
 

 
 

 

 
Logistics 2023, 7, 48. https://doi.org/10.3390/logistics7030048 www.mdpi.com/journal/logistics 

Article 

Optimization of the Residual Biomass Supply Chain: Process 

Characterization and Cost Analysis 

Leonel J. R. Nunes 1,2,3,* and Sandra Silva 1,4,5 

1 proMetheus, Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade,  

Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares,  

4900-347 Viana do Castelo, Portugal; sandrasilva@esa.ipvc.pt 
2 DEGEIT, Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, 

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 
3 GOVCOPP, Unidade de Investigação em Governança, Competitividade e Políticas Públicas,  

Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 
4 Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de 

Nun’Alvares, 4900-347 Viana do Castelo, Portugal 
5 INESC Coimbra, Instituto de Engenharia de Sistemas e Computadores de Coimbra, Faculdade de Ciências e 

Tecnologia, Universidade de Coimbra, Pólo II, R. Silvio Lima, 3030-290 Coimbra, Portugal 

* Correspondence: leonelnunes@esa.ipvc.pt 

Abstract: This study delves into the critical role of logistical cost optimization in the residual woody 

biomass supply chain, aiming to enhance the sustainability and efficiency of this resource’s 

exploitation. The research underscores that proficient cost management of logistical operations is 

pivotal for the economic feasibility of residual biomass utilization. The paper scrutinizes key 

aspects, such as collection, transportation, storage, and processing of biomass, emphasizing their 

individual contributions to the overall cost. It also pays particular attention to the impacts of 

seasonality and biomass quality variations, which directly influence the cost and effectiveness of the 

supply chain. To facilitate a deeper understanding of these factors, the study introduces 

mathematical models that enable the exploration of diverse scenarios and optimization strategies. 

The use of linear programming, genetic algorithms, and tabu search techniques are discussed in the 

context of these models. The findings of this research hold significant implications for the 

management of the residual biomass supply chain and contribute to the transition towards a low-

carbon economy. 
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1. Introduction 

The viability of any value chain based on residual biomass, which includes forestry 

and agricultural waste, is critically influenced by the logistical costs associated with its 

collection [1]. This potential raw material for renewable fuels, chemicals, and energy 

production is currently underutilized, with only 40% to 60% of the total collected volume 

being used, leading to significant resource wastage [2–4]. Despite the competitive cost of 

energy generation from biomass compared to fossil fuels, the logistical constraints related 

to biomass collection and transportation often render these processes unfeasible [5,6]. The 

supply system for this raw material involves numerous unit operations, such as collection, 

preprocessing, transportation, and storage, which present significant technical and 

logistical challenges [7,8]. These operations require a variety of transport equipment to 

move the biomass from its source to the conversion and valorization site [9,10]. 

The optimization of the supply chain for biomass energy valorization units is a 

crucial research area, given the increasing focus on renewable energy sources and the 

Citation: Nunes, L.J.R.; Silva, S.  

Optimization of the Residual  

Biomass Supply Chain: Process 

Characterization and Cost Analysis. 

Logistics 2023, 7, 48. 

https://doi.org/10.3390/ 

logistics7030048 

Academic Editor: Robert Handfield 

Received: 6 July 2023 

Revised: 21 July 2023 

Accepted: 1 August 2023 

Published: 4 August 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Logistics 2023, 7, 48 2 of 22 
 

 

decarbonization of industrial production and mobility [11,12]. This optimization is a 

complex problem due to various supply and demand constraints [13]. The transportation 

costs of residual biomass constitute the majority of the supply chain costs for energy 

production, thus attracting attention from several recent studies on methodologies for 

optimizing logistical processes and reducing total operation costs [14,15]. The viability of 

biomass supply chains is heavily dependent on the optimization of these logistical 

processes, which include all operations from collection to delivery of the biomass at the 

processing site [16,17]. This involves considerations about the location of potential 

biomass storage parks, the location of processing units, the methods and equipment used 

for collection and transportation, and the ability to store and treat biomass to optimize its 

utilization [18]. Given the complexity of the processes and the large number of operations 

involved, optimizing logistical processes is a critical aspect of ensuring the economic 

viability of biomass supply chains [19]. 

Several previous studies addressed these complex subjects and contributed to the 

broader discussion on supply chain management, with a particular focus on the 

management of residual biomass and other resources. For example, Shahsavani and Goli 

and Lotfi et al. emphasized the importance of sustainable and efficient supply chain 

management [20,21]. Shahsavani and Goli focused on the concept of a circular supply 

chain, which aims to reduce total energy consumption. This aligns with the broader goal 

of managing residual biomass, which is to utilize waste resources efficiently and 

sustainably. Lotfi et al. proposed a robust, risk-aware, resilient, and sustainable closed-

loop supply chain network design, which could be applied to the management of residual 

biomass. Del Rosario et al. provided an overview of sustainable development and the 

Sustainable Development Goals, which are relevant to the management of residual 

biomass as this contributes to several of the goals, including responsible consumption and 

production, and climate action [22]. Shokouhifar and Ranjbarimesan and Shokouhifar et 

al. both proposed models to improve supply chain management [23,24]. Shokouhifar and 

Ranjbarimesan focus on the blood supply chain, but their proposed model could 

potentially be applied to the management of residual biomass. Shokouhifar et al. 

proposed a multi-product and multi-objective model for managing the phosphorus 

fertilizer supply chain, which could also be relevant to the management of residual 

biomass. Salehi et al. and Nunes et al. focused specifically on the management of biomass 

[1,25]. Salehi et al. proposed a resilient and sustainable biomass supply network, which 

aligns closely with the goals of residual biomass management. Nunes et al. analyzed the 

supply chain associated with the energy recovery of agroforestry woody residual 

biomass, identifying the main constraints and potential solutions. However, each study 

approached the topic from a unique perspective, offering different insights and solutions. 

The logistical process associated with the collection of residual biomass presents a 

complex challenge that is critical for promoting a circular and sustainable economy [26]. 

Efficient utilization of this energy source requires a well-managed and optimized supply 

chain, from collection, transportation, and storage to energy conversion [27,28]. The 

logistics associated with this supply chain are highly complex, involving multiple actors, 

pieces of equipment, and operations [29,30]. The dispersed and diffuse nature of the 

residual biomass collection sites contributes to high costs, making the minimization of 

transportation distance and efficient planning of collection routes critical elements in 

optimizing the logistic process [31,32]. Several optimization models and techniques, such 

as linear programming models, genetic algorithms (GA), and tabu search (TS), have been 

applied to this problem [33–35]. However, these models have limitations, particularly 

when dealing with the complexity and uncertainty inherent in the biomass supply chain 

[36]. To handle these complexities and uncertainties, more advanced optimization 

techniques have been developed [35]. While both GA and TS have demonstrated 

effectiveness in solving complex optimization problems, each has its own advantages and 

disadvantages [37]. The choice of optimization technique depends on the specific 

characteristics of the logistical problem in question. It is important to note that optimizing 
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the logistical process associated with residual biomass collection is not just a matter of cost 

minimization. It also involves ensuring the sustainability and long-term viability of the 

biomass supply chain, which implies considering a range of factors such as biomass 

availability and quality, environmental conditions, legal and policy constraints, and the 

needs and preferences of stakeholders [38,39]. 

