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terdelic@fpz.unizg.hr

2 Ralu Logistika d.d., 10370 Dugo Selo, Croatia; tomislavzag@gmail.com
* Correspondence: ratko.stankovic@fpz.hr

Abstract: Background: Road transport companies utilize transport capacities as fixed compositions
of tractors and semi-trailers, while the possibility of exchanging semi-trailers is considered ad hoc,
after some unforeseen circumstances emerge on the route. Such an approach is a limiting factor
in achieving optimal utilization of transport capacities, and consequently affects profitability. We
proposed a new concept of vehicle fleet management where semi-trailers would not be permanently
assigned to the tractors, but could be dynamically reassigned, to utilize optimally the vehicle fleet, on
considering the planned itinerary, the driver’s working hours, and traffic conditions. Methods: We
set the key performance indicators and developed a prototype application based on the concept of
dynamic semi-trailer allocation. We simulated the use of the prototype application on the historical
data collected in the case study on one of the leading transport companies in the cold chain, and
evaluated the benefits that may be achieved thereof. Results: Simulation showed that implementing
the proposed concept enabled the reduction of the vehicle workdays spent on-the-route, the reduction
of the number of vehicle compositions needed to handle the transport demand, and improved
the quality of service. Conclusions: The proposed concept is beneficial for transport companies that
operate large vehicle fleets on long-haul routes, with several transport orders per route. The prototype
application may be the basis for developing a fully functional application that can be integrated into
the fleet management system.

Keywords: fleet management; transport route optimization; dynamic semi-trailer allocation

1. Introduction

Effective management of transport capacities is the basic premise of profitable and
sustainable operation of a transport company, which implies the synergy of contracting
transport services, vehicle fleet disposition, and technical support for the vehicle fleet. The
sensitivity of the transport substrate to temperature deviations puts additional demands
on the management of transport capacities in the cold chain. The risk analysis in the
cold chain determined that the largest number of non-conformities in the distribution of
temperature-sensitive goods occur during loading, unloading, and transport, and therefore,
cold chain transport should be carried out by highly reliable means of transport, by the
shortest route, and within the shortest transit time.

Urban population growth is driving up the consumption of cold chain products, neces-
sitating faster and more efficient distribution models. Successful and efficient distribution
requires optimal utilization of transportation capacities while balancing the interests of
transport companies, customers, and government agencies that oversee environmental
protection. Scientists and professionals have provided various approaches and algorithms
for optimizing vehicle routes against different criteria, to improve fleet management models
in terms of effectivity and efficiency, customer satisfaction, and environmental protection.
Such solutions have shown significant benefits in the performance of transport processes,
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however certain challenges remain due to specific conditions and service requirements in
the cold chain.

This research is focused on optimization of transport routes, with the aim of better
utilization of transport capacities and achieving a greater transport effect, while complying
with the planned itinerary. It would improve existing fleet management models, primar-
ily in the segment of utilization of the transport capacities, and consequently raise the
profitability of the transport operations, along with the quality level and the safety of the
transport substrate.

Road transport companies utilize their transport capacities as fixed combinations
of tractors and semi-trailers and consider them as such when constructing routes and
offering transport services on the market. The possibility of switching tractor/semi-trailer
compositions is considered ad hoc, after some unforeseen events or circumstances emerge
on the route (such as vehicle malfunction, traffic jam, or traffic accident) but not proactively,
nor continuously. Furthermore, if a switching tractor/semi-trailer composition is to be
considered, it is done manually by the dispatchers. Such an approach presents a limiting
factor in achieving optimal utilization of transport capacities, and consequently affects the
profitability and sustainability of the business. For this reason, it is necessary to investi-
gate the possibility of introducing a different concept of transport capacity management,
whereby semi-trailers would not be permanently assigned to the same tractor, but would
dynamically join the tractors, to optimize the route with regard to the stipulated time and
locations of pick-up and delivery, the driver’s working hours, and road traffic regulation,
taking into account the real-time spatiotemporal positions of the vehicles and the traffic
conditions. It would open additional space for increasing the utilization of transport ca-
pacities and for achieving greater transport performance, thus expanding the cost-revenue
framework of the vehicle fleet utilization.

With reference to that, we conducted a case study on one of the leading European
transport companies that provide road transport services in the cold chain, to collect and
analyze information and historical data on realized transport routes, as well as criteria,
priorities, and restrictions for vehicle disposition and construction of routes. Based on the
results of the analysis, we designed a conceptual model of transport capacity management
with a greater degree of freedom, by considering the dynamic allocation of semi-trailers.
We developed a prototype application out of this conceptual model, with sufficient func-
tionalities for testing purposes, and applied it to the historical data collected in the case
study, to quantify the improvements that may be achieved. The conceptual model and the
prototype application are also a productive foundation for the development of a commercial
application that could be integrated into the existing FMS (fleet management system).

The aim of this paper was to present the proposed concept of dynamic semi-trailer
allocation and to outline its applicability and benefits that may be achieved by introducing
this concept into the fleet management system. Furthermore, we received positive feedback
from the IT experts regarding the feasibility of producing a fully functional commercial ap-
plication based on the prototype that we developed. Such application would continuously
monitor the entire vehicle fleet, predict deviations and possibilities of vehicle workday
savings, automatically suggesting semi-trailer exchange to the dispatchers.

