouse inventory setup with three-parameter
Weibull distributed deterioration and the ramp type time-varying demand curve under
the permitted payment delay. Jonas [50] studied a two-layer supply chain containing one
distributor and one buyer in a two-warehouse setup, where the holding cost per unit for
storing the item in an R.W. decreases over time. Ghiami and Beullens [51] developed a
two-echelon supply chain in a two-warehouse setup considering a continuous resupply
policy, i.e., the items in an R.W. are regularly relocated to an O.W. to keep their total capacity
as demand depends on stock. A two-warehouse inventory model for perishable products
was introduced by Khan et al. [52], considering that the rate of deterioration in an R.W.
is lower than that of an O.W. since an R.W. has superior preservation services compared
to an O.W. Xu et al. [53] explored a deteriorating inventory model by considering the
selection of an item that can be stored in an O.W. or an R.W. or both an O.W. and R.W.
Thilagavathi et al. [54] discussed a two-storage inventory problem, where the supplier
offers three slots of payment to the retailer for the purchasing amount; the slots are “prior
payment with a discount”, “posterior payment with a penalty”, and “to be paid at the time
of replenishment”. Most recently, a two-echelon supply chain model with two warehouses
was analyzed by Padiyar et al. [55] with cloudy fuzzy inflation.

2.5. Inventory Model Based on Trade Credit Policy

Since trade credit allows customers to buy products without an instant payment, many
organizations utilize this to increase their economic strength and attract new customers.
Many researchers have focused more on trade credit in the past two decades and have
included various trade credit policies in their pricing models. The notion of trade credit
policy was first brought on by Goyal [56]. Following that, multiple researchers have applied
this policy in their pricing models. For instance, Taleizadeh [57] discussed an inventory
system with a single-layer trade credit policy by allowing for multiple prepayments for
the credit amount. A two-level trade credit financing supply chain model was analyzed
by Wu et al. [58]. Sarkar et al. [59] introduced a deteriorating inventory system using a
two-level trade credit policy where the supplier offers a full trade credit to the buyer or
retailer. In contrast, the buyer provides a partial trade credit to the customer. A green
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inventory system considering a single-level trade credit policy from vendor to buyer was
developed by Tiwari et al. [60]. Numerous researchers [61–63] have recently developed
models using single-level trade credit facilities from supplier to retailer. The concept of a
single-level trade credit facility from retailer to customer is used in [64–66], and two-level
trade credit policies have been used in their inventory model [67,68].

2.6. Research Gaps and Our Contribution

After a detailed discussion of the existing literature, we listed a few studies in Table 1
with their hypotheses and model formulations. Many researchers addressed the price
dependency of the demand rate in lot size scenarios. Few of them also accounted for
the impact of product promotion on the managerial decision. The time dependency of
the carrying cost and the order-size-dependent discount facility for purchasing are also
discussed in some papers. In this paper, we accumulate all of the mentioned decision
phenomena in a single decision-making scenario and experiment with the profitability of
the function. The proposed model considers the following points: First, the demand is a
function of the selling price and promotion frequency. Second, an all-unit discount facility
is available during the purchasing of the product. Both rented and owned warehouses
are available for carrying the inventory. Third, the shortage is allowed to be of a partially
backlogging type, which depends on the waiting time. This paper exhibits the economic
model’s analytical and numerical optimization based on these hypotheses. This paper’s
contribution is significant because the proposed model includes the many known inventory
models as particular cases.

Table 1. Comparison of contributions of recent research works with the present paper.

Authors Year Model Type TW Dete.
Demand

PBS TCP TDHC AUDP
PD A.D. TD SD

Taleizadeh and Pentico [27] 2014 EOQ
√ √

Alfares [28] 2015 EPQ
√ √ √

Dutta and Kumar [37] 2015 EOQ
√ √ √ √

Mishra [22] 2015 EOQ
√ √ √ √

Tiwari et al. [48] 2017 EOQ
√ √ √ √

Tiwari et al. [60] 2018 EPQ
√ √

Chakraborty et al. [49] 2018 EOQ
√ √ √ √ √ √

Jonas [50] 2019 EOQ
√ √ √

Garai et al. [39] 2019 EOQ
√ √ √

Khan et al. [30] 2020 EOQ
√ √ √ √

Khan et al. [52] 2020 EOQ
√ √ √ √

Khan et al. [69] 2020 EOQ
√ √ √ √ √ √

Shaikh et al. [20] 2020 EOQ
√ √ √ √

Khan et al. [23] 2022 EOQ
√ √ √ √

Thilagavathi et al. [54] 2022 EOQ
√ √ √ √

Rahman et al. [31] 2022 EOQ
√ √ √ √ √ √

Duary et al. [62] 2022 EOQ
√ √ √ √ √ √ √

Momena et al. [33] 2023 EOQ
√ √ √

Jani et al. [63] 2023 EOQ
√ √ √

Kumar et al. [43] 2023 EOQ
√ √ √ √ √

This paper EOQ
√ √ √ √ √ √ √ √

TW: two-warehouse, Dete: deterioration, P.D.: price-dependent, A.D.: advertisement frequency-dependent, T.D.:
time-dependent, SD: stock-dependent, PBS: partially backlogging shortage, TCP: trade credit policy, TDHC:
time-dependent holding cost, AUDP: all-unit discount policy, EOQ: economic order quantity, EPQ: economic
production quantity,

√
: Presence of the addressed components in the lot size models.

3. Notations and Assumptions
3.1. Notations

The fundamental notations and their descriptions with units are given in Table 2.
These notations were used to develop the proposed model.
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Table 2. Notations and their descriptions with units.

Notations Units Description

K USD/order Ordering cost
a Constant Fixed part of demand function (a > 0)
b Constant Price sensitivity in demand function (b > 0)
A Constant Advertisement frequency
ca USD/ad. Cost of advertisement
ci USD/unit Purchasing cost
p USD/unit Selling price
cs USD/unit Shortage cost
cd USD/unit Cost of deterioration
cl USD/unit Opportunity cost
g USD/unit Fixed part of holding cost

h1 USD/unit Coefficient of time in holding cost function at
R.W.

h2 USD/unit Coefficient of time in holding cost function at
O.W.

θ Constant Deterioration at R.W.
η Constant Deterioration at O.W.
W Units O.W. storage capacity
R Units Shortage unit
S Units Total storing capacity

I1(t) Units Stock level in R.W.
I2(t) Units Stock level in O.W.