The main objective of this article is to delve into and thoroughly analyze the logistical 

process associated with the collection of residual biomass. The main contributions of this 

study are: 

 Understanding the inherent complexities of the residual biomass supply chain and 

identifying efficient and sustainable optimization strategies. 

 Emphasizing the use of optimization techniques, such as linear programming, ge-

netic algorithms, and tabu search, and their potential to enhance the efficiency and 

sustainability of this logistical process. 

 Applying these tools to minimize operational costs in an integrated manner. 

 Examining the various constraints and challenges that may emerge in this context, 

such as biomass quality and availability, environmental conditions, legal and policy 

constraints, and stakeholder needs. 

 Providing a comprehensive understanding of this subject, which can inform and 

guide future decisions and practices in the field of residual biomass collection and 

recovery. 

2. Organization of the Work 

This article is organized into five main sections, as follows: 

 The first section, the Introduction, provides an overview of the topic and sets the 

context for the subsequent discussions. It outlines the importance of understanding 

and optimizing the logistics of residual biomass collection, and the potential benefits 

that can be derived from such efforts. The introduction also highlights the research 

gap that this article aims to address. 

 The second section, Literature Review, presents analysis of previous works related 

to the subject of this research and outlines the contributions of this manuscript com-

paratively with the existing literature. 

 The third section, Organization of the Work, outlines the structure of the article and 

provides a roadmap for the reader. It describes the sequence of topics that will be 

discussed and explains how each section contributes to the overall objective of the 

article. 

 The fourth section, Modeling the Costs Associated with the Logistics of Residual Bi-

omass Collection, is organized as presented in Figure 1. It begins with the Definition 

of Costing Parameters, where the various factors that contribute to the cost of logis-

tics are identified and defined. This is followed by the Establishment of Detailed Cri-

teria, where these parameters are further refined and categorized. The section then 

moves on to Model Tuning and Approximation to Reality, which is further divided 

into five subsections. The Simplified Model provides a basic understanding of the 

cost structure, while the Model of Approximation to Reality introduces more com-

plexity and realism. The Approximations and Adaptability subsection discusses the 

flexibility of the model and its ability to adapt to different scenarios. The Variations 

Associated with Specific Parameters of Residual Biomass subsection examines how 

changes in the characteristics of the biomass can affect the costs. Finally, the Calcula-

tion Model through Weighting of Variables presents a method for quantifying the 

costs based on the defined parameters and criteria. 

 The fifth section, Optimization Models for the Collection Process, presents different 

models for optimizing the logistics of residual biomass collection. It starts with a Lin-

ear Approach for the Characterization of the Supply Chain, which provides a simpli-

fied model for understanding the logistics process. This is followed by Complex 
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Models, which introduce more sophisticated methods for optimizing the collection 

process. 

 The final section, Conclusions, summarizes the key findings of the article. It high-

lights the implications of the cost models and optimization methods discussed in the 

previous sections and suggests directions for future research. This section also reit-

erates the importance of understanding and optimizing the logistics of residual bio-

mass collection, and the potential benefits that can be derived from such efforts.  

 

Figure 1. Flowchart of the calculation model presented in Section 3. This flowchart starts with the 

definition of costing parameters and the establishment of detailed criteria. It then moves on to model 

tuning and approximation to reality, which is further divided into five subsections: a simplified 

model, a model of approximation to reality, approximations and adaptability, variations associated 

with specific parameters of residual biomass, and a calculation model through weighting of varia-

bles. 

3. Literature Review 

The exploration of the logistical process associated with the collection of residual bi-

omass has been the focus of numerous studies in recent years. This interest can be at-

tributed to the growing recognition of the potential of residual biomass as a sustainable 

energy source coupled with the challenges posed by its collection and utilization. This 

current study contributes to the existing knowledge by delving into the inherent complex-

ities of the residual biomass supply chain. These complexities encompass a wide range of 

factors, from the physical characteristics of the biomass itself to the logistical challenges 

of collection, transportation, and storage. By providing a detailed analysis of these com-

plexities, the study offers valuable insights that can help to inform more effective and 

efficient strategies for residual biomass collection. In addition to identifying these com-

plexities, the study also proposes efficient and sustainable optimization strategies. These 

strategies are designed to address the identified complexities and enhance the overall ef-

ficiency and sustainability of the residual biomass supply chain. The proposed strategies 

include the use of advanced optimization techniques, such as linear programming, genetic 

algorithms, and tabu search, which have been shown to be effective in addressing similar 

challenges in other supply chain contexts. 

The approach followed here aligns with the works of Atashbar et al. (2016), Sun and 

Fan (2020), Lo et al. (2021), and Ba et al. (2016), who also emphasized the need for a com-

prehensive understanding of the supply chain in their study of the residual biomass sector 
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[19,40–42]. These previous works, among others, provided a valuable foundation by high-

lighting the importance of a holistic understanding of the supply chain, including the var-

ious stages of the process and the interactions between them. However, this study extends 

their work by not only identifying the complexities inherent in the residual biomass sup-

ply chain but also proposing specific, actionable strategies for optimization. This repre-

sents a significant advancement in the field, as it moves beyond a mere understanding of 

the challenges to the development of practical solutions that can be implemented in real-

world contexts. 

The application of optimization techniques, including linear programming, genetic 

algorithms, and tabu search, is a key contribution of this study, which is in line with pre-

vious studies such as Jauhar and Pant (2016), Min (2015), Sang (2021), and Radhakrishnan 

et al. (2009) [43–46]. However, this study underscores these techniques’ potential to aug-

ment both the efficiency and sustainability of the logistical process involved in residual 

biomass collection. Linear programming, a mathematical method used to find the best 

possible outcome in a given mathematical model, has been widely used in supply chain 

management to optimize various aspects such as cost, time, and resources [16,34,40,47]. 

Similarly, genetic algorithms (GA), inspired by the process of natural selection, have been 

used to solve optimization problems in biomass supply chain management, as can be 

demonstrated by the studies of Pinho et al. (2018), Castillo-Vilar (2014), De Meyer et al. 

(2014), and Sarker et al. (2019) [48–51]. This previous research demonstrated that these 

algorithms are useful in dealing with complex, multi-objective problems, as they can ex-

plore a large solution space and find near-optimal solutions. Another optimization tech-

nique, tabu search, has also been used in previous studies to solve specific problems in 

the biomass supply chain. For example, Cao et al. (2021), Edwards et al. (2015), and An et 

al. (2011) used this method, known for its ability to avoid local optima and explore the 

solution space more thoroughly [52–54]. In contrast to previous studies that have applied 

these techniques to specific aspects of the supply chain, the current study adopts a more 

holistic approach. It emphasizes the potential of these optimization techniques to enhance 

the efficiency and sustainability of the entire logistical process, from the collection of re-

sidual biomass to its final use. This novel approach provides a more comprehensive un-

derstanding of the potential of these techniques and sets a new direction for future re-

search in this field. The same situation can be described with regards to the application of 

these tools to minimize operational costs in an integrated approach. While Sharma et al. 

(2013) and Durmaz and Bilgen (2020) also used optimization techniques to reduce costs, 

their approach was not integrated, focusing instead on individual components of the sup-

ply chain [55,56]. 

The examination of various constraints and challenges, such as biomass quality and 

availability, environmental conditions, legal and policy constraints, and stakeholder 

needs, is another area where this study contributes to the existing literature. Previous 

studies, such as those by Gallik et al. (2021), Wang et al. (2020), and Gómez-Marín and 

Bridgwater (2021), have discussed these constraints and challenges [57–59]. However, 

once again, the approach followed here examines these issues in the context of the entire 

logistical process, which can inform and guide future decisions and practices in the field 

of residual biomass collection. 