Unlike the usual way of operating vehicle compositions where exchanging semi-
trailers is performed as a reaction to the emerging problem on the route, the algorithm
we developed works proactively; it predicts deviations from the planned itinerary, finds a
suitable semi-trailer exchange point, and redirects the vehicles. It is important to note that
pick-up and delivery time-windows may be relatively extensive and that certain delays
may not be considered a major problem by the clients. However, each additional vehicle
workday is a fixed cost that not only decreases the margin of the transport route, but also
seizes the transport capacity that would otherwise be available.

The structure of the paper consists of six sections. After this introductory section,
Section 2 provides a systematic review of the recent literature sources, by segmentation
against the dominant optimization criteria. Section 3 dwells on the methodology of the
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research which involves collecting input data and information within the case study on
the transport company, designing the conceptual model of dynamic semi-trailer allocation,
developing the prototype application, and testing the model by simulated use of the
prototype application on the historical data obtained from the case study. Section 4 presents
the results of the analysis of the transport operations performed in the sampled period
and the results of the simulation. Section 5 discusses the benefits of introducing the
concept of dynamic semi-trailer allocation into the fleet management system, as well
as limitations and disadvantages encountered during development and testing of the
prototype application. Finally, Section 6 presents the main findings and limitations of this
research, while suggesting possible directions for future research.

2. Literature Review

To provide the most recent review of the current state of the research field, we carried
out the search for scientific papers on the WoS (Web of Science) platform by keywords:
optimization, vehicle fleet, cold chain, for the period of the last five years (from 1 January
2018 to 31 December 2022.). The search resulted in a sample of 107 scientific papers in
total (published in scientific journals or in proceedings of scientific conferences). When
analyzing the sample, 77 scientific papers were filtered out, which primarily fell into the
field of interest of this research. The other 30 scientific papers were excluded from further
consideration because they were marginal or out of the field of this research.

On reviewing the papers, we identified the most common optimization criteria that
were applied in determining the optimization problem, i.e., the primary goal to be achieved
by the optimization. With reference to that, taking care not to depart from the scope of this
paper, we carried out the segmentation of the research sample against the following four
dominant optimization criteria.

1. Transport cost, is considered as one of the criteria in papers [1–65], and as a single
optimization criterion in papers [46–65]. Optimizing transportation routes with the
goal of minimizing costs involves defining the most efficient route that vehicles can
take to reduce the variable costs (such as fuel, tolls, etc.) and fixed costs (such as
vehicle workday costs, salaries of the drivers, maintenance, etc.), while complying
with the planned itinerary. The shortest or the fastest route is not necessarily the most
cost effective. The goal is to find the best combination of transport orders, in-the-route
movements and travel time that would result in a reduction of total transport costs.

2. Quality and safety are not considered as a single optimization criterion in any of
the papers but are present as one of the criteria in papers [1–21,66–72]. Optimizing
transport routes with the aim of meeting the quality standards such as ISO9001,
HACCP (hazard analysis critical control point), GDP Pharma (good distribution
practice) and safety of the substrate is about finding the best way to deliver the
product with minimal risk of contamination or damage. Consolidating different kinds
of products that can be transported without cross-contamination would result in
better utilization of the transport capacities, which is in line with this criterion.

3. Environmental impact is not considered as a single optimization criterion in any
of the papers but is present as one of the criteria in papers [1–9,22–41,66,73–76].
Greenhouse gasses such as carbon dioxide, methane, and nitrous oxide are responsible
for the warming of the Earth’s atmosphere, leading to climate change. Climate
change affects our environment, lifestyle, and food production. Optimizing vehicle
routes with the goal of protecting the environment is about finding the best route for
vehicles to travel that would reduce harmful gas emissions, fuel consumption, and
environmental impact.

4. Customer satisfaction, as a single optimization criterion is present in paper [77], and
as one of the criteria in papers [1,22–29,42–45,73]. Route optimization for customer
satisfaction is about defining an itinerary that would enable timeliness in pick-up and
delivery, minimizing delays, and the problems thereof. Consequently, the products



Logistics 2023, 7, 101 4 of 22

are delivered on time, without compromising product quality, resulting in higher
customer satisfaction and sustainability of cooperation in the future.

The segmentation is outlined in Table 1. where scientific papers are grouped by the
optimization criteria presented in the respective paper.

Table 1. Review of the scientific papers by optimization criterion.

Reference Transport
Costs

Quality and
Safety

Environmental
Impact

Customer
Satisfaction

[1] 3 3 3 3

[2–9] 3 3 3

[10–21] 3 3

[22–29] 3 3 3

[30–41] 3 3

[42–45] 3 3

[46–65] 3

[66] 3 3

[67–72] 3

[73] 3 3

[74–76] 3

[77] 3

There are different content analyses as well, such as [78] where the authors provided
an overview of research articles on data processing, sharing, and utilizing data for decision
making in the cold chain logistics. However, we applied this approach to the literature
review as it is closely related to the main research issue, while the data and technology that
are primarily important for this research refer to FMS.

In the context of fleet management, the optimization issue is a multi-criteria problem.
Depending on priorities in a particular case, one can determine answers to different criteria
and to select and combine several criteria to achieve the optimal solution. Nevertheless,
giving priority to a particular criterion may have a negative impact on the results if eval-
uated against some other criteria; however, such considerations are not in the focus of
this research.