τ Years Credit time of the retailer
e USD/year Rate of interest earned by the retailer
e1 USD/year Rate of interest mandated by the supplier

Zi USD/cycle Total average profit per unit time for
i = 1, 2, 3, 4

t1 Years Stock level finishing time in R.W.
t2 Years Stock level finishing time in O.W.
T Years Total inventory cycle length

R.W.: Rented Warehouse; O.W.: Owned Warehouse.

3.2. Assumptions

The proposed model was built under the following presumptions:

1. Both warehouses have constant rates of deterioration. Due to the better infrastructure,
the deterioration rate in an R.W. is, however, lower than that in an O.W., i.e., 0 < θ <
η ≤ 1 (see Tiwari et al. [48]).

2. The demand function D(A, p) of a product is considered as a multiplicative of
the selling price p and advertisement frequency in the following way: D(A, p) =
(A + 1)γ(a− bp) (see Khan et al. [69]).

3. Shortages are partially backlogged with the rate of 1
1+δ(T−t) , where (T − t) is the

amount of time that the consumer must wait until the shipment of the next lot, and
δ > 0 (see Bhunia et al. [16], Shaikh et al. [31], Dutta and Kumar [37], Duary et al. [62],
and Khan et al. [69]).

4. The per unit holding cost for both warehouses is a linear function of the storage
time, and it is directly proportional to the unit purchasing cost in the following way:
Hrw = ci(g + h1t) and How = ci(g + h2t) (see Shaikh et al. [31], Khan et al. [32], and
Alfares and Ghaitan [70]).

5. Due to better facility in an R.W. than an O.W., it is assumed that h1 > h2
(Khan et al. [52] and Xu et al. [53]).

6. The unit purchasing cost (UPC) is a decreasing step function according to the lot
size in the following way: UPC = ci, if qi−1 < Q ≤ qi, where qi, i = 1, 2, 3, . . . , n +
1 (q1 < q2 < · · · < qn < qn+1 = ∞) are the lot sizes that fix the n price breaks with
UPC ci, i = 1, 2, 3, . . . , n (c1 > c2 > · · ·> ci) (Taleizadeh and Pentico [27], Alfares [29],
Garai et al. [39], and Alfares and Ghaitan [70]).
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7. The supplier allows for some time for the consumer to pay the purchasing amount,
but the retailer must pay the amount in full before making the subsequent order.

8. The planning horizon for inventories is infinite.
9. The complete lot size is provided in a single batch.

4. Mathematical Model

A retailer first orders Q = (S + R) units of a single deteriorating product, of which
R units are to be used to satisfy the partially backlogged demand. Then, the inventory
level changes to S units. W units are reserved in an O.W. out of S units, and the rest of the
quantity (S−W) of units are in an R.W. Due to the combined effect of customer demand
and the deterioration effect, the stock level in an R.W. decreases in the time interval [0, t1],
and it finishes at time t = t1. On the other side, the stock level W in an O.W. declines in
[0, t1] due to deterioration only and it declines in [t1, t2] due to the joined effects of demand
and deterioration from customers, and it finishes at t = t2. Following that, shortages start
to occur during the time [t2, T], which accrue at a rate of 1

1+δ(T−t) depending on the waiting
time length until the arrival of the new lot at time t = T. The total shortage that occurs in
this period is R units. The primary objective is to determine the optimal values of t1, t2,
T, and p to maximize the retailer’s profit per unit of time and obtain the corresponding Q
values.

4.1. Inventory Model for Rented Warehouse (R.W.)

The inventory level in an R.W. (0 ≤ t ≤ t1) declines due to the joint effect of demand
and deterioration of the items, so it follows the following differential equation:

dI1(t)
dt

+ θ I1(t) = −D(A, p), 0 ≤ t ≤ t1 (1)

This is subject to the following conditions: I1(0) = S−W and I1(t1) = 0.
By solving Equation (1) and using I1(t1) = 0, one can obtain

I1(t) =
D
θ

(
eθ(t1−t) − 1

)
(2)

Again, by using I1(0) = S−W1, in Equation (2), one can obtain the initial stock.

S = W +
D
θ

(
eθt1 − 1

)
(3)

4.2. Inventory Model for Owned Warehouse (O.W.)

The inventory level of an O.W. can be determined from the following differential
equation as

dI2(t)
dt

+ η I2(t) = 0, 0 ≤ t ≤ t1 (4)

dI2(t)
dt

+ η I2(t) = −D(A, p), t1 < t ≤ t2 (5)

dI2(t)
dt

= − D(A, p)
1 + δ(T − t)

, t2 < t ≤ T (6)

This is subject to the following conditions: I2(0) = W, I2(t2) = 0, and I2(T) = −R.
Using the given conditions, the solutions of Equations (4)–(6) are given by

I2(t) = We−ηt, 0 ≤ t ≤ t1 (7)

I2(t) =
D
η

(
eη(t2−t) − 1

)
, t1 < t ≤ t2 (8)
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I2(t) =
D
δ

log{1 + δ(T − t)} − R, t2 < t ≤ T (9)

Also I2(t) is continuous at t = t1 and t = t2. The continuity condition of I2(t) at time
t = t1 gives us

We−ηt1 =
D
η

(
eη(t2−t1) − 1

)
W =

D
η

(
eηt2 − eηt1

)
∴ t2 =

1
η

log
[

eηt1 +
ηW
D

]
(10)

Also, from the continuity of I2(t) at time t = t2, we can obtain the maximum shortage
level, which is calculated as

R =
D
δ

log{1 + δ(T − t2)} (11)

Therefore, the initial lot size for the whole cycle is given as

Q = S + R =

[
W +

D
θ

(
eθt1 − 1

)
+

D
δ

log{1 + δ(T − t2)}
]

(12)

The total cycle length is obtained from Equation (12) as

T = t2 +
1
δ

[
e

δ
D {Q−W− D

θ (e
θt1−1)} − 1

]
(13)

4.3. Computation of Different Costs

(i) Cost of ordering (O.C.): K.
(ii) Cost of advertisement (A.C.): ca A.
(iii) Holding cost (H.C.): The total cost of holding (H.C.) over a complete cycle is given by

HC = ci

∫ t1

0
(g + h1t)I1(t)dt + ci

∫ t2

0
(g + h2t)I2(t)dt

HC = ci
D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]
+ ci

η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
+

ci
D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

(iv) Shortage cost (S.C.):

SC = −cs

∫ T

t2

I2(t)dt

SC = cs

[
R(T − t2) +

D
δ2 {δ(T − t2)− {1 + δ(T − t2)}log{1 + δ(T − t2)}}

]

SC =
CsD

δ

[
(T − t2)−

1
δ

log{1 + δ(T − t2)}
]

(v) Deterioration cost (D.C.):

