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Abstract: Background: The Dynamic Modified Stochastic p-Median Problem (DMS-p-MP) is an
important problem in supply chain network design, as it deals with the optimal location of facilities
and the allocation of demand in a dynamic and uncertain environment. Methods: In this research
paper, we propose a mixed-integer linear formulation for the DMS-p-MP, which captures the key
features of the problem and allows for efficient solution methods. The DMS-p-MP adds two key
features to the classical problem: (1) it considers the dynamic nature of the problem, where the
demand is uncertain and changes over time, and (2) it allows for the modification of the facility
locations over time, subject to a fixed number of modifications. The proposed model uses robust
optimization in order to address the uncertainty of demand by allowing for the optimization of
solutions that are not overly sensitive to small changes in the data or parameters. To manage the
computational challenges presented by large-scale DMS-p-MP networks, a Lagrangian relaxation (LR)
algorithm is employed. Results: Our computational study in a real-life case study demonstrates the
effectiveness of the proposed formulation in solving the DMS p-Median Problem. The results show
that the number of opened and closed buildings remains unchanged as the time horizon increases
due to the periodic nature of our demand. Conclusions: This formulation can be applied to real-world
problems, providing decision-makers with an effective tool to optimize their supply chain network
design in a dynamic and uncertain environment.

Keywords: p-median problem; supply chain network design; dynamic allocation; robust optimization;
lagrangian relaxation

1. Introduction

Mobile grocery stores, also known as grocery trucks (GT) or pop-up grocery stores,
have emerged as a new trend in the retail industry. GTs typically stock a wide variety of
fresh fruits and vegetables, as well as other grocery items. They are usually equipped with
refrigeration units to keep the food fresh and have a payment system in place for customers
to buy the products.

These mobile stores bring convenience and accessibility to customers in under-served
or rural areas, or in areas where traditional brick-and-mortar grocery stores are not
present [1,2]. The trend of grocery trucks is expected to continue to grow in the com-
ing years as more and more people look for ways to improve access to healthy food in their
communities. In the U.S., the mobile food vendors market is valued at 1.16 billion dollars
in 2021 and is predicted to grow at a rate of 6.4% annually from 2022 to 2030, driven by the
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increasing trend of culinary arts and the preference of young people for different dining
experiences over the traditional dining in restaurants [3].

Another application of GTs is to provide food to people in emergency situations, such
as natural disasters or power outages [4,5], as well as address food insecurity by increasing
access to healthy food options. GTs are valuable resources for alleviating food insecurity,
and these trucks are often operated by non-profit organizations, local governments, and
community groups that want to address food insecurity and promote healthy eating [6].

Logistics for mobile grocery stores refer to the process of planning, coordinating, and
controlling the movement and storage of goods, services and information from the point of
origin to the point of consumption. This includes transportation, inventory management,
warehousing, and distribution of products. In the case of mobile grocery stores, logistics
also includes the planning and coordination of the routes and schedule of the mobile store,
as well as the management of the supply chain and inventory. This includes sourcing
products from suppliers, managing inventory levels and restocking the mobile store as
needed, and coordinating delivery schedules [7,8]. Effective logistics management is crucial
for the success of mobile grocery stores, as it can impact delivery times, cost, and overall
customer satisfaction. By optimizing logistics, mobile grocery store owners and operators
can improve their business by reducing costs and increasing efficiency, ultimately resulting
in a better customer service [9,10].

The goal of this research is to address the challenges in the logistics management
of mobile grocery stores by proposing a mixed-integer linear formulation for a Dynamic
Modified Stochastic p-Median Problem (DMS-p-MP) in a supply chain. The aim is to
enhance the robustness of the solution by considering the uncertainties and variabilities
of the parameters in this problem. Additionally, this study aims to address the lack of
consideration of the dynamic aspects in the existing literature of supply chain network
design by incorporating the time-varying nature of the problem. The proposed mixed-
integer linear programming (MILP) model will not only provide a robust solution to the
mobile grocery store problem but also offer a framework that can be applied to other similar
supply chain network design problems. In this regard, we first provide a comprehensive
literature review of the proposed location-allocation models in the literature in Section 2
and then provide a mathematical formulation for our model considering the uncertainty of
demand in Section 3. Sections 4 and 5 show the application of our proposed model in the
real-world mobile grocery location problem and provide managerial insights, respectively.