The optimization criteria considered in this research are transport costs, and indirectly
customer satisfaction, as well as quality and safety of road transport in the cold chain.
The transport costs that are addressed in the research are the fixed costs of the vehicle
fleet, which are correlated to the number of days the vehicles spend in realization of
the transport routes. Adopting such optimization criterion, the algorithm we developed
predicts a deviation from the planned itinerary, finds a suitable semi-trailer exchange point,
and redirects the vehicles. This way, not only vehicle workdays are saved but pick-up
and delivery delays are avoided, which improves the service quality and raises customer
satisfaction and the safety of the product.

Additional areas of recent research could also be considered, such as the issue of
logistics customer service quality metrics [79,80], or the quality changes of specific products
associated with temperature fluctuations during transport in the cold chain [81]; however,
it would go beyond the scope of this paper.

3. Materials and Methods

The materials and methodology of the research consist of three stages. In the first
stage, we conducted a case study of one of the leading European road transport companies
in the cold chain. The main purpose of the case study was to obtain information and data
needed to carry out the subsequent stages of the research. It involved the following tasks.
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• Collecting data on the actual transport operation and relevant features of the transport
infrastructure within the time frame of the first three quarters of 2023. on the territory
of the European Union.

• Analysis of the criteria, priorities, and limitations in construction of transport routes,
with reference to the transport demand (desired itinerary) and the restrictions set by
the road transport regulations (driving time, driver’s rest).

• Analysis of the realized transport routes according to the KPIs (key performance
indicators) that are commonly applied by the transport company (such as the number
of transport orders, the number of vehicle workdays, direct costs, timeliness of pick-up
and delivery, profitability of the route).

The term vehicle workday cost refers to the fixed costs of the transport company gen-
erated by operating one vehicle composition (tractor/semi-trailer) one day, namely, the
depreciation of the vehicle composition, maintenance, registration, administrative over-
head, and office utilities. For each transport order, in addition to direct transport costs (fuel,
tolls, drivers per diems, and travel costs), the cost of vehicle workdays is also calculated, to
be multiplied by the number of days on the road, required to execute the transport order
from pick-up to delivery.

It is important to note that the cost of vehicle workdays is also generated when the
vehicle is not used and when it runs without cargo (empty kilometers). In contrast to that,
if the vehicle is unloaded and loaded with a new transport order on the same day, the cost
of vehicle workdays is split to two different customers. Generally, it is acceptable to unload
the cargo on the first day and load another cargo on the second day, while the situation
where the vehicle stands a day or more between the day of delivery and the day of the
next pick-up represents a lost vehicle workday, which generates unplanned costs for the
transport company. It applies directly to the driver and the tractor, while the semi-trailer
can be reassigned and used with different tractors.

For the sake of triangulation with other sources of information, we also considered the
vehicle fleet operation of other comparable transport companies, as well as the professional
opinion of experts from one of the leading Croatian IT companies that provide telematic
software and equipment.

In the second stage of the research, we designed a conceptual model for managing
transport capacities in the cold chain, based on dynamic allocation of semi-trailers to
tractors. We defined the optimization criteria and the model parameters, input data format,
technical solution for obtaining the required data in due time (predefined data and real-time
data), and processing logic in the form of a programming task for designing a prototype
application with sufficient functionalities for testing purpose. Basically, the algorithm of
the prototype application operates in the following manner.

• Initially, it generates vehicle routes based on a given itinerary and draws the planned
routes on the road map.

• Next, it looks for the possibilities of reallocating semi-trailers to tractors among the
planned routes (switching tractor/semi-trailer compositions) on an hourly basis.

• It simulates the real data arriving from GPS (global positioning system) every hour, updates
planned routes, and checks for the possibility of switching tractor/semi-trailer compositions.

• If a switching possibility is found within the maximum deviation from the route (set
as parameter), the routes are selected, and the switching point is indicated.

• Next, the new feasible routes are planned, considering that the vehicle compositions
must meet each other in the given space and time, while the semi-trailers must follow
their itinerary that was originally set.

• Finally, it evaluates the new routes in terms of a savings in the total travel time,
and if there is a saving, the routes are displayed on the road map (if there are more
possibilities, the best one is indicated).

The third stage refers to testing of the conceptual model of transport capacity man-
agement by simulated use of the prototype application on historical data on the vehicle
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fleet operation, collected in the case study, and comparing the values of the selected KPIs
achieved thereof to the respective values realized by the road transport company, in the
testing period. We determined the following KPIs to evaluate the transport operations
performed in the sampled period and to quantify the improvements that may be achieved
by implementing the concept of dynamic semi-trailer allocation.

• Pick-up delay as the difference between the stipulated date of pick-up and the realized
date of pick-up, expressed in vehicle workdays, given by Equation (1):

PD =

n

∑
i:DPri>DPsi

(DPri − DPsi) (1)

where

PD = total pick-up delay
DPri = realized date of i-th pick-up
DPsi = stipulated date of i-th pick-up
n = total number of events where the stipulated date of pick-up is different from the
realized date of pick-up.

• Delivery delay as the difference between the stipulated date of delivery and the
realized date of delivery, expressed in vehicle workdays, given by Equation (2):

DD =

n

∑
i:DDri>DDsi

(DDri − DDsi) (2)

where

DD = total delivery delay
DDri = realized date of i-th delivery
DDsi = stipulated date of i-th delivery
n = total number of events where the stipulated date delivery is different than the
realized date of delivery

• Potential saving is the discrepancy between the planned and the actual number of
vehicle workdays spent in realization of the transport routes. Considering pick-up
delay a triggering event for the transport route optimization that cannot therefore be
retroactively influenced, but necessarily causes future delivery delay, the potential
saving of vehicle workdays can be obtained as the total delivery delay decreased by
the total pick-up delay, expressed in vehicle workdays, as given by Equation (3):

S = DD− PD ∀DD ≥ PD (3)

where

S = potential savings
DD = total delivery delay
PD = total pick-up delay.