DC = cd

[
S−W −

∫ t1

0
Ddt

]
+ cd

[
W −

∫ t2

t1

Ddt
]
= cd[S− Dt2]

= cd

[
W +

D
θ

(
eθt1 − 1

)
− Dt2

]
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(vi) Lost sale cost (LSC):

LSC = cl

∫ T

t2

(
1− 1

1 + δ(T − t)

)
Ddt

= cl D
[
(T − t2)−

1
δ

log{1 + δ(T − t2)}
]

Therefore, the total cyclic cost except for the purchasing cost is

TC = OC + AC + HC + SC + DC + LSC

TC = K + Ca A + ci
D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]
+ ci

η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
+

ci
D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

+
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
+ cd

[
W1 +

D
θ

(
eθt1 − 1

)
− Dt2

] (14)

5. Analysis of Trade Credit Policy

The supplier gives their retailer the credit time τ their retailer. So, the two following
situations could occur:

Section 5.1: When the trade credit time is in a stock-in period, i.e., (0 ≤ τ ≤ t2);
Section 5.2: When the trade credit time is in a stock-out period, i.e., (t2 ≤ τ ≤ T).

5.1. When Trade Credit Time Is in Stock-In Period, i.e., (0 ≤ τ ≤ t2)

Figure 1 represents a schematic diagram for trade credit time is in stock in period. In
this scenario, the retailers have to pay the total amount ciQ to the supplier at time t = τ.
The retailer’s total accrued amount due to selling the product and the interest earned at
time t = τ is given by

E1 = p
τ∫

0

Ddt + pe
τ∫

0

t∫
0

Ddudt + pR(1 + eτ)

E1 = pτD
(

1 +
1
2

eτ

)
+ pR(1 + eτ)
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Based on the difference between the money E1 and ciQ, there are two possibilities that
may arise:

Section 5.1.1: When E1 ≥ ciQ.
Section 5.1.2: When E1 < ciQ.

5.1.1. When the Total Earning Amount Is Greater than the Total Purchasing Cost,
i.e., E1 ≥ ciQ

In this case, the total profit function Y1(t1, t2, T) for the retailer in a complete cycle
[0, T] can be defined as follows:

Y1(t1, t2, T) = 〈extra amount after paying the manufacturer〉+ 〈interest earned for extra amount in the period[τ, T]〉
+〈sales revenue in the period[τ, t2]〉+ 〈interest earned from sales revenue in the period[τ, t2]〉

+〈interest earned in the period[t2, T]〉 − TC

Y1(t1, t2, T) = {E1 − ciQ}{1 + e(T − τ)}+
{

p
∫ t2

τ
Ddt + pe

∫ t2

τ

∫ t

τ
Ddudt

}
{1 + e(T − t2)} − TC

= {E1 − ciQ}{1 + e(T − τ)}+
{

pD(t2 − τ) +
1
2

pDe(t2 − τ)2
}
{1 + e(T − t2)} − TC

=
{

pτD
(

1 + 1
2 eτ
)
+ p(1 + eτ)D

δ log{1 + δ(T − t2)} − ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}
{1 + e(T − τ)}

+
{

pD(t2 − τ) + 1
2 pDe(t2 − τ)2

}
{1 + e(T − t2)} − (K + Ca A)

−ci
D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]
− ci

η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
−ci

D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

−
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
− cd

[
W + D

θ

(
eθt1 − 1

)
− Dt2

]
So, the optimization problem is

Maximize Z1(t1, t2, T) = Y1(t1,t2,T)
T

Subject to 0 < τ ≤ t1
(15)

5.1.2. When the Total Earning Amount Is Less than the Total Purchasing Cost, i.e., E1 < ciQ

The total accrued amount at time t = τ in this subcase is less than the totalpurchasing
cost. Once more, two situations could manifest at this point as follows:

When a partial payment is allowed at t = τ.
When a partial payment is not permitted at t = τ.

When a Partial Payment Is Allowed at t = τ

In this situation, the retailer pays E1 amount to the supplier at time t = τ, and suppose
that the remaining amount ciQ− E1 will be paid at time t = λ(λ > τ). As a result, during
the period [τ, λ], the retailer must pay some interest at the rate, say, e1, on the amount of
ciQ− E1. At time t = λ, the retailer’s required amount is (ciQ− E1)(1 + e1(λ− τ)).

The total amount accrued by the retailer during the time [τ, λ]
= 〈sales revenue in the time period [τ, λ]〉

+〈interest earned from sales revenue in the time [τ, λ]〉

= p
λ∫
τ

Ddt + pe
λ∫
τ

t∫
τ

Ddudt = pD(λ− τ) + 1
2 pDe(λ− τ)2
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Hence, at time t = λ, the required amount is equal to the accrued amount of the
retailer, i.e.,

(ciQ− E1)(1 + e1(λ− τ)) = pD(λ− τ) +
1
2

pDe(λ− τ)2 (16)

Therefore, the total profit for the whole inventory cycle is given by

Y2(t1, t2, T) = 〈sales revenue in the time period [λ, t2]〉
+〈interest earned from sales revenue in the time period [λ, t2]〉

+〈interest earned in the time period [t2, T]〉 − TC

Y2(t1, t2, T) =
{

p
∫ t2

λ
Ddt + pe

∫ t2

λ

∫ t

λ
Ddudt

}
{1 + e(T − t2)} − TC

Y2(t1, t2, T) =
{

pD(t2 − λ) +
1
2

peD(t2 − λ)2
}
{1 + e(T − t2)} − TC

Y2(t1, t2, T) =
{

pD(t2 − λ) + 1
2 peD(t2 − λ)2

}
{1 + e(T − t2)} − (K + Ca A)

−ci
D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]
− ci

η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
−ci

D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

−
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
− cd

[
W + D

θ

(
eθt1 − 1

)
− Dt2

]
Therefore, the optimization problem is

Maximize Z2(t1, t2, T) = Y2(t1,t2,T)
T

Subject to (16) and 0 < τ ≤ t2 < T
(17)

When a Partial Payment Is Not Allowed at t = τ

Here, the retailers must pay the total credit amount to the supplier at λ (λ > τ). So,
the retailers must pay the interest of the total credited amount for the period [τ, λ].