2. Literature Review

Supply chain management is the coordination and management of activities involved
in the production and delivery of goods and services from the raw material stage to the
end customer [11,12]. It involves the planning, design, execution, monitoring, and control
of all processes involved in the flow of goods and services from the initial sourcing of raw
materials to the delivery of the finished product to the end customer [13]. The principles of
supply chain management can be applied in various industries, including healthcare [14,15],
retail, manufacturing, and transportation, to optimize the flow of goods, information, and
resources, thereby improving efficiency and reducing costs [16]. Location allocation is
a critical aspect of supply chain management, particularly in distribution and service
industries. The objective of location allocation is to determine the optimal number and
placement of facilities to serve customers while minimizing costs. In this section, we discuss
some of the most well-known location-allocation problems and characteristics of different
models in the literature.

The maximal covering location problem (MCLP) is highly regarded as one of the most
useful facility location models from both a theoretical and practical standpoint [17,18]. The
goal of MCLP is to identify a set of facilities that maximizes the total weight of covered
customers [19], who are considered covered if they are located within a specified distance
from their nearest facility [20]. This problem was first introduced by [21], in which the
search for an optimal solution was limited to nodes. The study by [22] later expanded the
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search to a dominant set of points and solved the problem through linear programming if
the solution was an integer and through branch and bound if it was not.

The p-center problem is a well-studied optimization problem in the field of operations
research and location allocation. It involves finding the optimal location of p facilities to
serve a set of demand points in such a way as to minimize the maximum distance between
a demand point and its nearest facility. A comprehensive survey of the p-center problem
and its variants was conducted by [23]. The authors provide an overview of the different
formulations and solution methods for the p-center problem and discuss extensions to the
problem such as the p-median and p-center with capacities. In recent years, there have been
several advances in the solution of the p-center problem using approximation algorithms
and metaheuristics. A paper by [24] presents a memetic algorithm for the p-center problem
and demonstrates its effectiveness through a set of computational experiments.

The p-median problem is another well-known location-allocation problem that in-
volves determining the optimal number and location of facilities to minimize the total
access cost [25]. It is a popular choice for various applications, including the allocation of
mobile grocery stores. This problem is particularly well-suited for this application due to its
focus on minimizing the access cost, which is crucial in determining the most cost-effective
locations for the stores. By optimizing the number and location of stores, the p-median
problem can help ensure that the stores are located in the areas where they can provide
the most accessible and convenient service to customers while minimizing the access costs.
This can result in increased efficiency and cost savings, making it a good choice for the
allocation of mobile grocery stores.

The p-median problem is formulated as an integer programming model and can be
solved using various algorithms, such as the primal-dual method or branch-and-bound
algorithm. The work of Berge [26] initially explored the challenge of finding the mini-
mum coverage in location problems. Later, Miehle et al. [27] introduced the well-known
p-median problem, in which the objective is to select the optimal p facilities to open with
the goal of minimizing the total transportation cost. Subsequently, Hakimi’s node opti-
mality theorem [28,29] was developed to show that, in a continuous graph, the optimal
solution for absolute median problems always lies on the graph’s vertices. This implies
that many network problems can be transformed into their discrete versions without loss
of optimality.