4. Modeling the Costs Associated with the Logistics of Residual Biomass Collection 

4.1. Definition of Costing Parameters 

To develop a comprehensive mathematical model that effectively encompasses all 

stages of the process and the associated costs involved in the operations of cutting, clean-

ing, rechipping, loading, and transporting residual woody biomass to the final processing 

site, it is essential to take into consideration a series of factors [60]. These elements are not 

limited solely to variables directly involved in biomass handling but also incorporate con-

textual and environmental variables that can have a significant impact on the efficiency 
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and economic viability of the process [61]. Among the various elements to be considered, 

intrinsic characteristics of the biomass such as type, density, and moisture stand out as 

they can influence both the difficulty of handling and the energy potential of the material 

[62]. Additionally, logistical factors such as distance and accessibility from the collection 

site to the processing location, the type of transport vehicle used, and its loading capacity 

are equally crucial for a proper analysis of the process and its operations [63]. Seasonality 

and climatic variation also play an important role, as they can affect biomass availability 

and transportation conditions [64]. Furthermore, economic factors such as labor and 

equipment costs, as well as the market value of biomass, must be incorporated into the 

model [65]. In addition, regulatory or policy restrictions that may limit biomass harvesting 

or impose specific quality standards should not be overlooked [66]. Finally, the uncer-

tainty and variability associated with many of these variables must be considered, ena-

bling the creation of a robust and resilient model capable of dealing with the complex and 

dynamic reality of biomass supply [67]. Thus, the challenge of modeling this process lies 

in striking a balance between accuracy and complexity, creating a model that is detailed 

enough to be precise yet simple enough to be practical and feasible for implementation. 

Based on these assumptions, it is possible to identify a preliminary set of costs that 

can be considered primary and represent the main operations constituting the supply 

chain of residual or surplus woody biomass, which can originate from both forestry 

sources and agro-industrial production processes, as previously mentioned. 

1. Cutting cost (Cc): may include labor cost, equipment cost, and equipment mainte-

nance cost, and can also be influenced by factors such as the type of biomass and site 

conditions. 

2. Cleaning cost (Cl): the cost associated with preparing the biomass for transportation. 

This may include debris removal, biomass separation from other materials, and the 

selection of distinct parts that constitute this biomass, such as the separation of husks. 

3. Recollection cost (Cr): the cost of collecting the biomass and preparing it for transpor-

tation, which may include biomass compaction (baling) and loading it onto transport 

vehicles or using more traditional methods (now making a comeback), such as mod-

ern animal traction. 

4. Loading cost (Cca): the cost of loading the biomass onto the transport vehicle, which 

can vary depending on the type of vehicle used and the amount of biomass that needs 

to be loaded. 

5. Transportation cost (Ct): the cost of moving the biomass from the cutting site to the 

final processing site, which may include the cost of fuel, vehicle wear and tear, and 

time spent in transportation. 

Therefore, a simple mathematical model to represent the total cost (CT) of this process 

can be expressed as follows, referring to the sum of each of the identified components: 

�� = �� + �� + �� + ��� + ��  (1)

4.2. Establishment of Detailed Criteria 

The mathematical model introduced in the previous section represents a simplified 

version of reality, which, although useful for illustrating the fundamental dynamics of 

residual biomass collection, does not encompass all the cost factors that may arise in a real 

and practical situation. For example, the model does not account for the costs associated 

with biomass acquisition. These costs can vary depending on the origin of the biomass, 

the specifics of the acquisition contract, and potential transaction-related costs such as 

commissions, taxes, fees, or others. Additionally, costs related to waste management gen-

erated in the process must be considered. Depending on environmental regulations and 

waste management practices, the management of residual materials can entail significant 

costs when, for example, it requires contracting an entity to handle such waste. Another 

factor not considered in the simplified model is the cost of insurance policies. The 
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operation of collecting and transporting biomass can involve significant risks and, there-

fore, adequate insurance coverage must be ensured. Insurance costs can vary depending 

on the nature of the operations, the type of selected insurance coverage, and other addi-

tional factors, depending on the complexity and scale of the process. Furthermore, obtain-

ing the necessary licenses and permits to carry out biomass collection and transportation 

can be an expensive and time-consuming process. The simplified model does not take into 

account these costs, or the time required to obtain such licenses. Finally, there are several 

other indirect costs that may be associated with the process of residual biomass collection. 

These may include administrative costs, equipment maintenance costs, and personnel 

training costs, among others. Therefore, it is important to bear in mind that although the 

presented mathematical model is a useful tool for understanding the basic dynamics of 

residual biomass collection, it does not capture all the nuances and complexities that may 

be present in a real situation. For a more comprehensive and accurate analysis, it is neces-

sary to develop a more comprehensive model that includes these and other potential cost 

factors. Thus, the mathematical model can be expanded to include additional parameters, 

such as: 

1. Biomass acquisition cost (Ca): the cost of acquiring biomass and may depend on a 

variety of factors, including the type of biomass and its location and spatial distribu-

tion. 

2. Waste management cost (Cd): the cost associated with managing any waste produced 

during the process of cutting, cleaning, reloading, loading, and transporting biomass. 

3. Insurance coverage cost (Ci): the cost of insuring the process, including equipment 

insurance and insurance for liability, environmental and work accidents, among oth-

ers. 

4. Permit/license cost (Cp): the cost associated with obtaining the necessary permits and 

licenses to carry out the process. 

5. Indirect cost (Cin): a general cost that may include things such as administration, su-

pervision, facility maintenance, and so on. 

With these additional parameters, the mathematical model for the total cost (CT) ac-

quires a new formulation, which now includes all these additional parameters, thus mak-

ing the model increasingly closer to reality. 

�� =  �� + �� +  �� +  ��� +  �� + �� +  �� +  �� + �� +  ���  (2)

This is a more comprehensive model, but it is still simplified and may not encompass 

all possible cost variables. Furthermore, each of these costs can be a function of several 

other variables, and modeling these relationships can be complex. For instance, if there is 

an intermediate stop in the process where the material needs to be unloaded, processed, 

loaded again, and transported to the destination, these costs need to be added to the 

model: 

1. Unloading cost (Cde): the cost of unloading biomass at the intermediate location. 

2. Shredding cost (Cdt): the cost of shredding biomass at the intermediate location. 

3. Reloading cost (Crc): the cost of reloading biomass onto the transport vehicle after 

shredding. 

4. Additional transportation cost (Cta): the cost of transporting biomass from the inter-

mediate location to the final processing location. 