Hence, at time t = λ, the required amount is equal to the accrued amount of the
retailer, i.e.,

ciQ(1 + e1(λ− τ)) = p
λ∫

0

Ddt + pe
λ∫

0

t∫
0

Ddudt + pR(1 + eλ)

ciQ(1 + e1(λ− τ)) = pDλ

(
1 +

1
2

eλ

)
+ pR(1 + eλ) (18)

Therefore, the total profit for the whole inventory cycle is given by

Y3(t1, t2, T) = 〈sales revenue in the period [λ, t2]〉+〈interest earned from sales revenue in the period [λ, t2]〉
+〈interest earned in the period [t2, T]〉 − TC

=

{
p
∫ t2

λ
Ddt + pe

∫ t2

λ

∫ t

λ
Ddudt

}
{1 + e(T − t2)} − TC

=

{
pD(t2 − λ) +

1
2

peD(t2 − λ)2
}
{1 + e(T − t2)} − TC
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=
{

pD(t2 − λ) + 1
2 peD(t2 − λ)2

}
{1 + e(T − t2)} − (K + Ca A)− ci

D
2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]

− ci
η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
−ci

D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

−
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
− cd

[
W + D

θ

(
eθt1 − 1

)
− Dt2

]
So, the optimization problem is

Maximize Z3(t1, t2, T) = Y3(t1,t2,T)
T

Subject to (18) and 0 < τ ≤ t2 < T
(19)

5.2. When Trade Credit Time Is in a Stock-Out Period, i.e., (t2 ≤ τ ≤ T)

Figure 2 represents a schematic diagram for trade credit time is in stock out period.
Here, the retailers accrue the sales revenue by selling products, and interest is earned by
investing the selling amount to the bank or any other organization. The total sales revenue
of the retailer up to time t = τ is given by

E2 =

p
t2∫

0

Ddt + pe
t2∫

0

t∫
0

Ddudt

{1 + e(τ − t2)}+ pR(1 + eτ)

=

{
pDt2 +

1
2

peDt2
2

}
{1 + e(τ − t2)}+ pR(1 + eτ)Logistics 2023, 7, x FOR PEER REVIEW 14 of 27 
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𝜃
(𝑒𝜃𝑡1 − 1) +

𝐷

𝛿
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Therefore, the total profit for an entire cycle is given by

Y4(t1, t2, T) = 〈rest amount〉+ 〈interest earned f rom rest amount in the time [τ, T]〉 − TC

= {E2 − ciQ}{1 + e(T − τ)} − TC
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{{
pDt2 +

1
2 peDt2

2

}
{1 + e(τ − t2)}+ p(1 + eτ)D

δ log{1 + δ(T − t2)}

−ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}
{1 + e(T − τ)} − (K + Ca A)

−ci
D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]

− ci
η2

[
ηgW1

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
−ci

D
η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

−
(
cl +

cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
− cd

[
W + D

θ

(
eθt1 − 1

)
− Dt2

]
Therefore, the optimization problem is

Maximize Z4(t1, t2, T) = Y4(t1,t2,T)
T

Subject to 0 < τ ≤ t2 < T
(20)

6. Computational Algorithms

In this section, we obtain the conditions for the existence of the optimal solution for
four different objective functions described in Section 5.

6.1. Conditions for the Existence of Optimal Solution of Z1(t1, t2, T)
Here, we calculated the first-order partial derivatives of Z1(t1, t2, T) w.r.t t1, t2, and T,

respectively, and then set them as being equal to zero.

∂Z1
∂t1

= 1
T

[
−ciDeθt1{1 + e(T − τ)} − ci D

2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
− ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
− ci D

η (g + h2t1)
{

1− eη(t2−t1)
}
− cdDeθt1

]
= 0

ciDeθt1{1 + e(T − τ)}+ ci D
2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
+ ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
+ ci D

η (g + h2t1)
{

1− eη(t2−t1)
}
+ cdDeθt1 = 0

(21)

and

∂Z1
∂t2

= 1
T

[
−{p(1 + eτ)− ci}{1 + e(T − τ)} D

1+δ(T−t2)
+ pD{1 + e(t2 − τ)}{1 + e(T − t2)}

−epD
{

t2 − τ + 1
2 e(t2 − τ)2

}
− ci D

η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD

]
= 0

{ci − p(1 + eτ)}{1 + e(T − τ)} D
1+δ(T−t2)

+ pD{1 + e(t2 − τ)}{1 + e(T − t2)} − epD
{

t2 − τ + 1
2 e(t2 − τ)2

}
− ci D

η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD = 0

(22)

and

∂Z1
∂T = 1

T2

{
T
[
{p(1 + eτ)− ci}{1 + e(T − τ)} D

1+δ(T−t2)

+e
{

pτD
(

1 + 1
2 eτ
)
+ p(1 + eτ)D

δ log{1 + δ(T − t2)}

−ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}

+ epD
{
(t2 − τ) + 1

2 e(t2 − τ)2
}

−
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)

]
−Z1(t1, t2, T)} = 0
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∴ {p(1 + eτ)− ci}{1 + e(T − τ)} DT
1+δ(T−t2)

+(eτ − 1)
{

pτD
(

1 + 1
2 eτ
)
+ p(1 + eτ)D

δ log{1 + δ(T − t2)}

−ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}

+ (et2 − 1)pD
{
(t2 − τ) + 1

2 e(t2 − τ)2
}

−
(

Cl +
Cs
δ

)
δDT

1+δ(T−t2)
+ (K + Ca A) + ci D

2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]

+ ci
η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
+ ci D

η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

+
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
+ cd

[
W + D

θ

(
eθt1 − 1

)
+ Dt2

]
= 0

(23)

The concavity of the function Z1(t1, t2, T) can be checked by using the Hessian matrix
(H) as follows:

H =


∂2Z1

∂t2
1

∂2Z1

∂t1∂t2
∂2Z1

∂t1∂T
∂2Z1

∂t2∂t1
∂2Z1

∂t2
2

∂2Z1

∂t2∂T
∂2Z1

∂T∂t1
∂2Z1

∂T∂t2
∂2Z1

∂T2


The profit function Z1(t1, t2, T) will be the maximum for the values of (t1, t2, T), if

all of the principal determinants of the Hessian matrix satisfy the following conditions at
(t1, t2, T) as∣∣H1

11

∣∣ = ∂2Z1

∂t2
1

< 0,
∣∣H1

22

∣∣ = ∂2Z1

∂t2
1

∂2Z1

∂t2
2
− ∂2Z1

∂t2∂t1
∂2Z1

∂t1∂t2
> 0,

∣∣H1
33

∣∣ = |H| < 0.

Due to the high nonlinearity of the Hessian matrix, closed-form analytical proof is
challenging to obtain. So, we alternated a numerical analysis to verify the concavity of
Z1(t1, t2, T).

6.2. Conditions for the Existence of Optimal Solution of Z2(t1, t2, T)
Here, we calculated the first-order partial derivatives of Z2(t1, t2, T) w.r.t t1, t2, and T,

respectively, and then set them as being equal to zero.