• Potentially released vehicle compositions refer to the number of vehicle composi-
tions that would have been available for performing additional transport operations if
potential savings had been achieved. It means that the same volume of transport oper-
ations could have been handled by less vehicle compositions, which would enable the
transport company to acquire more transport orders, i.e., to perform more transport
operations with the same vehicle fleet. Considering the prescribed working hours of
the driver (cf., Figure 1), a vehicle composition can be used a maximum of 24 days
a month.
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• With reference to the above, the number of vehicle compositions that may be released
and used to perform additional transport operations is given by Equation (4):

R =

⌊
S
24

⌋
(4)

where

R = number of released vehicles
S = potential saving (vehicle workdays)

The simulation outlines functionalities of the prototype application developed using
appropriate software support to simulate real-time data. It involves the use of ready-made
services for calculating the shortest path in the network, based on given geographic co-
ordinates and the corresponding geocoding. Based on the historical data from the case
study, the application creates the initial vehicle routes, and by applying spatiotemporal dis-
cretization, predicts possible switching of tractor/semi-trailer compositions, i.e., reallocates
semi-trailers to tractors, to minimize the optimization criterion defined in the previous
phase of the research. At the same time, at prediction of the possible points in space and
time, in addition to the itinerary and respective vehicle route, the driving time and the
driver’s rest intervals must be complied with, as prescribed by the road traffic regulations.
To obtain a representative output, the planned routes and potential switching points must
be updated in real time, considering the accurate position of the vehicles in time and space.
Finally, in cooperation with the external experts, the achieved results and the possibilities
of practical application were discussed.

There were two main reasons for which we decided to follow this three-stage method-
ology. First, we wanted to evaluate the concept of dynamic allocation of semi-trailers in
terms of effectivity and applicability, as no such concept has been used before by road
transport companies. We chose to perform the case study on road transport in the cold
chain due to specific requirements of the controlled temperature regime, that make route
planning more demanding than in transport of conventional goods. From the technical
perspective, switching refrigerated semi-trailers is not more demanding nor costly, as they
comply with the same standards as regular semi-trailers and each one has an autonomous
power supply for the refrigerator (a reservoir of 200 L diesel and a plug-in possibility).
What makes the route planning more demanding are the strict time-windows that must be
complied with due to the quality standards in the cold chain. For this reason, a delay that
may not be a problem in the transport of regular goods, would be a significant problem in
the cold chain.

The second reason refers to the way in which the potential for raising profitability
needed to be presented to the stakeholders of the road transport company. Due to the use
of FMS software and telematic equipment in the route planning and relatively extensive
time-windows (most of the clients approve one to three working days period for the
truck to arrive for pick-up or delivery), the desired itineraries are mostly met from the
perspective of the clients. However, it does not necessarily mean that the transport company
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should be satisfied as well, since each vehicle workday that was spent waiting instead of
driving decreases the margin of the transport route. To bring this issue to the attention of the
transport company stakeholders, we needed to demonstrate, in a transparent way, that both
the transport capacities utilization and the transport operations profitability could be raised
with existing resources, by abandoning the fixed truck/semi-trailer composition paradigm
and adopting our concept of dynamic semi-trailer allocation. The most convenient way
to do so was to simulate the use of the prototype application on the transport company
historical data and to quantify savings in terms of the vehicle workdays.

4. Results

The results are obtained from the case study on the transport company and by simu-
lating the use of the prototype application on the historical data collected in the case study.

4.1. The Case Study

The transport company’s fleet consists of 140 tractor/semi-trailer compositions, of
which 130 semi-trailers are refrigerated, ensuring the transport of temperature sensitive
goods along the cold chain, while the other 10 are classic semitrailers with tarpaulin. The
company employs an average of 160 drivers, while the actual number of drivers depends
on the seasonality of transport demand during the year.

The target assigned to the transport operations department (dispatchers) is to ensure
that each vehicle composition is loaded with a new cargo the same or the next day after the
delivery is completed. If a vehicle is not used and stands without cargo for one or more
days, while the driver has no need to make a rest, it is considered poor management of the
transport capacities.

The data on contracted transports (transport orders) and realized transport routes in
the period of the first three quarters of 2023. are given in Table 2.

Table 2. Realized transport operations in the first three quarters of 2023.

Month in
2023

Number of
Transport

Orders

Number of
Transport

Routes

Average Number
of Orders per

Route

Average Duration
of Transport Route

(Days)

Jan 1651 507 3.3 8.3
Feb 1655 470 3.5 8.4
Mar 1900 510 3.7 8.4
Apr 1680 437 3.8 9.1
May 1892 528 3.6 8.1
Jun 1858 513 3.6 8.4
Jul 1821 518 3.5 8.3

Aug 1887 500 3.8 8.3
Sep 1758 450 3.9 9.4

We obtained the data from the transport company’s FMS system and by cross-checking
against the vehicle worksheets and invoicing records. The values of the KPIs on a monthly
basis achieved in the sampled period, as well as the improvements that may be achieved
by implementing the concept of dynamic semi-trailer allocation are outlined by graphs in
Figure 2. and in Figure 3.