In the quest to tackle increasingly complex and realistic optimization problems, mixed-
integer linear programming (MILP) emerged as a widely used method in the location
optimization domain [30,31]. Early works such as [32,33] utilized MILP to solve vari-
ous location problems including the uncapacitated facility location problem, the discrete
p-median problem, and the covering-location problem. The deterministic model assumes
that all parameters are known with certainty, but real-life scenarios always involve unpre-
dictable elements. To address this issue, researchers have been exploring the combination
of location models with stochastic programming methods. For example, Refs. [34,35] in-
corporate stochastic variables, such as customer demand, the cost of serving a customer
from a specific location, and the cost of opening a facility, into the uncapacitated facility
location and p-median problems. Ref. [36] considers the impact of stochastic customer
demand on the capacitated facility location problem. Ref. [37] studies the uncertainty
surrounding the number of facilities to open. Ref. [38] proposes a method to increase the
number of facilities based on customer demand, while Ref. [39] considers the opposite
scenario of closing existing facilities. Ref. [40] explores the impact of demand uncertainty
on covering-type location problems. Zaferanieh et al. discuss a strategy to address traffic
congestion caused by the high demand of clients in a bi-level p-facility network [41].

Machine learning has demonstrated its potential for solving a range of challenges across
various industries by leveraging the power of large datasets to develop optimization and
predictive models [42,43]. Wang et al. [44] introduce a novel solution to the uncapacitated
p-median problem that utilizes reinforcement learning. The proposed method, which uses
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Multi-Talking-Heads Graph Attention Networks, outperforms traditional classical heuristics
and meta-heuristics [45] in terms of both solution quality and computational efficiency.

The incorporation of time into location problems is a common characteristic in practical
applications. These problems are classified as either single-period or static, where decisions
are based on fixed parameters, or multi-period [46] or dynamic, where decisions vary
over time [47]. Early works in this field include [48,49], which deal with the location and
relocation of a single facility over a period of time. The concept was then expanded to
cover multiple facilities, as seen in [50]. The integration of the Weber problem with the
multi-period facility location problem was explored in [51], which aimed to determine the
best facility to open at each time period. Other studies, such as [52–55], focus on dynamic
uncapacitated facility location problems, location problems on networks, network p-median
problems, and network center problems, respectively. The impact of facility opening and
closing costs was studied in [51,56–58]. Additionally, dynamic location problems under
uncertain environments were addressed in [59–61].

Despite the numerous studies on location allocation models, there remains a gap in
the literature when it comes to considering both robustness and dynamic allocation. While
robust optimization has been used to address uncertainty in the demand, cost, and other
parameters, the majority of these models are static and do not take into consideration the
dynamic aspect of the location problem. On the other hand, dynamic location models have
been proposed to account for the changing nature of the location problem over time, but
they do not address the uncertainty present in real-world scenarios. In light of these gaps,
this study aims to fill the void by proposing a MILP model that incorporates both robustness
and dynamic allocation. This model aims to provide a more comprehensive solution for
real-world location problems that are subject to both uncertainties and changes over time.

3. Modeling Process and Methods

This section presents the development of a MILP model to address the research problem.

3.1. Notation List

Table 1 provides the notations used in the formulation of the model, including sets,
parameters, and decision variables:

Table 1. Notations used for mathematical modeling of DMS-p-MP.

Sets

T Set of time periods in the planning horizon; t ∈ {1, 2, . . . , |T|}
K Set of categories (groups) in the area
B Set of candidate locations; i, j ∈ {1, 2, . . . , |B|}

where, based on our problem, the candidate locations (j) are the same as demand nodes (i).

Parameters

cij Unit cost of satisfying demand of location i from facility j
γo Mobile store’s opening cost in each location
γc Mobile store’s closing cost in each location
dit Demand of location i at day t
p Available number of mobile stores in each day
mk Maximum number of stores allowed in group k
nk Minimum number of stores allowed in group k

Decision Variables

xijt Fraction of demand of i that is supplied from j at day t
yjt Binary variables that is 1 if a mobile store is located at j at day t, and is 0 otherwise
ajt Auxiliary binary variables which 1 if a store is located in j

at day t and will not be located in j at day t + 1 (i.e., closing variable), and is 0 otherwise
bjt Auxiliary binary variable which is 1 if a store is not located in j

at day t and will be located in j at day t + 1 (i.e., opening variable), and is 0 otherwise

The set of all candidate locations (buildings) in group k is denoted by Fk. We know
that B = ∪(Fk)k∈[K] means that each building should be at least in one group. Note that
∩(Fk)k∈[K] can be nonempty, meaning that one building can be a member of more than one
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group. Moreover, we do not need to define opening and closing costs (ajt, bjt) as binary
variables since our minimization model and constraints force them to be 0 or 1. In order to
have a feasible solution, we assume that p must satisfy the following inequalities:

∑
k∈K

nk ≤ p ≤ ∑
k∈K

mk,

meaning that there is a solution that satisfies the model’s assumptions.