∂Z2
∂t1

= 1
T

[
− ci D

2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
− ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
− ci D

η (g + h2t1)
{

1− eη(t2−t1)
}
− cdDeθt1

]
= 0

ci D
2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
+ ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
+ ci D

η (g + h2t1)
{

1− eη(t2−t1)
}

+cdDeθt1 = 0
(24)

and

∂Z2
∂t2

= 1
T

[
pD{1 + e(t2 − λ)}{1 + e(T − t2)} − epD

{
t2 − λ + 1

2 e(t2 − λ)2
}

− ci D
η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD

]
= 0

pD{1 + e(t2 − λ)}{1 + e(T − t2)} − epD
{

t2 − λ + 1
2 e(t2 − λ)2

}
− ci D

η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD

= 0

(25)

and

∂Z2

∂T
=

1
T2

{
T
[

epD
{
(t2 − λ) +

1
2

e(t2 − λ)2
}
−
(

Cl +
Cs

δ

)
Dδ

1 + δ(T − t2)

]
− Z1(t1, t2, T)

}
= 0
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(et2 − 1)pD
{
(t2 − λ) + 1

2 e(t2 − λ)2
}
−
(

Cl +
Cs
δ

)
δDT

1+δ(T−t2)
+ (K + Ca A)

+ ci D
2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]

+ ci
η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
+ ci D

η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

+
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
+ cd

[
W + D

θ

(
eθt1 − 1

)
+ Dt2

]
= 0

(26)

As in Section 6.1, we verified the concavity of Z2(t1, t2, T) numerically with the help
of the Hessian matrix.

6.3. Conditions for the Existence of Optimal Solution of Z3(t1, t2, T)
Since the objective function Z3(t1, t2, T) is the same as Z2(t1, t2, T), the existence

conditions of the optimal solution of Z3(t1, t2, T) is the same as those in Section 6.2.

6.4. Conditions for the Existence of Optimal Solution of Z4(t1, t2, T)
Here, we calculated the first-order partial derivatives of Z1(t1, t2, T) w.r.t t1, t2, and T,

respectively, and then set them as being equal to zero.

∂Z4
∂t1

= 1
T

[
−ciDeθt1{1 + e(T − τ)} − ci D

2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
− ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
− ci D

η (g + h2t1)
{

1− eη(t2−t1)
}
− cdDeθt1

]
= 0

ciDeθt1{1 + e(T − τ)}+ ci D
2θ2

[
2
(
eθt1 − 1

)
(gθ + h1)− 2h1θt1

]
+ ci

η

[
ηgWe−ηt1 + h2e−ηt1(2− ηt1)

]
+ ci D

η (g + h2t1)
{

1− eη(t2−t1)
}
+ cdDeθt1 = 0

(27)

and

∂Z4
∂t2

= 1
T

{
{1 + e(T − τ)}

[
pD(1 + et2){1 + e(τ − t2)} − epD

(
t2 +

1
2 et2

2

)
+ {ci − p(1 + eτ)} D

1+δ(T−t2)

]
− ci D

η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD

}
= 0

{1 + e(T − τ)}
[

pD(1 + et2){1 + e(τ − t2)} − epD
(

t2 +
1
2 et2

2

)
+ {ci − p(1 + eτ)} D

1+δ(T−t2)

]
− ci D

η

[
geη(t2−t1) + h2

η

(
(1 + ηt1)eη(t2−t1) − 1

)
− g− h2t2

]
+
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)
+ cdD

= 0

(28)

and

∂Z4
∂T = 1

T2

{
T
[
{p(1 + eτ)− ci}{1 + e(T − τ)} D

1+δ(T−t2)

+e
{{

pDt2 +
1
2 peDt2

2

}
{1 + e(τ − t2)}+ p(1 + eτ)D

δ log{1 + δ(T − t2)}

−ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}
−
(

Cl +
Cs
δ

)
Dδ

1+δ(T−t2)

]
−Z4(t1, t2, T)}

= 0
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{p(1 + eτ)− ci}{1 + e(T − τ)} DT
1+δ(T−t2)

+(eτ − 1)
{{

pDt2 +
1
2 peDt2

2

}
{1 + e(τ − t2)}+ p(1 + eτ)D

δ log{1 + δ(T − t2)}

−ci

[
W + D

θ

(
eθt1 − 1

)
+ D

δ log{1 + δ(T − t2)}
]}
−
(

Cl +
Cs
δ

)
δDT

1+δ(T−t2)
+ (K + Ca A)

+ ci D
2θ3

[
2
(
eθt1 − θt1 − 1

)
(gθ + h1)− h1θ2t2

1
]

+ ci
η2

[
ηgW

(
1− e−ηt1

)
+ h2

(
(ηt1 − 1)e−ηt1 + 1

)]
+ ci D

η

[
g
η

(
eη(t2−t1) − 1

)
+ h2

η2

(
(1 + ηt1)eη(t2−t1) − 1− ηt2

)
− g(t2 − t1)− 1

2 h2
(
t2
2 − t2

1
)]

+
(

Cl +
Cs
δ

)
D
[
(T − t2)− 1

δ log{1 + δ(T − t2)}
]
+ cd

[
W + D

θ

(
eθt1 − 1

)
+ Dt2

]
= 0

(29)

As in Section 6.1, we verified the concavity of Z4(t1, t2, T) numerically with the help
of the Hessian matrix.

7. Numerical Simulation

In this section, we perform the numerical optimization of the proposed models dis-
cussed in the earlier sections. To obtain the numerical and graphical outcomes in this
section, we used the Wolfram Mathematica 11 software.

7.1. Solution Procedure

In this subsection, we discuss the computational process of the above-described
optimization problems. Considering the all-unit price discount policy, we designed the
Algorithm 1 to compute the optimal solutions to maximize the total profit. Algorithm 1 is
suitable for all of the above-described optimization problems.

Algorithm 1: Numerical computation procedure for getting best profit

Step 1 : Input all of the given values of the parameters
K, a, b, g, h1, h2, p, θ, η, cs, cl , cd, W, τ, λ, e, e1, δ, ca, A, γ.
Step 2 : Set i = m and Zmax = 0.
Step 3 : Input the given value of cm and solve the equations ∂Z

∂t1
= 0, ∂Z

∂t2
= 0, and ∂Z

∂T = 0
for t1, t2, and T. Calculate the order quantity Q using t1, t2, and T from (12).
Step 4 : If Q does not belong to the correct quantity break (qm ≤ Q < qm+1), this solution
is infeasible, so go to step 7. Otherwise, go to step 5.
Step 5 : If Q belongs to the correct quantity break (qm ≤ Q < qm+1), the solution is
feasible. Calculate Zi. If Zi > Zmax, set Zmax = Zi. Go to step 6.
Step 6 : Check the concavity conditions of Z through the Hessian matrix, i.e., |H11| < 0,
|H22| > 0, and |H33| < 0. If this condition holds, go to step 8. Otherwise, go to step 7.
Step 7 : If i ≥ 2, set i = i− 1 and go to step 2. If i = 1, go to step 8.
Step 8 : The final solution is obtained. The total average profit is Zmax with the optimal
values of t1, t2T, S, R, and Q.
Step 9: End.