Figure 2 depicts the total pick-up and delivery delays recorded monthly for the entire
vehicle fleet of 140 vehicle compositions, as well as potential savings that could be achieved
by implementing the proposed concept of dynamic semi-trailer allocation.

Figure 3 depicts the number of vehicle compositions that could be released monthly,
in the case where the savings depicted in Figure 2. are achieved, i.e., the total number
of vehicle compositions in the existing vehicle fleet that could be made available for
performing additional transport operations.
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4.2. Simulation Using the Prototype Application

The diagram of the conducted simulation to assess the possible exchange of semi-
trailers is presented in Figure 4. The first step is the preprocessing of the used input
data for simulation. Then, in each simulation period, the shortest routes between stop
points for each semi-trailer are computed. Further on, based on the determined routes,
the route plan is fixed, which includes driving and rest time, as well as planning horizon
discretization. Next, possible current and future exchange points are evaluated and stored
in the list. Lastly, the predicted routes are updated (if needed) based on the revealed
real-time information, which then calls for route plan and exchange recomputation. The
best exchange point, according to the biggest saving in time duration, is selected from a list
of all possible exchange points.
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4.2.1. Input Data for the Simulation

For the purpose of simulation, we used the historical data for semi-trailers of two
vehicle compositions (further on referred as ST1 and ST2), selected from the sample: list of
labeled stops (Excel files), global positioning system (GPS) positions of real driven routes
(Excel files), and working time in the previous 7 and 14 days (text files). Tables for the list
of labeled stops contained the following attributes: start time, end time, duration, total
distance (km), distance traveled to stop (km), and location name in Croatian. There were
in total 6 stops for ST1, and 16 stops for ST2. These stops are crucial elements to simulate
the order of visits along semi-trailer routes. To use these stops in the routing simulation
environment, first the labeled locations had to be geocoded. To geocode the locations,
we used the application programming interface (API) from OpenRouteService (ORS) and
additionally manually checked and corrected the geocoded locations as most of them
were in Croatian. Tables of GPS positions of actual driven routes contained the following
attributes: time stamp, longitude and latitude, height, speed, heading, and status (active
or not). These real GPS data were used to update the predicted route at specific discrete
decision time points. The sampling time of GPS points is on average 19.07 s for an active
vehicle (driving mode) and 192.62 s for an inactive vehicle (stationary mode). In total there
are 2633 samples for ST1 (active 81.12%) and 7376 samples for ST2 (active 77.30%). The
previous driving time for ST1 is set to 545 min for today and the last 14 days, while for
ST12 it is set to 2820 min for the last 14 days and 0 for today.

4.2.2. Computation of Predicted Routes

To be able to detect the possible spatiotemporal exchange of semi-trailers, we had to
determine the routes between the geocoded stops that needed to be visited. As we needed
routing across the whole European continent, we used the free Directions API within the
ORS. To obtain the route between two consecutive points within the program, we con-
structed programmatically a query string that computes the shortest path between the des-
ignated coordinates. For example, query parameters are start-location: 6.52038840496516,
52.7113227718456, end-location: 9.66173095026495, 50.7118518657053, and geometry: true.
Parameter geometry is set true to get the complete route geometry per segments. For
authorization we used an API key that we obtained when registering on the ORS. The
service responds in the JavaScript object notation (JSON) format, which is deserialized
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into the Route object. The Route object has the following attributes: list of all geographical
coordinates in the route, traveled distance [m], duration [s], and list of Steps about real
road-segments used when traversing the route (i.e., routing plan). Each Step contains the
following attributes: distance [m], duration [s], instruction (i.e., head north), road-segment
name, and road-segment type. The sum of all steps of duration and distance corresponds
to the total route duration and distance. To compute the shortest path on such a large road-
network the ORS uses contraction hierarchies and customizable alternative algorithms,
implemented based on the idea presented in [82].

4.2.3. Determination of Routing Plan

After loading the routes, next we predict the complete route duration, including
the rest-time periods. The driving time and rest periods for Europe are determined by
Regulation (EC) No 516/2006 [83].

These regulations notably specify the following.

• The maximum daily driving period is 9 h, with an exception allowing it to be extended
to 10 h twice a week.

• The total weekly driving time cannot surpass 56 h, and the total fortnightly driving
time must not exceed 90 h.

• A daily rest period of at least 11 h is required, with the possibility of reducing it to 9 h
up to three times a week. This daily rest can be split into two parts: 3 h followed by
9 h, resulting in a total of 12 h of rest.

• Breaks of at least 45 min, which can be divided into 15 min followed by 30 min, must
be taken after driving for a maximum of 4 1

2 hours.
• A weekly rest period should last for 45 continuous hours but can be reduced to 24 h

every second week, subject to compensation arrangements. This weekly rest must be
taken after six consecutive working days, except for drivers engaged in occasional
international passenger transport, who may postpone their weekly rest period for up
to 12 days to accommodate holidays.

• In exceptional situations, daily and/or weekly driving times may be exceeded by up
to one hour to allow the driver to reach their place of residence or the employer’s
operational center to take a weekly rest period.

Using the rules specified above and a list of Steps for each semi-trailer, we determined
the whole route planning horizon which includes both driving-time and rest-time. Ad-
ditionally, we discretized the whole route horizon into 10 min time buckets, to be able to
efficiently find possible spatiotemporal exchange points between semi-trailers. Large steps,
in terms of duration and distance, are uniformly discretized into time buckets of equal
duration length of 10 min.