3.2. Mathematical Formulation

We defined all parameters and variables of our problem. The goal is to minimize the
total cost of the system. We can model our problem as follows:

Min ∑
t∈T

∑
j∈B

∑
i∈B

ditcijxijt + ∑
t∈T\{|T|}

∑
j∈B

(γcajt + γobjt) (1)

s.t.

∑
j∈B

xijt = 1 ∀i ∈ B, t ∈ T (2)

∑
j∈B

yjt = p ∀t ∈ T (3)

xijt − yjt ≤ 0 ∀i, j ∈ B, t ∈ T (4)

yjt − yj(t+1) − ajt ≤ 0 ∀j ∈ B, t ∈ T \ {|T|} (5)

yj(t+1) − yjt − bjt ≤ 0 ∀j ∈ B, t ∈ T \ {|T|} (6)

∑
j∈Fk

yjt ≤ mk ∀k ∈ K, t ∈ T (7)

∑
j∈Fk

yjt ≥ nk ∀k ∈ K, t ∈ T (8)

yjt ∈ {0, 1} ∀j ∈ B, t ∈ T (9)

ajt, bjt ∈ {0, 1} ∀j ∈ B, t ∈ T (10)

0 ≤ xijt ≤ 1 ∀i, j ∈ B, t ∈ T (11)

where constraint (2) ensures the demand of all locations over the time horizon must be
satisfied, constraint (3) ensures the number of mobile stores allocated in each day should
be p, constraint (4) shows the relation between continuous and binary variables, i.e., if
xijt > 0, then yjt should be 1. Constraints (5) and (6) ensure that we consider the closing
and opening costs, respectively. Constraints (7) and (8) ensure that we are following the
policies regarding the limits on the number of stores in each group. Finally, constraint (9)
and (10) are the binary constraints, and (11) is the non-negativity constraint.

3.3. Solution Approach

The problem at hand is a mixed-integer mathematical programming model that
involves uncertainty. We will outline a state-of-the-art methodology to tackle these charac-
teristics in the following manner:

3.3.1. Robust Optimization

In this section, an overview of the robust optimization approach proposed by [62] is
presented. To do so, the following linear programming model is considered:Min ∑

j
cjxj

s.t. ∑
j

ãijxj ≤ bi; ∀i

xj ≥ 0; ∀j (12)
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where the technological coefficients ãij are assumed to be uncertain. In other words, each
coefficient ãij is regarded as an independent, symmetric, and bounded parameter, which
can take values in [aij − âij, aij + âij], i.e., ãij ∈ [aij − âij, aij + âij]. In this definition, aij
and âij denote the nominal value and the maximum deviation from the nominal value,
respectively. Associated with each row i in problem (12) is Ji, which is defined as the set
of all coefficients in row i that are subject to uncertainty. Furthermore, a scaled deviation

ηij ∈ [−1, 1] is defined for each uncertain coefficient ãij as ηij =
ãij − aij

âij
that represents the

scaled perturbation of ãij from its nominal value aij.
Ref. [62] also introduced a parameter Γi ∈ [0, |Ji|] as the budget of uncertainty for

each constraint i, where |Ji| denotes the number of elements of set Ji. In fact, Γi is the
maximum number of parameters that can really deviate from their nominal values for
each constraint i. The parameter Γi that bounds the total scaled deviation of uncertain
parameters as ∑j∈Ji

|ηij| ≤ Γi adjusts the robustness of the proposed method against the
level of solution conservatism. In particular, Γi = 0 represents the nominal or deterministic
formulation, whereas Γi = |ηij| relates to the worst-case formulation in which all uncertain
parameters are fixed at their worst-case values from the uncertainty set. However, the
decision maker can make a trade-off between the protection level of constraint i and the
degree of conservatism of the solution if Γi ∈ (0, |Ji|). Therefore, the budget of uncertainty
Γi that is an input to the robust optimization model can specify how risk-averse the decision-
maker is [63].