7.2. Numerical Illustration

Example 1. Consider the situation when the trade credit time is in the stock-in period and the
sales revenue is more significant than the purchasing cost, and suppose that the supplier offers the
quantity discount to the retailer as per Table 3.

Table 3. Lot size and corresponding unit purchase cost.

Quantity 0 = q1 ≤ Q < q2 = 500 500 = q2 ≤Q < q3 = 1000 1000 = q3 ≤Q < q4 = ∞

Per unit purchase
cos t (ci)

c1 = 5.10 c2 = 5 c3 = 4.90
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Also suppose K = 250, a = 100, b = 2.5, g = 0.2, h1 = 0.6, h2 = 0.2, p = 20, θ = 0.05,
η = 0.20, cs = 6.5, cl = 0.5, cd = 0.9, W = 300, τ = 0.5, e = 0.09, δ = 0.06, ca = 15, A =
4, and γ = 0.03. To compute the optimal result, follow the following steps :

Step 1: Initially set Z1
max = 0 and i = 3.

Iteration 1: i = 3.
Step 2: c3 = 4.90(1000 ≤ Q < ∞).
By solving Equations (21)–(23) we obtain t1 = 3.42237, t2 = 8.77695, and T = 18.9512,

and the order quantity, which is obtained from (12), is Q = 913.543. Using these values, the
total average profit from Equation (15) is Z1

3 = 724.571. As Q does not lie in the quantity
break (1000 ≤ Q < ∞), this solution is not feasible, so go to step 3.

Step 3: Set i = 2 and go to step 4.
Iteration 2: i = 2.
Step 4: c2 = 5(500 ≤ Q < 1000).
By substituting the value of c2 in Equations (21)–(23) and by solving them, we obtain

t1 = 3.10444, t2 = 8.31027, and T = 17.5875. The lot size obtained from (12) is Q = 863.239.
Using these values, the total average profit from Equation (15) is Z1

2 = 702.89. Since Q lies in
the quantity break (500 ≤ Q < 1000), this solution is feasible, and Z1

2 = 702.89 > Z1
max = 0.

Therefore, Z1
max = 702.89. Go to step 5.

Step 5: The Hessian matrix’s principal minors are
∣∣H1

11

∣∣ = −41.3547 < 0,
∣∣H1

22

∣∣ =
2166.49 > 0 and

∣∣H1
33

∣∣ = −1133.35 < 0. Therefore, the concavity conditions of the objective
function are satisfied.

Step 6: Final solution.
Therefore, the optimal solution is t∗1 = 3.10444, t∗2 = 8.31027, T∗ = 17.5875, S∗ =

476.224, R∗ = 387.015, Q∗ = 863.239, and Z1
max = 702.89. The concave nature of the profit

function against t2 and T is visualized in Figure 3a.
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Figure 3. The concave nature of total average profit against 𝑡  and 𝑇. (a) The global optimum of 
the average profit 𝑍  with its maximum value 𝑍 = 𝑈𝑆𝐷 702.89 $ at 𝑇 = 17.5875 weeks and 𝑡 =8.31027 weeks. (b) The global optimum of the average profit 𝑍  with its maximum value 𝑍 =Figure 3. The concave nature of total average profit against t2 and T. (a) The global optimum
of the average profit Z1 with its maximum value Z1 = USD 702.89 $ at T = 17.5875 weeks and
t2 = 8.31027 weeks. (b) The global optimum of the average profit Z2 with its maximum value
Z2 = USD 541.829 $ at T = 8.21176 weeks and t2 = 7.62086 weeks. (c) The global optimum of
the average profit Z4 with its maximum value Z4 = USD 826.775 $ at T = 12.3313 weeks and
t2 = 7.750 weeks.

Example 2. Consider the situation when the trade credit time is in the stock-in period, and the
sales revenue is less than the purchasing cost; meanwhile, the supplier allows for a partial payment.
Suppose that the supplier offers the quantity discount as in Example 1, taking λ = 1.5, h1 = 0.3,
h2 = 0.1, and other inputs the same way as in Example 1. To compute the optimal result, follow the
following steps:



Logistics 2023, 7, 77 19 of 25

Step 1: Initially set Z2
max = 0 and i = 3.

Iteration 1: i = 3.
Step 2: c3 = 4.90(1000 ≤ Q < ∞).
By solving Equations (24)–(26), we obtain t1 = 3.56916, t2 = 7.71561, and T = 8.32148,

and the ordering quantity, which is obtained from (12), is Q = 536.2649. Using these values,
the total average profit from Equation (17) is Z2

3 = 550.964. As Q does not lie in the quantity
break (1000 ≤ Q < ∞), this solution is not feasible, so go to step 3.

Step 3: Put i = 2 and go to step 4.
Iteration 2: i = 2.
Step 4: c2 = 5(500 ≤ Q < 1000).
By substituting the value of c2 in Equations (24)–(26) and by solving, we obtain

t1 = 3.50899, t2 = 7.62086, and T = 8.21176. The lot size obtained from (12) is Q = 531.7382.
Using these values, the total average profit from Equation (17) is Z2

2 = 541.829. Since Q
lies in the quantity break (500 ≤ Q < 1000), this solution is feasible, and Z2

2 = 541.829 >
Z2

max = 0. Therefore, Z2
max = 541.829. Go to step 5.

Step 5: The Hessian matrix’s principal minors are
∣∣H2

11

∣∣ = −60.708 < 0,
∣∣H2

22

∣∣ =
5857.68 > 0 and

∣∣H2
33

∣∣ = −32411.5 < 0. Therefore, the concavity conditions of the objective
function are satisfied.

Step 6: Final solution.
Therefore, the optimal solution is t∗1 = 3.50899, t∗2 = 7.62086, T∗ = 8.21176, S∗ =

501.269, R∗ = 30.4692, Q∗ = 531.738, and Z2
max = 541.829. The concave nature of the profit

function
(
Z2) against t2 and T is visualized in Figure 3b.