4.2.4. Check for Semi-Trailer Exchange

The procedure for evaluating all possible semi-trailer exchanges for the current routing
plan is given by Algorithm 1. Starting from the current time bucket, first we check whether
the semi-trailers are spatially close. We used a threshold of 100 km in aerial distance to
narrow the search space and reduce the execution time. The threshold of 100 km was
recommended by an expert from our industrial partner. It enables us to identify potential
locations for trailer exchange without incurring significant losses in driving time. If the
spatial threshold is met, we conduct the evaluation of possible semi-trailer exchange. As
an exchange point, we first look in the list of not visited stops for each semi-trailer and
select the closest within the spatial threshold (if any). If there is no stop within the spatial
threshold, we assume the drivers or dispatcher will be able to determine the exchange
point within 100 km, and we approximate the exchange point at the middle between the
semi-trailers. Next, we compute the new route planning horizons for each semi-trailer.
Using the ORS, first we compute the shortest routes from current semi-trailer positions
to the exchange point. As at the exchange points, the drivers exchange the trailers, we
recompute the rest of the routes with new (exchanged) stops in the route. After the route
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recomputation, we determine the new route planning horizons to include both driving
and rest times. Lastly, we evaluate the end times of both semi-trailers and compute the
duration savings compared to the no-exchange scenario. If savings can be achieved, we
store them in a list of possible savings. The whole evaluation is then repeated for all 10 min
time buckets in the planned horizons, and as a result if any, we list the possible semi-trailer
exchanges that produce the highest total duration savings.

Algorithm 1: Evaluate possible exchanges for current routing plan

1. Initialize an empty list to store possible savings
2. For each time bucket in planned horizons:
3. Get the positions of semi-trailers at the current time bucket
4. If semi-trailers are spatially close:
5. Find the closest not visited stop within the threshold for each semi-trailer
6. Compute the exchange point or approximate it as the midpoint
7. Compute new routes from current positions to the exchange points
8. Recompute the rest of the routes with exchanged stops
9. Determine new route planning horizons including driving and rest times
10. Compute end times for semi-trailers
11. Compute the duration savings compared to the no-exchange scenario
12. If savings are possible:
13. Store the pair and the duration savings in the list of possible savings
14. If possible savings is not empty:
15. Identify the pair with the highest total duration savings
16. Store the best exchange in the result

4.2.5. Real-Time Update

As it was noted during the development, the drivers tend to change their routing
plan either due to their own route preferences, unpredictable incidents on the road, or
by dispatcher change in visits. Also, in some cases the exact driving-times and rest-times
are unknown. To overcome this, we used the real driven GPS data, as an update on the
real time position. After the determination of the initial route plan and exchange point (if
any) for the set starting time, within the developed framework, we allowed real positions
to be revealed every 60 min. After revealing the real positions, if the predicted time and
distance coincide with the real revealed time and distance computed from the GPS points,
the routing plan is not updated. Otherwise, the routing plan is completely updated to
match the current real-time state:

• Start time is the current real revealed time
• New predicted routes are computed
• New routing plan is determined
• New exchange points are computed.

The driving time is updated to match the actual driving time from GPS samples
labeled as active, while the real-time rest times are computed from GPS samples labeled
as inactive.

4.2.6. Simulation

The simulation is conducted through a Windows Form application implemented in
the C# programming language. Simulations were performed on a machine with an Intel
E5 processor and 32 GB of RAM. The graphical user interface (GUI), presented in Figure 5,
includes the left side bar with options setup and text boxes for results, and on the right
side, the map container. To represent the map, we used the free OpenStreetMap (OSM)
form GMap.NET.WinForms package. All methods were implemented in C# programming
language with a total of 1834 lines of source code. For implementation details, the complete
source code without confidential data is publicly available on GitHub (https://github.com/
terdelic/TrailerExchangeSimGitHub, accessed on 6 November 2023).

https://github.com/terdelic/TrailerExchangeSimGitHub
https://github.com/terdelic/TrailerExchangeSimGitHub
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After pressing the Load data button, the complete routing plan for two semi-trailers is
determined, as presented in Figure 6. At this point the complete routing plan is determined
together with discretization of exchange point checks for the current time period: 27.1.2023.
9:00:00 (start time). Predicted transport route for ST1, represented with blue line, starts in
Halle (Germany) and ends in Herne (Germany), while the predicted transport route for ST2,
represented with red line, starts in Hoogeveen (Netherlands) and ends in Rugvica (Croatia).
Start points are represented with green pins, while end points are represented with red pins.
The predicted end time for ST1 is 28.1.2023. 1:40:00, while for ST2 it is 30.1.2023. 1:20:00.
In the current routing plan, there are no possible predicted exchanges of semi-trailers that
could lead to savings in time.
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By pressing the button Real-time simulation, the actual information is used to update
the routing plan. The example of real time progression per one hour time period is depicted
in Figure 7. Predicted routes for ST1 in three consecutive time periods are presented,
where the gray colored lines indicate the really revealed parts of the GPS data, while the
blue colored lines indicate the predicted parts of the routes. Green pins indicate starting
points, big blue pins indicate current positions and small blue pins indicate already visited
locations. It can be seen that routes are adapted according to the real data, as well as that
drivers tend to make unplanned stops along the way.
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Figure 7. Simulation of routes in consecutive time periods: (a) first time period; (b) second time
period; (c) third time period.