Ref. [62] proposed a nonlinear programming model as follows, which is equivalent to
the uncertain model (12):

Min ∑
j

cjxj

s.t. ∑
j

aijxj + max
Ω
{∑

j∈Si

âijxj + (Γi − bΓic)âiti xj} ≤ bi; ∀i

xj ≥ 0; ∀j (13)

where Ω = {Si ∪ {ti}|Si ⊆ Ji, Si = bΓic, ti ∈ Ji \ Si} is defined as the uncertainty set. For
a given optimal solution x∗ of the problem (13), Bertsimas and Sim [62] demonstrated
that the protection function for constraint i against uncertainty, which is βi(x∗, Γi) =
max

Ω
{∑j∈Si

âijxj + (Γi − bΓic)âiti xj} can be formulated as the following linear program-

ming problem:

βi(x∗, Γi) = Max ∑
j∈Ji

âij|x∗j |ηij

s.t. ∑
j∈Ji

ηij ≤ Γi; ∀i

0 ≤ ηij ≤ 1; ∀i, j (14)

According to the theory of strong duality, since problem (14) is always feasible and
bounded for all Γi ∈ [0, |Ji|], its dual problem is feasible and bounded as well. Therefore,
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replacing the dual problem of the problem (14) into (13), Bertsimas and Sim (2004) derived
the robust formulation of the uncertain linear programming problem (12) as follows:

Min ∑
j

cjxj

s.t. ∑
j

aijxj + βiΓi + ∑
j∈Ji

µij ≤ bi; ∀i

βi + µij ≥ âijxj; ∀i, j ∈ Ji

µij ≥ 0; ∀i, j ∈ Ji

βi ≥ 0; ∀i

xj ≥ 0; ∀j (15)

where βi and µij are dual variables associated with the first and second constraints in
programming problem (14), respectively.

If the number of uncertain coefficients in constraint i that perturb from their respective
nominal values is less than or equal to Γi, then the optimal solution from the robust
problem (15) will always remain feasible. However, if more than Γi coefficients deviate
from their nominal values, then the probability of violating constraint i for an optimal
solution x∗j is calculated as follows:

Pr(∑
j

ãijx∗j < bi) ≤ 1− ϕ(
Γi − 1√
|Ji|

) (16)

where ϕ(.) is the cumulative distribution function of a standard normal random variable.
The robust optimization equivalent of the proposed problem (1) is:

min
x,y,a,b

max
d∈U

dc1x + c2(a + b) (17)

s.t. (2)–(11)

or equivalently:

min
x,y,a,b

θ + c2(a + b) (18)

s.t. (2)–(11)

θ ≥ max
d∈U

dc1x (19)

where U is the uncertainty set for demand, and a, b are decision vectors for ajt, bjt, respec-
tively. In robust decision-making, the goal is to make decisions that are not overly sensitive
to small variations in the uncertain parameters, by taking into account a set of possible
realizations (the uncertainty set) and seeking a solution that is feasible against all of them.
This approach is often used in situations where the uncertainty is difficult or impossible to
model precisely, and can lead to more robust solutions compared to approaches that only
consider a single, most likely realization of the uncertainty [62,64].