Thus, the mathematical model for the total cost (CT) with an intermediate stop is: 

�� =  �� + �� +  �� + ��� + �� +  �� + �� +  �� +  �� + ��� +  ��� + ��� +  ��� +  ���  (3)

However, this model remains a simplification. Once again, each of these costs can be 

a function of several other variables. For instance, the transportation cost (Ct and Cta) could 

be subdivided into fuel cost, vehicle wear and tear, and transit time if these details were 

required for the analysis, and the same line of thinking can be applied to each of the other 

variables. 
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4.3. Model Tuning and Approximation to Reality 

4.3.1. Simplified Model 

The intricate relationships governing the management of residual biomass collection 

can be further explored at a deeper level by introducing a higher level of detail. This deep-

ening of understanding of the process involves the inclusion of elements that may appear 

random at first glance but have a significant impact on the costs involved at each stage of 

the logistics process. For instance, meteorological variables such as precipitation and tem-

perature can affect both the quality of biomass and the conditions for its collection. Addi-

tionally, factors such as fuel price fluctuations, changes in market conditions, or even al-

terations in legislation and regulations can influence costs and necessitate adjustments in 

logistics planning. By considering these variables, the management model must be suffi-

ciently flexible to adapt to such fluctuations, thereby enabling continuous optimization of 

operations. This approach leads to a more realistic and precise assessment of the costs 

associated with residual biomass collection and facilitates more effective and efficient re-

source planning. This level of detail, although it may add complexity to the model, is cru-

cial for effective management and truly efficient optimization of the residual biomass lo-

gistics chain. The level of detail can then be deepened in the following manner: 

1. Cutting cost (Cc): this cost can be influenced by factors such as labor cost (Cmo); labor 

productivity (Pmo), which may depend on workers’ education and experience; equip-

ment cost (Pe), which may vary depending on the type and quality of the equipment; 

maintenance cost (Me); equipment lifespan (Le); and site conditions, which can affect 

cutting speed. 

�� =  �
���

���
 � +  �

��

��
 � + ����   (4)

2. Cleaning cost (Cl): this cost can be influenced by factors similar to those of the cutting 

cost, such as labor productivity and equipment cost. It may also depend on the type 

of biomass and site conditions, among other factors. 

3. Reharvesting cost (Cr): this cost can be influenced by factors such as biomass size and 

shape, labor productivity, and equipment cost. For example, reharvesting larger bio-

mass pieces may be more expensive than reharvesting smaller pieces, as it requires 

more effort from the equipment, resulting in increased fuel consumption. 

4. Loading cost (Cca): this cost may depend on the type of vehicle used for transporta-

tion, the quantity of biomass that needs to be loaded, and labor productivity. 

5. Transportation cost (Ct): this cost may depend on factors such as the distance to the 

final processing location (Dpf), the type of vehicle used, fuel cost (Ccomb), and the time 

required for travel (Tdesl). 

�� =  ����  ×  ������ + (����� ×  ���) +  �
��

��
� +  ��  (5)

4.3.2. Model of Approximation to Reality 

As previously mentioned, the situation will always be unique and may require the 

modification of these relationships to adapt to the specific conditions of a particular situ-

ation or location. However, the more detailed the model, the more accurate the calculation 

will be, allowing it to represent reality in a much closer manner. In other words, with the 

introduction of greater detail, the margin of error significantly decreases, although it still 

depends on the quality of the data used in the modeling. This level of detail can be pre-

sented as follows: 

1. Cutting cost (Cc): this cost can be represented as the sum of labor cost, equipment 

cost, and equipment maintenance cost. It can be assumed that the labor cost depends 

on the hourly rate (H) and the time required to cut the biomass (Tc). The equipment 

cost can be the price of the equipment (Pe) divided by its useful life (Le), and the 
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equipment maintenance cost (Me) can be considered as a percentage of the equipment 

cost. Therefore, the formula can be presented as follows: 

�� =  � × �� + �
��

��

� + �� (6)

2. Cleaning cost (Cl): this cost can be represented similarly to the cutting cost, assuming 

that the time required for cleaning is Tl and the cleaning equipment has its own ac-

quisition value (Pl), lifespan (Ll), and maintenance cost (Ml), as presented in the fol-

lowing equation: 

�� =  � × �� +  �
��

��

� +  �� (7)

3. Reharvesting cost (Cr): this cost can be influenced by the dimension and shape of the 

available biomass (Sb) if the amount of time required for recharging varies depending 

on the size of the pieces to be collected and processed. The recharging equipment has 

its own acquisition cost (Pr), useful life (Lr), and maintenance cost (Mr): 

�� =  � × �� × �� + �
��

��

� + �� (8)

4. Loading cost (Cca): this cost can be influenced by the biomass quantity (Qb) available 

if the time required for loading increases with the biomass quantity. The loading 

equipment also has its own acquisition value (Pca), useful life (Lca), and maintenance 

cost (Mca). 

��� =  � × �� × ��� + �
���

���

� + ��� (9)

5. Transportation cost (Ct): this cost may depend on the distance to the final processing 

location (D), the fuel cost per kilometer (F), and the transit time (Tt). The vehicle has 

its own acquisition cost (Pv), useful life (Lv), and maintenance cost (Mv): 

�� =  � × � + � × �� + �
��

��

� + ��  (10)

4.3.3. Approximations and Adaptability 

Each analyzed situation will always be, or will be at least in the majority of cases, 

unique, with its own specificities, and may require the modification of these models to 

adapt to the intrinsic conditions of the ongoing operation. For example, labor productivity 

and equipment efficiency may vary, which would affect the time required for each task 

(Tc, Tl, Tr, Tca, Tt). Furthermore, the cost of fuel may vary depending on factors such as 

equipment efficiency and fuel prices, which can change over time and may be dependent 

on external, uncontrollable factors. The quantity, size, and shape of biomass (Sb, Qb) can 

also influence the time required to complete operations such as forwarding and loading. 

Therefore, it is important to keep in mind that these models are merely a starting point 

and may need to be adapted to fit specific situations. 

From this perspective, when evaluating the cost calculation equation, it is easy to 

understand that each component has a complex relationship with the others. Each term in 

this formula not only represents an isolated cost but can also be influenced by other pa-

rameters. For this reason, the total cost is a function of these interconnected terms, where 

each one contributes to the optimization of the residual biomass supply chain. By under-

standing these relationships, it is possible to define a more accurate strategy for the most 

effective optimization, enabling more efficient resource management and maximizing re-

turn on investment. In this way, the approximation to reality of each of the relationships 
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that exist for each of the terms described in the previously presented model can be pre-

sented. 

�� =  �� + �� +  �� + ��� +  �� +  �� +  �� +  �� + �� +  ��� (11)

1. Biomass acquisition cost (Ca): this cost may depend on the price per unit of biomass 

(Pb) and the quantity of biomass acquired (Qb). 

�� =  �� × �� (12)

2. Cost associated with waste management (Cd): this cost may depend on the quantity 

of waste produced (Qr), which can be a proportion of the acquired biomass quantity 

and the cost per unit of waste to be managed (Pr): 

�� =  �� × �� (13)

3. Insurance cost (Ci): this cost can correspond to a fixed rate or may depend on the 

value of the insured assets (Va) and the insurance rate (I): 

�� =  �� × � (14)

4. Cost associated with obtaining permits/licenses (Cp): this cost may depend on the 

number of permits or licenses required (Np) and the cost per permit or license (Pp): 

�� =  �� × �� (15)

5. Indirect costs (Cin): this is a general cost that may include items such as administra-

tion, supervision, and facility maintenance. It can be difficult to model mathemati-

cally, but it can be considered as a percentage (α) of the total direct cost (Cdirect), which 

is the sum of cutting, cleaning, reloading, loading, and transportation costs. 