Example 3. Consider that the trade credit time is in a stock-out period, and the sales revenue is
more significant than the purchasing cost. Suppose that the supplier offers a quantity discount as in
Example 1 along with τ = 7.75, h1 = 0.10, h2 = 0.05, and e = 0.06, and the other inputs are the
same as in Example 1.

Step 1: Initially set Z4
max = 0 and i = 3.

Iteration 1: i = 3.
Step 2: c3 = 4.90(1000 ≤ Q < ∞).
By solving Equations (27)–(29), we obtain t1 = 2.28268, t2 = 7.750, and T = 12.3151,

and the order quantity obtained from (12) is Q = 638.603. Using these values, the total
average profit from Equation (20) is Z4

3 = 838.36. As Q does not lie in the quantity break
(1000 ≤ Q < ∞), this solution is not feasible, so go to step 3.

Step 3: Put i = 2 and go to step 4.
Iteration 2: i = 2.
Step 4: c2 = 5(500 ≤ Q < 1000). By substituting the value of c2 in Equations (27)–(29)

and by solving, we obtain t1 = 2.28627, t2 = 7.750, and T = 12.3313. The order size
obtained from (12) is Q = 639.481. Using these values, the total average profit from
Equation (20) is Z4

2 = 826.775. Since Q lies in the quantity break (500 ≤ Q < 1000), this
solution is feasible, and Z4

2 = 826.775 > Z4
max = 0. Therefore, Z4

max = 826.775; go to step 5.
Step 5: The Hessian matrix’s principal minors are

∣∣H4
11

∣∣ = −17.9467 < 0,
∣∣H4

22

∣∣ =
769.038 > 0, and

∣∣H4
33

∣∣ = −2504.08 < 0. Therefore, the concavity conditions of the objective
function are satisfied.

Step 6: Final solution.
Therefore, the optimal solution is t∗1 = 2.28627, t∗2 = 7.750, T∗ = 12.3313, S∗ = 427.095,

R∗ = 212.386, Q∗ = 639.48, and Z2
max = 826.775. The concave nature of the profit function(

Z2) against t2 and T is visualized in Figure 3c.

8. Sensitivity Analysis and Managerial Insights
8.1. Sensitivity of the Optimal Solution

Here, we examined the effects of various input parameters on the optimal solutions,
such as the total cycle duration (T), lot size (Q), and total profit of the whole inventory cycle;
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we carried out a sensitivity analysis of example 2. This analysis changed one parameter’s
value from +20% to −20% at a time, with the other parameters remaining fixed at their
starting levels. The modifications made to the optimal values are presented in Table 4.
Figure 4 also shows the sensitivity of the optimal results in a graphical manner.

Table 4. Sensitivity of various input parameters of example 2.

Parameters Original
Value

New
Value t*

1 t*
2 T* S* R* Q* Z2*

K 250

300 3.5601 7.69842 8.34401 504.469 33.2368 537.706 535.789
275 3.53477 7.65995 8.27831 502.882 31.8601 534.742 538.797
225 3.48275 7.58112 8.14430 499.629 29.0635 528.692 544.886
200 3.45602 7.54069 8.07589 497.961 27.6423 525.603 547.969

a 100

120 3.35163 7.24035 7.51293 568.053 19.8628 587.916 826.483
110 3.41962 7.40554 7.81309 534.831 25.3538 560.185 683.651
90 3.63344 7.9164 8.77289 467.26 35.0608 502.321 401.519
80 3.82386 8.35627 9.63835 432.669 38.888 471.557 263.677

b 2.5

3 3.63344 7.91640 8.77289 467.26 35.0608 502.321 401.519
2.75 3.56553 7.75581 8.46596 484.329 32.8427 517.171 471.441
2.25 3.461 7.50551 7.99713 518.098 27.9662 546.064 612.589

2 3.41962 7.40554 7.81309 534.831 25.3538 560.185 683.651

p 20

24 4.41983 9.09599 10.4615 507.638 55.0937 562.731 578.229
22 3.90457 8.26704 9.14527 503.628 40.4193 544.047 568.183
18 3.17973 7.07736 7.49365 498.931 23.7331 522.664 499.338
16 2.88802 6.59343 6.90665 495.638 19.5393 515.177 441.288

A 4

4.8 3.51907 7.63412 8.23337 502.801 31.0303 533.831 543.519
4.4 3.51401 7.62742 8.22242 502.049 30.7481 532.797 542.73
3.6 3.50402 7.61448 8.20145 500.456 30.1944 530.651 540.797
3.2 3.49912 7.60832 8.19156 499.605 29.9244 529.53 539.609

ca 15

18 3.52142 7.63971 8.24381 502.047 31.1387 533.185 540.371
16.5 3.51522 7.6303 8.22781 501.658 30.8044 532.463 541.099
13.5 3.50274 7.61138 8.19565 500.878 30.1332 531.011 542.56
12 3.49645 7.60187 8.17949 500.485 29.7964 530.282 543.293

γ 0.03

0.036 3.504 7.60889 8.18937 502.907 30.2317 533.138 548.68
0.033 3.50649 7.61487 8.20054 502.086 30.3509 532.437 545.246
0.027 3.5115 7.62687 8.22301 500.456 30.5867 531.042 538.43
0.024 3.51402 7.6329 8.2343 499.646 30.7033 530.349 535.047

g 0.20

0.24 3.44955 7.54065 8.22332 497.557 35.1077 532.665 500.932
0.22 3.47974 7.58132 8.2185 499.441 32.8119 532.253 521.289
0.18 3.53731 7.65929 8.20311 503.041 28.0801 531.121 562.553
0.16 3.56471 7.69662 8.19258 504.758 25.6447 530.403 583.461

h1 0.30

0.36 3.09919 7.27241 7.74452 475.902 24.4284 500.33 529.531
0.33 3.28794 7.43141 7.95696 487.521 27.1518 514.673 535.19
0.27 3.77255 7.85118 8.52399 517.86 34.6107 552.471 549.737
0.24 4.0941 8.13843 8.91736 538.4 39.947 578.347 559.335

h2 0.10

0.12 3.47943 7.25155 7.7755 499.422 27.0703 526.492 509.788
0.11 3.48944 7.42161 7.97402 500.047 28.5173 528.564 525.134
0.09 3.54147 7.8579 8.50109 503.301 33.1153 536.417 560.129
0.08 3.59181 8.14518 8.86033 506.459 36.7436 543.202 580.375

θ 0.05

0.060 3.45384 7.57271 8.14638 501.381 29.5956 530.976 540.298
0.055 3.4812 7.59656 8.17875 501.329 30.0275 531.357 541.059
0.045 3.53724 7.64562 8.24543 501.199 30.9211 532.121 542.61
0.40 3.56596 7.67085 8.2798 501.121 31.3834 532.504 543.40
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Table 4. Cont.