An example of a possible exchange point with savings is presented in Figure 8. The
time period is 27 January 2023. 13:00:00, at which the semi-trailers are in positions marked
with light blue pins. Predicted transport route for ST1 is indicated by blue line and
predicted transport route for ST2 is indicated by red line. The pink circle overlay represents
the geographical area in which the vehicle will be spatiotemporally close, and there is a
possibility to compute the exchange point. In the left sidebar, the summary of exchange
points is presented. At the current time period, only one exchange point was found, with an
approximated reduction of the total duration for both vehicles by 7.83 h. The determined
exchange point is represented with a purple pin. Yellow pins represent the predicted
location of ST1 (not visible as it is at the same place as the purple pin) and ST2, at a future
time period when they start rerouting to the exchange point. The algorithm predicted that
the ST1 will take its rest period at the position of the purple pin parking station Hackelberg.
Yellow and pink dashed lines represent the rerouting taken to arrive at the exchange point
as well as the exchanged parts of the routes between the semi-trailers. In the current
example, only ST2 is rerouted as it travels to the exchange point, while ST1 waits there. At
the exchange point, the vehicle compositions exchange semi-trailers, and a new routing
plan is determined (yellow and pink dashed lines).
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Figure 8. Exchange of semi-trailers.

In some cases, the vehicle compositions are spatiotemporally close but there are
no savings achieved when conducting the exchange of trailers, as shown in Figure 9a,
where two exchange points are found, but no reduction in total duration is predicted.
Figure 9b shows an example where no exchange point is found as semi-trailers are not
spatiotemporally close. The marking in Figure 9a,b follows the same pattern: blue lines
indicate predicted sections of transport routes for ST1, red lines indicate predicted parts of
transport routes for ST2, while gray lines indicate already driven parts of the routes. Green
pins indicate starting points, red pins indicate endpoints, small blue pins indicate already
visited locations and pink circles represent the exchange area. In total, eight possible
exchange points are found, but only one produced the possible savings, presented in
Figure 8.
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To validate the results, we checked that the actual routes (itinerary and duration of
the routes) recorded by the transport company (historical data collected in the case study)
correspond with the simulated routes and compared the initial duration of the routes
(vehicle workdays) with the duration of the routes after the semi-trailers are exchanged as
the algorithm suggested. We shared the findings regarding the best-suggested exchange
point with the dispatchers from the transport company. The consensus reached was that
while the results appear promising, the practical implementation of such exchanges may
be uncertain in some cases. This uncertainty stems from the fact that the drivers must be
willing to accept suggested changes and locate suitable space for the physical exchange
of semi-trailers. Therefore, the feasibility of achieving improved results across the board
may be limited. Generally, it should not be an issue as the drivers need only to follow the
instructions provided by the dispatchers.

4.2.7. Sensitivity Analysis

The implemented model is highly sensitive to the accuracy of its parameters related
to the time spent driving in the recent day, recent seven days, and recent two weeks, as
well as the rest time taken during those time periods. These values significantly impact
the spatiotemporal proximity of semi-trailers, directly affecting the prediction of exchange
points. For instance, using zero values for all driving and rest-related variables results in
detecting nine exchange points earlier in the spatiotemporal flow, but neither of them leads
to a reduction in the total duration. To ensure high-quality predictions, it is crucial to obtain
accurate real-time data.

In terms of the designated stops, the model is quite sensitive to the accuracy of these
values. Using incorrect information stemming from geocoding errors in location names
(often due to language discrepancies) or inaccurate input data, or making real-time stops
that were not predicted, can lead to erroneous route predictions and travel time estimates,
ultimately affecting the accuracy of exchange point predictions. Additionally, road traffic
conditions play a significant role in predicting travel times for routes. This issue is partially
addressed through real-time information updates and route corrections to enhance the
accuracy of exchange point predictions.

5. Discussion

Within the time frame of the first three quarters of 2023. (sampled period) the transport
company dispatchers handled a total of 16.102 transport orders (average of 1.789 on
monthly basis) by constructing a total of 4.433 transport routes (average of 493 on monthly
basis). In performing those routes, the fleet of 140 vehicle compositions spent a total of
37.682 vehicle workdays.

By analyzing transport operations performed in the sampled period, we found the
potential of saving a total of 813 vehicle workdays and releasing an average of three vehicle
compositions monthly, in the case where the concept of dynamic allocation of semi-trailers
that we developed would have been applied in addition to the existing FMS.

With regard to the above, introducing the concept of dynamic allocation of semi-trailers
would provide the following benefits:

(a) Reducing the number of vehicle workdays spent performing transport operations
(2.16% in this case), which would increase the profitability of transport operations
and improve safety of the products being transported.

(b) Reducing the number of vehicle compositions needed to handle the transport demand
(2.34% in this case, taking into account average operational availability of the vehicle
fleet), which enables the transport company to acquire more transport orders while
operating the existing vehicle fleet (increased volume of transport operations).

(c) Improving the quality of the transport service (meeting quality standards) and raising
the level of customer satisfaction, by reducing delivery delays.

(d) Better coordination of the transport operations department, that enables dispatchers
to handle more transport orders (increased productivity).
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Obstacles, limitations and disadvantages we encountered during development and
testing the prototype application may be summarized as follows:

• Although in electronic form, transport orders contain location names that require a
geocoding service to extract the GPS locations. In addition to departure and destination
that are indicated in the transport order, there are other stops on the route that the
driver made for some reason, for which the GPS data also need to be retrieved.

• Prior to planning the transport route, accurate information on the driver’s working
time in the previous 30 days must be available. This information is essential for route
planning, as it is a constraint that defines the approximate locations of stopping points
and duration of stays along the route. It has a direct impact on the results of searching
the feasible switching points of tractor/semi-trailer compositions on different routes
in space and time.