��� =  � × ������� where ������� =  �� + �� +  �� + ��� +  ��  (16)

In the specific context described above, which includes an intermediate stop requir-

ing the execution of multiple tasks, it is necessary to consider additional variables for cal-

culating the corresponding costs. These variables are crucial in determining the costs of 

operations performed at this intermediate stop. Therefore, the cost model for this stage is 

defined by taking into account a series of components related to the operations carried 

out at this specific point in the logistics chain. Thus, given that this model is initially de-

fined by the following equation, it is possible to establish a set of additional relationships: 

�� =  �� + �� +  �� + ��� +  �� +  �� +  �� +  �� +  �� + ��� +  ��� + ��� +  ��� +  ���  (17)

1. Unloading cost (Cde): this cost may depend on the quantity of biomass to be unloaded 

(Qde), the time required for unloading (Tde), and the labor cost (H). Additionally, there 

may be an equipment cost associated with unloading. 

��� =  � × ��� × ��� +  �
���

���

� + ��� (18)

2. Shredding cost (Cdt): this cost may depend on the dimensions and shape of the bio-

mass (Sdt), the time required for shredding (Tdt), and the labor cost (H). Additionally, 

there may be an equipment cost associated with shredding. 

��� =  � × ��� × ��� + �
���

���

� + ��� (19)

3. Reharvesting cost (Crc): this cost may be similar to the loading cost, but it may depend 

on the quantity (volume) of biomass after shredding (Qrc), the time required for 
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recharging (Trc), and the labor cost (H). Additionally, there may be equipment costs 

associated with recharging. 

��� =  � × ��� × ��� + �
���

���

� + ��� (20)

4. Additional transportation cost (Cta): this cost may depend on the additional distance 

to the final processing location (Da), the cost of fuel per kilometer (F), and the time 

for the additional displacement (Tta). The vehicle has its own acquisition cost (Pv), 

useful life (Lv), and maintenance cost (Mv). 

��� =  �� × � +  � × ��� + �
��

��

� + �� (21)

It is important to emphasize that optimizing supply chain costs is not merely a matter 

of minimizing individual costs. The objective should be to achieve the ideal balance 

among all the costs involved to maximize overall efficiency and operational profitability. 

Therefore, when evaluating the cost calculation model, it is crucial to understand the role 

that each component plays in the overall operations and how it relates to the other ele-

ments of the model. 

4.3.4. Variations Associated with Specific Parameters of Residual Biomass 

Let us assume that the biomass price (Pb) varies throughout the year according to a 

sinusoidal function, where Pmax is the maximum price, Pmin is the minimum price, and t is 

the time in months. The sinusoidal function has the property of reaching its maximum 

value in the middle of the period and its minimum value at the extremes of the period. 

Therefore, to model a higher price in winter (for example, if winter peaks in January, or t 

= 0) and a lower price in summer (for example, reaching the minimum in July, or t = 6), 

the cosine function can be used as follows: 

��(�) =  �
���� − ����

2
� × cos �2 × � ×

�

12
� + �

���� + ����

2
� (22)

This equation assumes that the price variation is symmetric around the average of 

the maximum and minimum prices, and that the price variation follows a regular pattern 

throughout the year. However, in reality the price variation may not be perfectly symmet-

ric or regular, and other factors beyond seasonality may affect the price of biomass. There-

fore, this model is a simplification. It is based on the terms of a “standard year,” where t 

represents the month of the year ranging from 0 (January) to 11 (December). If one wishes 

to express t in terms of a specific year, it would be necessary to adjust the formula accord-

ingly to the situation. This model can be incorporated into the biomass acquisition cost 

formula mentioned earlier by replacing Pb with Pb(t). 

��(�) =  ��(�) × �� (23)

Since biomass is not a homogeneous resource, different types of biomass may have 

distinct characteristics that affect their value and usefulness. For example, moisture (H), 

the percentage of inert materials (I), and spatial dispersion (D) are factors that can signif-

icantly impact the value of different types of biomass. Therefore, it is reasonable to assume 

that different types of biomass may have different prices. In this context, the challenge is 

to develop and implement a logistical optimization model that can take these variables 

into account and provide an efficient and economically viable solution for the collection 

of residual biomass. Thus, the modeling, considering the effect of these factors to adjust 

the base price of biomass (Pb) with corresponding depreciation factors, could be defined 

as follows: 

1. Moisture: biomass with high moisture content may be less valuable because moisture 

reduces its calorific value and increases transportation costs (as the water is also 
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being transported). Therefore, a depreciation factor for moisture (dH) can be intro-

duced, which decreases the price of biomass as moisture content increases. 

2. Inert percentage: biomass with a high percentage of inert materials may be less val-

uable because inert materials do not contribute to the energy value and can even 

cause damage to processing equipment, in addition to significantly contributing to 

the amount of ash produced if thermochemical conversion is the valorization path-

way. Therefore, a depreciation factor for inert materials (dI) can be introduced, which 

decreases the price of biomass as the percentage of inert materials increases. 

3. Spatial dispersion: biomass that is more scattered may be less valuable because it 

becomes more expensive to collect and transport. Therefore, a depreciation factor for 

spatial dispersion (dD) can be introduced, which decreases the price of biomass as 

spatial dispersion increases. 

Therefore, the adjusted biomass price (��
� ) could be calculated as follows: 

��
� = �� × (1 − �� ×  �) ×  (1 −  �� ×  �) ×  (1 − �� ×  �) (24)

Next, Pb can be replaced with ��
�  in the biomass acquisition cost formula. 

�� =  ��
� × �� (25)

However, it is necessary to take into consideration that the depreciation factors (dH, 

dI, dD) are parameters that would need to be estimated based on historical data (preferably) 

or relevant literature. Furthermore, this is a simplification and the actual effect of these 

factors on biomass price may be more complex and nonlinear. For instance, the relation-

ship between moisture and biomass price may vary across different moisture ranges. 

Therefore, it may be necessary to establish a more complex model to accurately capture 

these effects. In other words, it can be considered that the relationship between moisture 

and biomass price is not linear, but rather dependent on certain moisture thresholds. 

Hence, biomass moisture may not have a significant impact on price until it reaches a 

certain limit (H1), after which the price starts to decrease. Furthermore, after a second 

threshold (H2), the price decrease may be even more pronounced. This situation can be 

modeled using a piecewise function, where each “part” of the function has a different 

slope. For example: 

1. If H ≤ H1, then dH = 0 (there is no depreciation). 

2. If H1 < H ≤ H2, then �� =  � × (� −  ��) (linear depreciation with slope a). 

3. If H > H2, then �� =  � × (�– ��) + � × (��– ��) (linear depreciation with slope b and 

a displacement to ensure the function is continuous). 

Here, a and b are parameters representing the rate of price depreciation with respect 

to the humidity increase in different humidity intervals. H1 and H2 are the humidity 

thresholds. Therefore, the adjusted price of biomass (��
� ) could be calculated as follows: 

��
� =  �� ×  (1 −  ��) ×  (1 − �� ×  �) ×  (1 −  �� ×  �) (26)

Moreover, the acquisition cost of biomass would be: 

�� =  ��
� ×  �� (27)

This model assumes that the effects of humidity depreciation, percentage of inert ma-

terials, and spatial dispersion are independent and multiplicative, which may not be in 

reality entirely true. Additionally, this model assumes that depreciation is linear within 

each humidity interval, which may also not be true. Therefore, once again, this is a sim-

plified model, and a more precise modeling of these effects may require additional data 

and more advanced modeling techniques. However, it is a tool that can be useful, if used 

judiciously, particularly for quick price assessments based on significant variations in the 

quality of materials to be acquired. Table 1 presents an example of the definition of depre-

ciation intervals, using humidity as an illustration. 
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Table 1. Hypothetical data illustrating the variation of depreciation as a function of humidity. 