Parameters Original
Value

New
Value t*

1 t*
2 T* S* R* Q* Z2*

η 0.20

0.24 3.59207 7.44607 7.98219 506.475 27.6891 534.164 533.915
0.22 3.55265 7.53029 8.09269 504.002 29.0243 533.027 537.716
0.18 3.46069 7.719 8.34108 498.252 32.0484 530.301 546.295
0.16 3.40735 7.8263 8.48296 494.929 33.796 528.725 551.162

cs 6.5

7.80 3.43785 7.51324 7.96554 496.828 23.4175 520.245 540.725
7.15 3.4688 7.56002 8.07233 498.758 26.4778 525.236 541.209
5.85 3.56338 7.70339 8.40182 504.675 35.9021 540.577 542.655
5.20 3.6414 7.82214 8.67721 509.577 43.7555 553.332 543.812

cl 0.5

0.60 3.50857 7.62022 8.21027 501.242 30.4268 531.669 541.823
0.55 3.50878 7.62054 8.21101 501.256 30.448 531.704 541.826
0.45 3.50921 7.62119 8.2125 501.282 30.4905 531.773 541.832
0.40 3.50942 7.62151 8.21324 501.296 30.5118 531.807 541.836

cd 0.9

1.08 3.51678 7.6667 8.28554 501.756 31.884 533.64 539.638
0.99 3.51299 7.64399 8.24895 501.519 31.182 532.701 540.726
0.81 3.50477 7.59731 8.17393 501.005 29.7454 530.75 542.948
0.72 3.50032 7.57332 8.13545 500.727 29.0102 529.737 544.083

δ 0.06

0.072 3.51192 7.6253 8.22182 501.452 30.648 532.1 541.855
0.066 3.51045 7.62307 8.21676 501.360 30.5581 531.918 541.842
0.054 3.50756 7.61869 8.20682 501.179 30.3816 531.561 541.816
0.048 3.50614 7.61654 8.20195 501.091 30.295 531.386 541.803
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Table 4 and Figure 4 together perceive the following points regarding the optimal
decision:

Observation 1: The time
(
t∗1
)

at which the inventory level in an R.W. finishes is
positively dependent on the parameters K, b, p, A, ca, and η positively, whereas t∗1 is
dependent on a, γ, g, h1, h2, θ, cs, cl , cd, and δ in a negative way.

Observation 2: The active retailing cycle time (t∗2) increases when the values of the
parameters K, b, p, A, and ca are increasing, and it increases when the values of the
parameters a, γ, g, h1, h2, θ, η, cs, cl , cd, and δ are decreasing.

Observation 3: The total inventory cycle length (T∗) is dependent on the parameters
K, b, p, A, ca, and g in a positive way, and it is dependent on a, γ, h1, h2, θ, η, cs, cl , cd, and
δ in a negative way.

Observation 4: The optimal order quantity (Q∗) is dependent on the parameters K, a,
p, A, ca, γ, g, η, cd, and δ in a positive manner; meanwhile, Q∗ is dependent on b, h1, h2, θ,
cs, and cl in a negative manner.
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Observation 5: The total average profit (Z∗) is dependent on the parameters a, p, A,
γ, and δ in a positive way, and it is dependent on K, b, ca, g, h1, h2, θ, η, cs, cl , and cd in a
negative way.

8.2. Management Insights

The following managerial implications are driven by decoding the above observations:
Insight 1: t∗1 is the optimal time cycle for storing inventory in a rented warehouse.

Observation 1 implies that when the replenishment cost increases, rented warehousing
continues. The renting tenure should be prolonged when demand is hiked through the
promotion of products. Another managerial implication is that rented warehousing should
be continued when deterioration in the warehouse increases. On the contrary, the tenure
of the renting should be diminished while the rent warehouse’s decline increases. Also,
the renting cycle should be shortened when the carrying costs due to both warehousing
facilities improve.

Insight 2: t∗2 is the optimal retailing cycle. Observation 2 implies that the active retail
process should be prolonged when the replenishment cost increases to avoid repeated
replenishment. The demand hike through product promotion favors the broadened retail
cycle to ensure optimal profitability. On the other hand, a rise in deterioration and carrying
costs for different warehouses advocates diminishing the active retail process. The same
managerial implications are derived for the whole decision cycle.

Insight 3: The optimal order size should be enhanced when demand is hiked through
product promotion. The selling price enhancement also urges the big order size to ensure
profit in a superior retail phenomenon. However, the carrying costs increase as time passes,
so the order size should be reduced to prevent additional costs when continuing a large
inventory lot.

Insight 4: The hike in demand potentially favors the profit enhancement goal. Inter-
estingly, though a price hike is a barrier to creating demand, it can increase profitability,
suppressing the demand diminishment. Also, the product’s advertisement favors the
demand and average profit simultaneously. Deterioration and any costs during the retail
cycle hinder the profit goal.

9. Conclusions and Future Research Directions

This work describes a unique inventory control model for the best possible warehous-
ing decision-making situations. Several aspects emerge at the end of the analysis as a
response to the research concerns on which this research was developed. First, boosting the
selling price may assist in maximizing the average profit while avoiding the adverse effects
of price increases on demand trends. Second, the advertisement frequency shows a positive
impact on demand and average profit simultaneously. Third, the inventory carrying cost
very strongly impacts decision making, leading to a diminishing order size to reduce cost.
However, a big order size is advocated by demand enhancement through effective pricing
and promotion. Fourth, rented warehouses can be used only when demand increases
through pricing and promotion when product deterioration is minimized.

The suggested model encompasses several well-known inventory models as particular
cases, which is a critical addition to this paper. Furthermore, this paper contributes an
analytical approach to optimizing the proposed model, which took a lot of work to tackle
with a complicated model with a reliable hypothesis. Also, this study’s numerical results
bring some significant management insights. These are the merits of this present study.
However, this current study has some limitations. The main demerit of this paper is that
the numerical simulation was conducted for artificial data. Though the data were adjusted
and validated according to the constraints raised in the analytical discussion, it would be
error-free if the data were collected from real-world retail bodies.

The proposed model can be extended by incorporating the inventory size dependency
of the demand rate in the model. The present model acknowledges the deterioration of
products. Therefore, preservation means and their implications on managerial decisions
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may be a future research scope. Also, the proposed model can be viewed in uncertain
decision phenomena, memory, learning censored decision phenomena, etc.
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