In robust decision-making, there are different types of uncertainty sets that can be
used to model the uncertain parameters, depending on the problem setting and the type
of uncertainty that is being considered. The three main types of uncertainty sets are the
box uncertainty set, the budget uncertainty set, and the conic uncertainty set. The box
uncertainty set is a simple, rectangular set that bounds the uncertain parameters from
above and below. The budget uncertainty set is a set of distributions that are considered
"close" to a nominal distribution, where the notion of closeness is specified using a distance
metric. The conic uncertainty set is defined using a combination of linear constraints
and convex cones, and can be used to model more complex types of uncertainty, such
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as uncertainty in the mean and covariance of a random variable [65,66]. Among these,
the budget uncertainty set is widely used, both due to its intuitive interpretation and
tractability. The budget uncertainty set for the demand is:

U = {d ∈ R|D|×|D| | d = d + δξ, ||ξ||∞ ≤ 1, ∑
i,j∈D

ξit ≤ δ}

where Γ is the uncertainty budget. Using this definition, we have:

min
x,y,a,b

θ + c2(a + b) (20)

s.t. (2)–(11)

max
||ξ||∞≤1,||ξ||1≤Γ

ξc1x ≤ θ − d̄c1x (21)

Let us focus on the left-hand-side of Equation (21):

max
||ξ||∞≤1,||ξ||1≤Γ

δξc1x → max
ξ

δξc1x, s.t. : ∑
i,t
|ξit| ≤ Γ,−1 ≤ ξit ≤ 1 (22)

Letting ait = |ξit|, then we have:

max δξc1x (23)

s.t. ∑
i,t

ait ≤ Γ [π1] (24)

ξit ≤ 1 [π2
it] (25)

− ξit ≤ 1 [π3
it] (26)

ξit − ait ≤ 0 [π4
it] (27)

− ξit − ait ≤ 0 [π5
it] (28)

ξit ∈ R, ait ∈ R+ (29)

Since the model is a minimization problem, we need to obtain the dual problem whose
objective is also minimization: The dual problem is:

min
π

Γπ1 + ∑
i,t∈D

(π2
it + π3

it) (30)

s.t. π1 ≥ π4
it + π5

it ∀i, t ∈ D (31)

π ∈ R+ (32)

Finally, the DMS-p-MP reformulation of the problem becomes:

min
x,y,a,b

θ + c2(a + b) (33)

s.t. (2)–(11)

Γπ1 + π2
it + π3

it + d̄c1x ≤ θ ∀i, t ∈ D (34)

π1 ≥ π4
it + π5

it ∀i, t ∈ D (35)

π2
it − π3

it + π4
it − π5

it = δitc1
itxijt ∀i, t ∈ D, ∀j ∈ B (36)

π1, π2
it, π3

it, π4
it, π5

it ≥ 0 ∀i, t ∈ D (37)

3.3.2. Lagrangian Relaxation

In discrete location theory, one of the basic models is the p-median problem, and it is
an NP-hard problem, as with most location problems [67]. The MILP model presented in
Section 3 is typically solved in practice with numerous residence areas (demand points),
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potential facility locations, and time horizons. As a result of the large-scale property of
the developed model, it presents substantial computational difficulty when applied to real
problems, which cannot be addressed by commercial optimization software, such as Cplex,
Xpress, or Gurobi. For supply chain optimization problems involving such computational
complexity, Lagrangian relaxation (LR) is widely used [68–72] in the literature.

Therefore, this section develops an LR approach for solving the presented MILP
problem. The LR method is an iterative algorithm that provides the upper and lower
bounds of the optimal objective value as well as the estimation of the optimality gap of
the feasible established solution in each iteration [20]. The LR method used in this paper
includes the general steps as follows:

• Relax one of the constraints by multiplying it by a Lagrange multiplier and bringing
the constraint into the objective function;

• Solve the model to find the optimal values of the relaxed problem;
• Find the feasible solution to the original problem by using the resulting decision

variables found in step 2;
• Compute the lower bound using the solution obtained from the relaxed problem in

step 2;
• Use the subgradient optimization method to modify the Lagrange multiplier assigned

to the violated constraint and return to step 2 after finding the new multiplier(s) for
the Lagrange variable.

The algorithm terminates whenever the lower bound is close enough to the upper bound.