% Humidity (H) Depreciation Rate (dH) 

0 0.00 

10 0.00 

20 0.05 

30 0.10 

40 0.15 

50 0.25 

60 0.35 

70 0.45 

80 0.55 

90 0.65 

100 1.00 

In this example, it is assumed that there is no depreciation until the humidity reaches 

20% (H1 = 20). Between 20% and 50% humidity, the depreciation rate increases linearly 

from 0.00 to 0.15 (a = 0.15/30 = 0.005 per unit of humidity). Above 50% humidity (H2 = 50), 

the depreciation rate increases more rapidly, from 0.15 to 0.65 (b = 0.50/50 = 0.01 per unit 

of humidity). This table can be used to construct a graph that shows the depreciation rate 

as a function of humidity. On the x-axis the humidity is plotted, and on the y-axis the 

depreciation rate is plotted. The graph would be a line that starts at 0.00, remains at 0.00 

until H1 = 20, then increases linearly to 0.15 at H2 = 50, and then increases more rapidly to 

1.00 at H = 100. 

4.3.5. Calculation Model through Weighting of Variables 

The use of historical data to calculate weighting factors in modeling the costs of a 

residual woody biomass supply chain offers several advantages. This approach allows for 

a more accurate estimation of costs as it is based on real observations, thereby improving 

the representativeness and relevance of the results. For example, incorporating historical 

data in determining operational costs such as cutting, cleaning, recharging, and transpor-

tation allows for the incorporation of the historical variability of these factors in the mod-

eling process. This makes cost estimation more robust, reducing the risk associated with 

uncertainty. Furthermore, the inclusion of historical data allows for the consideration of 

temporal trends that may impact the supply chain, such as fluctuations in fuel prices or 

changes in labor productivity. By taking these trends into account, the company can better 

predict future needs and make informed strategic decisions. Therefore, starting with the 

following set of variables, which have been described in the previous sections, a model 

can be created where each variable is weighted according to its contribution to the total 

cost of the biomass acquisition process, including all logistical operations and potentially 

varying in detail depending on the context and utilization for these biomasses: cutting 

cost (Cc); cleaning cost (Cl); reharvesting cost (Cr); loading cost (Cca); transportation cost 

(Ct); acquisition cost (Ca); unloading cost (Cd); chipping cost (Ci); post-chipping loading 

cost (Cp); intermediate transportation cost (Cin); unloading cost at the final destination (Cde); 

transportation cost to the final destination (Cdt); collection cost (Crc); and transportation 

cost to storage (Cta). Under this assumption, a series of weights (w1, w2, ..., w14) can be de-

fined to reflect the relative importance of each of these specific costs in the total cost. For 

example, if the transportation cost is considered twice as important as the other costs, w5 

can be defined as 2 and all other weights as 1. The weighted total cost of biomass (��
� ) 

could then be calculated as follows: 

��
� = �� × �� + �� × �� + �� × �� + �� × ��� + �� × �� + �� × �� + �� × �� + �� × �� + �� × ��

+ ��� × ��� + ��� × ��� + ��� × ��� + ��� × ��� + ��� × ��� 
(28)
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The choice of weights used is highly dependent on the specific context. For example, 

in a situation where transportation is expensive and biomass resources are widely dis-

persed, the cost of transportation could be much more important than in a situation where 

biomass resources are located near the processing site. Similarly, if the biomass requires a 

significant amount of processing (e.g., if it contains a large amount of inert materials), the 

cost of cleaning and shredding could be more important. Therefore, the weights should 

be carefully chosen based on an understanding of the specific biomass supply system be-

ing modeled. 

The assessment of the margin of error of a cost analysis model is essential to ensure 

the reliability of the predictions. By establishing this margin, one can grasp the variability 

and inherent uncertainty in the modeling, thus enabling a more accurate interpretation of 

the results. This procedure helps to avoid surprises or failures in planning, as it can guide 

strategic decision-making. Quantifying the margin of error allows for the identification of 

model limitations, encouraging continuous improvement and enhancement in cost fore-

casting, and contributing to the financial sustainability of the operation. The margin of 

error is a measure of the uncertainty associated with the estimates made by the model and 

can originate from various sources, including: 

1. Measurement errors: if the data used to calculate individual costs (Cc, Cl, ...) are meas-

urements, they may contain measurement errors. 

2. Parameter variation: the model parameters (e.g., weights w1, w2, ...) can vary over 

time and/or space, or across different biomass supply systems. 

3. Cost variation: individual costs (Cc, Cl, ...) can vary over time and/or space, or across 

different biomass supply systems. 

4. Model simplifications: the model may incorporate various simplifications (e.g., as-

suming costs are additive and that the effects of different variables are independent). 

These simplifications may not be exact, leading to errors in the estimation of total 

cost. 

There are several ways to calculate the margin of error, depending on the sources of 

error that one wishes to consider. 

1. Error propagation: if there is an estimation of the error associated with each individ-

ual cost (e.g., due to measurement errors), one can utilize the theory of error propa-

gation to calculate the margin of error in the total cost. 

2. Sensitivity analysis: if there is an understanding of how the model parameters (the 

weights w1, w2, ...) can vary, a sensitivity analysis can be conducted to observe how 

the variation in these parameters affects the total cost. 

3. Simulation: if there is a probabilistic model of the biomass supply system (e.g., if the 

variation in costs and parameters has been modeled as random variables), simulation 

techniques such as the Monte Carlo method can be used to estimate the margin of 

error. 

The assignment of weights (w1, w2, ..., w14) to the variables of the model is a process 

that fundamentally depends on a profound understanding of the system under analysis. 

This entails the utilization of relevant practical experience and consultation with experts 

in the field. Additionally, in specific situations, economic and statistical analyses can be 

employed to substantiate the selection of weighting factors. These methods help ensure 

that the weights adequately reflect the relative importance of each variable, thereby en-

hancing the accuracy and applicability of the model. This can involve the utilization of the 

following methodologies: 

1. Experience and industry knowledge: weights can be determined based on practical 

experience and industry knowledge. For example, if it is known that transportation 

costs are significantly higher than other operational costs, a higher weight can be as-

signed to transportation costs. 
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2. Expert consultation: experts familiar with biomass production and transportation 

can be consulted. They can provide valuable insights into which costs are generally 

more significant. 

3. Economic analysis: an economic analysis can be conducted to determine the relative 

importance of each cost. For instance, evaluating how changes in each cost affect the 

total production cost or operational profitability. 

4. Sensitivity analysis: sensitivity analysis can be used to determine the impact of 

changes in each variable on the total cost. Variables that have the greatest impact on 

the total cost when changed can be assigned higher weights. 

5. Historical data analysis: if historical data on biomass production and transportation 

costs are available, statistical analyses can be used to determine which costs have had 

the greatest impact on the total cost over time. 

6. Optimization: in some cases, weights can be determined using optimization tech-

niques. For example, defining an objective function (such as minimizing total cost or 

maximizing profit) and using optimization techniques to find the weights that opti-

mize that function. 