• The planned route and the route driven do not match completely (only after several
real-time updates does the match increase) because the drivers may make a detour for
some reason.

• In route planning, we were using the free version of the ORS API, which is limited
to 40 calls per minute, and 2000 calls per day. In the example outlined in Section 4, it
took three minutes to evaluate all the planned routes, as the new updated routes are
planned on an hourly basis, when the real-time data is retrieved. Also, when checking
the exchange points, the application algorithm needs to define the most suitable
deviations from the selected routes to enable vehicles to reach the same location in
space and time. Additionally, the rest of the route from the exchange point to the end
of the route also needs to be determined. For larger problems, the paid version of
some routing service needs to be used.

• The evaluation of switching possibility is carried out if the vehicles are less than 100 km
apart in the space-time flow. We set this value as a parameter, which could possibly
be increased, as the hourly spatiotemporal discretization of the simulation is rather
coarse. We had to do so, in order not to plan routes too frequently and not to overload
the ORS server.

• Searching for switching possibilities makes sense if there is a sufficient number of
tractor/semi-trailer compositions (the road transport company from the case study
operates 140 tractor/semi-trailer compositions). In the conducted case study, we
investigated the possible exchange for only two semi-trailers, and not the subset
combination from all 140 semi-trailers. There were in total 211 checks for exchange
points, and only eight within the 100 km threshold at a specific time. The evaluation of
the whole fleet of 140 semi-trailers would significantly increase the search space and
execution time, as there are in total C(140, 2) = 140!

2!138! = 9730 possible permutations
of a subset of two semi-trailers from the whole 140 semi-trailers in the fleet. Also
considering the substantial use of the shortest path algorithm, the final system should
definitely use some faster decision algorithms, use a lower discretization period (a
couple of hours), or use some form of parallelization.

The issues addressed above could be overcome by adapting formats of the input data,
certain technical improvements of the prototype application, which could be integrated
into existing FMS software, as a separate module.

6. Conclusions

Road transport companies utilize their transport capacities as fixed combinations of
tractors and semi-trailers, while the possibility of switching tractor/semi-trailer composi-
tions is considered ad hoc, after some unforeseen events or circumstances emerge on the
route (such as vehicle malfunction, traffic jams, or traffic accidents) but not proactively,
nor continuously. Furthermore, if a switching tractor/semi-trailer composition is to be
considered, it is done manually by the dispatchers. It is also important to note that pick-up
and delivery time-windows may be relatively extensive and that certain delays may not be
considered a major problem by the clients; however, each additional vehicle workday is
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a fixed cost that not only decreases the margin of the transport route, but also seizes the
transport capacity that would otherwise be available.

Such an approach is a limiting factor in achieving optimal utilization of transport
capacities, and consequently affects the profitability and sustainability of the transport
operations. We investigated the possibility of introducing a different concept of transport
capacity management, whereby semi-trailers would not be permanently assigned to the
same tractors, but would dynamically join the tractors, to optimize the route regarding
the stipulated time and locations of pick-up and delivery, the driver’s working hours, and
road traffic regulations. Unlike the usual way of operating vehicle compositions where
exchanging semi-trailers is performed as a reaction to the emerging problem on the route,
the algorithm we developed works proactively; it predicts deviations from the planned
itinerary, finds a suitable semi-trailer exchange point, and redirects the vehicles. Applied
continuously for the entire vehicle fleet, it also improves the productivity of the dispatchers,
enabling the transport company to handle more transport orders.

Adopting the concept of dynamic semi-trailer allocation would improve the transport
performance by better utilization of transport capacities, enable the continuous meeting of
quality standards and product safety (critical issue in the cold chain), ultimately resulting
in a higher level of customer satisfaction. Although the case study was carried out on the
transport operations in the cold chain, which are more demanding due to specific quality
standards, other transport companies could benefit from implementing the concept of
dynamic allocation of semi-trailers as well, especially those that operate a considerable
vehicle fleet (50 or more tractor/semi-trailer compositions).

We evaluated applicability and benefits of this concept by developing a prototype
application and simulating its use on the sample of historical data collected in the case
study. We compared the KPI achieved in the simulation with the respective KPI achieved
by the transport company and quantified the improvement thereof. The results were also
verified by professionals from the transport company that provided the historical data.

The prototype application has sufficient functionalities for testing purposes, yet certain
technical improvements are still needed for commercial use. However, it can be a basis
for developing a fully functional application, which could be integrated into existing FMS
software, as confirmed by the external experts from the IT company that produces telematic
software and equipment.

The research is limited to road transport operations that involve long haul transport
routes, with several transport orders per route. Also, the vehicle fleet management must
be supported by telematic software and hardware that enable the location of vehicles and
exchange of information in real-time.

Further research could be directed towards improving the algorithm we developed
with prediction of on-going transport route margin falls below the threshold set by the
transport company, checking for semi-trailer exchange options, and automatically suggest-
ing a solution to the dispatchers. In addition to that, extra criteria and their priorities could
be considered, such as customer satisfaction and customer service level, quality changes
of specific products associated with temperature fluctuations during transport in the cold
chain, or the impact on the environment.

Since a larger number of vehicle compositions yields a greater potential for dynamic
semi-trailer allocation, it would also be useful to explore the possibilities of including
subcontractors in addition to the vehicles belonging to the transport company.
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