Step 1. Solving the Relaxed Problem

In order to make the problem easier to solve, the constraints in this study are relaxed,
even if this relaxation may lead to infeasibility [20]. Specifically, constraints (2) and (3) are
relaxed, resulting in the following Lagrangian dual problem:

min
x,y,a,b

θ + c2(a + b)+

∑
j∈B

∑
i∈B

∑
t∈T

λ1
bt(xijt − 1)+

∑
j∈B

∑
t∈T

λ2
t (yjt − p)

s.t. (4)–(11), (34)–(37) (38)

The optimal value of the objective function in the Lagrangian dual problem above,
which is defined using non-negative Lagrange multipliers (λ1

bt, λ2
t ), serves as a lower bound

for the mixed-integer linear programming problem (38).

Step 2. Finding a Feasible Solution and an Upper Bound

In most situations, the solution to the Lagrangian dual problem is not feasible due to
the relaxation of constraints (2) and (3). However, it is possible to obtain a feasible solution
that provides an upper bound on the single objective MILP model by solving this model
and setting the decision variables xijt, yjt, ajt, and bjt to the optimal values obtained from
solving the Lagrangian dual problem.

Step 3. Finding a Lower Bound and Updating the Lagrange Multipliers

During each iteration of the Lagrangian procedure, the Lagrangian multipliers λ1
bt, λ2

t
are updated, and new lower and upper bounds are subsequently derived. There are various
methods in the literature, such as cutting planes [73], sub-gradients [20], and bundling [74],
that can be used for this purpose. In this paper, the sub-gradient approach is employed to
update the Lagrangian multipliers because it is a widely recognized and commonly used
method. According to the sub-gradient procedure [20], the Lagrange multipliers at the
(n + 1) iteration are calculated as follows:
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(λ1
bt)

n+1 = max
{

0, (λ1
bt)

n − τn
1 (xijt − 1)

}
(39)

(λ2
t )

n+1 = max
{

0, (λ2
t )

n − τn
2 (yjt − p)

}
(40)

The step sizes τn
1 , and τn

2 in the algorithm are defined as follows:

τn
1 =

αn(UB− LBn)

∑j∈B ∑i∈B ∑t∈T λ1
bt(xijt − 1)2

(41)

τn
2 =

αn(UB− LBn)

∑j∈B ∑t∈T λ2
t (yjt − p)2

(42)

The term α is simply a constant that will be changed during each iteration of the
algorithm as described above. α is initialized to 2. If the lower bound, LB, has not increased
in an iteration, then its value will be halved. Additionally, let UB be the best upper bound
(the one with the smallest value) that has been discovered thus far, and LBn is the lower
bound obtained at iteration n.

Step 4. Termination Criteria

The algorithm will stop when one of the following conditions is met [20]:

• A predetermined number of iterations have been completed;
• The lower bound is equal to the upper bound (UB = LBn) or is close enough to the

upper bound (UB− LBn < 0.1);
• The value of α becomes small.

4. Numerical Experiment
4.1. Case Description

In this section, we discuss a case in which a company wants to place some mobile
grocery stores on the campus of the University of Waterloo. These self-service mobile stores
can serve all students and staff. Figure 1 shows a sample picture of these stores. Specifically,
the company wants to propose a plan to specify the optimal locations of stores needed on
campus dynamically (every day) based on the demand variation on campus. They update
their plan every month, i.e., they decide on all days at the beginning of each month. In this
research, we aim to find the optimal locations of stores over the time horizon (one month).
Based on Section 3, |T| = 28, |K| = 6, and |B| = 91.

Figure 2 shows the University of Waterloo campus map. As per the legend associ-
ated with this figure, all buildings on campus are categorized into five groups: Service
and Administrative Buildings, Academic Buildings, Residence Buildings, Research Park
Buildings, and others. Considering the parking lots, the campus can be effectively divided
into six distinct categories. The University of Waterloo asked the company to follow some
rules regarding each group. Specifically, there are some limitations on the number of stores
needed for each group for each day. More details and the list of buildings included in each
group are provided in the following sections.