5. Optimization Models for the Collection Process 

5.1. Linear Approach for the Characterization of the Supply Chain 

Operations Research is a discipline that utilizes mathematical methods to make opti-

mized decisions regarding complex problems. In optimizing the logistical process of re-

sidual biomass collection, a linear programming (LP) model can be particularly useful. 

Linear programming is a mathematical technique that enables the optimization (maximi-

zation or minimization) of a linear function subject to linear constraints. In the context of 

residual biomass logistics, the objective function could be the minimization of total collec-

tion and transportation costs of biomass, while the constraints could include the capacity 

of transportation vehicles, the availability of biomass at different locations, and the de-

mand for processing sites, among others. LP is especially suitable for this type of problem 

for several reasons: 

1. Flexibility: LP allows for the inclusion of a variety of operational constraints, such as 

capacity limits, demand requirements, and time constraints. 

2. Computational efficiency: there already exist efficient algorithms (such as the sim-

plex method) for solving LP problems. 

3. Interpretability: the solutions to an LP problem are easy to interpret. The optimal 

solution indicates the collection and transportation strategy that minimizes total 

costs, and the shadow prices (or reduced marginal costs) associated with constraints 

provide information about the method of minimizing those constraints. 

4. Sensitivity and scenario analysis: LP allows for sensitivity analysis to understand the 

impact of changes in model parameters (e.g., transportation costs, biomass availabil-

ity) on the optimized solution. It also enables scenario analysis to explore alternative 

strategies under different assumptions or future conditions. 

However, it is important to note that linear programming is based on certain assump-

tions (e.g., proportionality, additivity, divisibility, certainty) that may not hold true in all 

contexts of residual biomass logistics. If these assumptions are violated, other optimiza-

tion techniques, such as integer programming, nonlinear programming, or stochastic pro-

gramming, may be utilized. The choice of the optimization model depends, therefore, on 

the specific characteristics of the logistic problem at hand. As an example, consider a sce-

nario characterized by the following assumptions, which includes multiple biomass col-

lection locations and a single processing facility. Thus, i represents the set of all biomass 

collection locations (i = 1, 2, ..., n); ci is the cost of collection and transportation per unit of 

biomass at location i; qi is the quantity of biomass available at location i; xi is the amount 

of biomass to be collected at location i (decision variables); and Q is the required amount 

of biomass at the processing facility. Then, the objective function to be minimized 



Logistics 2023, 7, 48 16 of 22 
 

 

(minimizing the total cost of collection and transportation) would minimize � �� ×  �� for 

all I, subject to a specific set of constraints: 

1. The amount of biomass collected at each location must not exceed the available quan-

tity �� ≤  ��  ( for all i). 

2. The total amount of biomass collected must meet the processing facility’s (demand) 

needs (� �� ≥ � for all i). 

3. The biomass quantities to be collected cannot be negative (�� ≥ 0 for all i). 

This model can be expanded or modified to accommodate more complex features of 

the problem, such as multiple processing locations, limited transportation capabilities, 

and time-varying costs, among others. However, these modifications may result in an in-

teger linear programming problem or a mixed integer linear programming problem, de-

pending on the degree of complexity added. For instance, what if we want to add a con-

straint stating that the transportation vehicle cannot pick up less than half of its carrying 

capacity at each collection point? The inclusion of this new constraint implies that the 

amount collected at each point (xi) must be greater than or equal to half of the vehicle’s 

carrying capacity. In other words, for a given vehicle carrying capacity (C), the constraint 

would be �� ≥ 0.5 × � , and the mathematical model would minimize � = � (�� × ��) for 

all i, subject to: 

1. � (��) for all � ≥ � , where D is the search at the processing location; 

2. �� ≤  ��  for all i, where qi is the quantity available at location i; 

3. x_i ≥ 0.5 × � for all i, where C is the vehicle’s carrying capacity; 

4. �� ≥ 0 for all i, ensuring that the collected quantity cannot be negative. 

This constraint can make the problem more complex and potentially unsolvable if 

the vehicle’s carrying capacity is greater than the available quantity at some locations. In 

this situation, either the vehicle’s capacity or the collection strategy would need to be re-

assessed, for example, by introducing a new rule stating that the first load of the vehicle 

must comply with this constraint, while the second load does not, only requiring it to fill 

the entire truck’s capacity from the second load onwards. This condition certainly makes 

the problem more flexible and capable of being solved. To incorporate this condition into 

the model, it is necessary to introduce an additional binary variable that represents 

whether the vehicle is in its first load (y) or in the second load (1-y). Therefore, the con-

straint would be modified to apply only to the first load. The mathematical model would 

then minimize � = � (�� × ��) for all i, with: 

1. � (��) for all � ≥ �, where D is the demand at the processing location; 

2. �� ≤  ��  for all i, where qi is the quantity available at location i; 

3. �_� ≥ 0.5 × � × � for all i, where C is the vehicle’s carrying capacity and y is a binary 

variable (0 or 1); 

4. �� ≥ 0 for all i, ensuring that the collected quantity cannot be negative; 

5. y is a binary variable. 

Thus, when y = 1 (indicating the first load), the constraint that the collected quantity 

must be at least half of the carrying capacity is applied. When y = 0 (indicating the second 

load), this constraint does not apply. However, this model assumes that the order of the 

loads is known in advance and can be fixed. Otherwise, the solution to the problem may 

become more complex and may require a more advanced optimization algorithm. For ex-

ample, a genetic algorithm or a tabu search algorithm could be used to solve a vehicle 

routing problem with more complex capacity constraints. 

As an application example, let us consider a scenario where there are three biomass 

collection sites and one processing facility. The costs of collection and transportation per 

unit of biomass at the three locations are 5€, 7€, and 4€, respectively. The quantities of 

biomass available at the three locations are 100, 200, and 150 units, respectively. The pro-

cessing facility requires 300 units of biomass. The linear programming model for this 

problem can then be formulated as minimizing Z = 5x1 + 7x2 + 4x3, subject to the conditions 
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x1 ≤ 100, x2 ≤ 200, x3 ≤ 150, x1 + x2 + x3 ≥ 300, and x1, x2, x3 ≥ 0. Solving this linear programming 

problem will give the optimal amounts of biomass to be collected at each location (x1, x2, 

x3) that will minimize the total cost of collection and transportation. Now, let us assume 

that the problem is solved and it was found that the optimal solution is x1 = 100, x2 = 200, 

x3 = 0. This means that all available biomass should be collected at the first two locations 

and none at the third location. The total cost of collection and transportation will be 

5€ × 100 + 7€ × 200 + 4€ × 0 = 1900€. This result provides valuable insights for deci-

sion-making. For example, it suggests that the third location, despite having a lower cost 

per unit of biomass, is not included in the optimal solution due to its lower availability of 

biomass compared to the other locations. This highlights the importance of considering 

both cost and availability in the decision-making process. However, it is important to note 

that this is a simplified example, and the actual problem may be more complex. For in-

stance, there may be constraints on the capacity of transportation vehicles, time-varying 

costs, multiple processing locations, and other factors that need to be considered. In such 

cases, more advanced optimization techniques may be required. 

5.2. Complex Models 

A genetic algorithm (GA) is a technique that proves to be particularly effective in 

solving complex optimization problems. Its mode of operation is based on generating a 

set of candidate solutions, referred to as a population, which evolves iteratively through 

the application of operations analogous to natural selection, crossover, and mutation, 

which occur in nature. The GA is especially appreciated for its ability to efficiently explore 

many solutions when dealing with challenging or even impossible problems to solve us-

ing exact methods due to their computational complexity. These algorithms have been 

successfully applied in a variety of areas, from engineering and computer science to eco-

nomics and logistics. The GA can be adjusted to adapt to the specificities of different prob-

lems, which gives it great flexibility. However, this characteristic also imposes the need 

for careful calibration of the algorithm’s parameters to ensure optimal performance. 

Through the successive generation of solutions, where each generation is a new “popula-

tion” of routes, the genetic algorithm progressively refines the solutions, converging over 

time towards a route that, although not necessarily the globally optimal one, will be a 

high-quality solution to the problem. It is important to note that GAs are inherently heu-

ristic. This means that they seek viable and efficient solutions to complex problems, but 

do not guarantee that the solution found will be the global optimum. This characteristic, 

which can be seen as a limitation, is a consequence of the pragmatic approach that GAs 

adopt to solve large-scale optimization problems, such as biomass collection logistics. 

Thus, although they do not guarantee the global optimal solution, genetic algorithms can 

offer highly efficient and viable solutions that can be successfully implemented in practice. 

As an application example, let us consider a hypothetical scenario where there are 

five biomass collection sites (A, B, C, D, E) and we need to determine the optimal route 

for a collection vehicle to take to visit all sites and then return to the starting point. The 

distances between the sites are as follows (in km), as presented in Table 2. 

Table 2. Distances between the biomass collection sites (in km). 

 A B C D E 

A 0 10 15 20 25 

B 10 0 5 15 20 

C 15 5 0 10 15 

D 20 15 10 0 5 

E 25 20 15 5 0 

Thus, the GA can be applied to solve the problem. The GA starts by generating a set 

of random routes (the initial population), for example, A-B-C-D-E-A, A-C-B-E-D-A, A-D-
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E-B-C-A, A-E-D-C-B-A, A-C-E-B-D-A, and so on. Each route is a candidate solution to the 

problem. The GA then evaluates each route based on a fitness function, which in this case 

is the total distance of the route. The shorter the distance, the better the solution. The GA 

then creates a new population by selecting the best routes (selection), combining them 

(crossover), and introducing small random changes (mutation). This process is repeated 

for a number of iterations, or until a satisfactory solution is found. After running the GA, 

for instance, for 100 iterations, the optimal route A-C-B-E-D-A, with a total distance of 45 

km, is identified. This result shows that the GA was able to find a high-quality solution to 

the problem. Although it cannot be guaranteed that this is the absolute best solution (since 

GAs are heuristic and do not guarantee finding the global optimum), this is a highly effi-

cient and viable solution that can be implemented in practice. By iteratively generating 

and refining solutions, GAs can efficiently explore a large solution space and find high-

quality solutions. 

Another potentially promising approach to the inherent challenge of managing the 

logistics of the biomass supply chain is the implementation of tabu search (TS), a metaheu-

ristic optimization technique that is primarily known for its ability to overcome the com-

mon problem of local optima, which occurs when an algorithm gets stuck in a suboptimal 

solution, believing it has reached the best possible solution. The strength of TS lies in its 

“tabu list,” a dynamic record of the most recently explored solutions, which expressly 

prohibits revisiting those solutions for a certain number of iterations. This prohibition, 

which may seem counterintuitive, is actually what gives TS its effectiveness. By forcing 

the algorithm to explore new regions of the solution space instead of getting fixated on 

already-explored areas, TS allows for the discovery of truly optimal solutions that could 

otherwise go unnoticed. In this way, TS offers a robust and sophisticated approach to lo-

gistics optimization in the management of the biomass supply chain. 

As an application example, let us consider a scenario with a biomass supply chain 

composed of five collection sites (A, B, C, D, E) and one processing site (P). The goal is to 

find the optimal route for collecting biomass from these sites and delivering it to the pro-

cessing site. The distances between the sites and the processing site are, respectively, 10, 

15, 20, 25, and 30 km. To find the optimal route, the algorithm starts with a random route, 

for instance, A-B-C-D-E-P. It then generates all possible neighboring routes by swapping 

two sites. For example, one neighboring route could be B-A-C-D-E-P (by swapping A and 

B). The algorithm evaluates the total distance of each neighboring route and selects the 

one with the shortest distance as the new current route. However, the swapped sites (A 

and B in this case) are added to the tabu list, which means that they cannot be swapped 

again for a certain number of iterations. The algorithm continues to generate neighboring 

routes, evaluate their total distances, and select the shortest one as the new current route, 

while updating the tabu list at each iteration. This process is repeated until a stopping 

criterion is met, such as a maximum number of iterations or a minimum improvement in 

the total distance. After running the TS algorithm, the optimal route can be obtained as A-

C-B-D-E-P, with a total distance of 70 km. This route minimizes the total distance traveled 

for collecting biomass from the sites and delivering it to the processing site. The results 

obtained from the TS algorithm provide an optimal route and, by minimizing the total 

distance traveled, the algorithm helps to reduce transportation costs and improve the ef-

ficiency of the supply chain. 

6. Conclusions 

This study has provided a comprehensive exploration into the logistics and associ-

ated costs of residual biomass collection, underscoring the vital role of Operational Re-

search techniques in integrated cost minimization. The research underscores the necessity 

of a comprehensive approach in managing the biomass supply chain. The intertwined 

operations of collection, transportation, storage, and processing of residual biomass pose 

intricate challenges, with the cost of each operation being influenced by a multitude of 

interdependent variables. Therefore, cost optimization necessitates a detailed 
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understanding of these operational dynamics and their interconnections. The calculation 

models developed in this study have demonstrated that transportation costs form a sig-

nificant part of the total costs of the biomass supply chain, and the analysis has indicated 

that optimizing the load capacity of transportation vehicles can result in expected cost 

reductions. The application of Operational Research techniques, specifically linear pro-

gramming, genetic algorithms, and tabu search, has been validated as an effective strategy 

for the integrated minimization of residual biomass collection costs. While linear pro-

gramming, due to its deterministic nature, provides a minimum cost solution, it may not 

be suitable for highly complex and uncertain scenarios. Conversely, genetic algorithms 

and tabu search, as metaheuristic techniques, offer superior flexibility in seeking optimal 

solutions in complex and dynamic scenarios. Genetic algorithms, through the simulation 

of evolutionary processes, allow for the exploration of a broad range of potential solutions, 

while tabu search, by avoiding the repetition of previously explored solutions, enables a 

more diversified search in the solution space. Each of these techniques presents specific 

advantages and limitations, and their selection depends on the characteristics of the prob-

lem under analysis. However, all of them emphasize the importance of a strategic and 

informed approach, capable of balancing economic efficiency with environmental sustain-

ability, in the management of the biomass supply chain. Future work could extend the 

current study by incorporating more complex factors into the calculation models, such as 

the variability of biomass availability and quality, the impact of weather conditions on 

collection and transportation operations, the influence of policy and regulatory con-

straints, and the practical application of how biomass logistic operators can implement 

and utilize such methods. Additionally, the application of other advanced optimization 

techniques, such as artificial neural networks or swarm intelligence, could be explored to 

further enhance the cost minimization strategy. Moreover, a multi-objective optimization 

approach could be adopted to balance economic efficiency with other important objec-

tives, such as environmental sustainability and social acceptability, thereby contributing 

to the development of a truly sustainable and resilient biomass supply chain. 
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