Each building has a specific demand on each day. Obviously, it is not (financially)
feasible to place one store in each building. The company has only p stores, and in each
period (day), they want to place all of them on campus. We consider a demand cost for
students and staff in a building that does not have a store, and they need to go to other
buildings. The goal is to place the stores to satisfy the demand of all buildings while
minimizing the costs. There are two more costs in our problem: opening cost and closing cost.
Although the stores are mobile, we need to consider an opening (closing) cost if we want to
open (close) a store at the beginning of each day. In fact, we are capturing all transportation
costs needed to change a store’s location. In our model, we assume that the cost of opening
or closing a store is not related to the distance between different locations.
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Figure 1. Sample picture of a Mobile Grocery Store from [75].

The demand of each building may change from day to day due to different reasons such
as weekends, events, etc. Then, it is an excellent motivation for day-to-day decision-making
following demand variation. In this research, we assume that our demand prediction
is accurate. Then, we can finalize all decisions for each day of the month, once at the
beginning of the month. This variability highlights the need for a more dynamic approach
to decision-making, and robust optimization can provide a solution to this challenge.

Figure 2. University of Waterloo—campus map (Source: www.uwaterloo.ca/map).

www.uwaterloo.ca/map
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We can model this problem as a DMS-p-MP. Generally, our problem has two modifica-
tions compared to the simple multi-period p-median problem. First, we are considering
opening and closing costs over the time horizon. Second, there are some extra constraints
raised from University of Waterloo policies.

4.2. Data Collection

We divide all of the University of Waterloo (UW)’s facilities according to their function-
ality into six different segments: Academic Buildings, Parking Spots, Student Residence
Buildings, Research Park Buildings, Athletic Buildings, and University Plaza, respectively.
The workspace is based on the UW’s official map, which includes 91 facilities, and we also
make an assumption that the population in each facility within a segment is all equivalent.
Segments indicated in Table 2 are as follows,

Table 2. The functional classification for all facilities in the workspace.

Segment Buildings Included in the Segment (Building Id)

Academic Buildings COG (1), COM (2), CPH (3), RA2 (4), M3 (5), ML
(6), RAC (7), GSC (8), GH (9), BRH (10), SLC (11),
OWE (12), HMN (13), MC (14), TC (15), KOC (16),
C2 (17), EV3 (18), OPT (19), DC (20), SCH (21), FED
(22), QNC (23), AL (24), HS (25), B2 (26), EV2 (27),
REN (28), ESC (29), EV1 (30), STJ (31), EIT (32), HH
(33), STP (34), Bl (35), PAS (36), CGR (37), E3 (38),
EC3 (39), BMH (40), PHY (41), EC1 (42), LHI (43),
NHI (44), EC2 (45), UC (46), LIB (47), ECH (48), ERC
(49), E2 (50), ES (51), CSB (52), RCH (53), E6 (54).

Parking Lots Parking CL (55), Parking A (56), Parking X (57), Park-
ing C (58), Parking W (59), Parking OV (60), Parking
V (61), Parking S (62), Parking K (63), Parking J (64),
Parking R (65), Parking P (66), Parking T (67), Park-
ing M (68), Parking L (69), Parking D (70), Parking
EC (71), Parking HV (72), Parking N (73), Parking
UWP (74).

Residence Buildings CLN (75), CLV (76), MKV (77), V1 (78), REV (79), TH
(80), MHR (81), UWP (82).

Research Park Buildings 445 (83), 375 (84), 340 (85), 275 (86), ACW (87),
300 (88).

Athletic Buildings CLF (89), PAC (90).

University Plaza Plaza (91).

We use Python’s OpenCV toolbox by [76] to determine facilities’ specific locations
by fixing pixels’ coordinates in the workspace. Students and staff allow going through
buildings, and it is likely for us to use Euclidean distance measurement

l2 =
√
(x− a)2 + (y− b)2

to find the distance between the two pairs in the data set as follows in Figure 3.
From the UW’s website, we obtained the rough number of students and staff for

each faculty, the rough number of students and staff for each university college, and the
capacities of each residence. A general assumption is that 10% of university students will
use one of two gyms (CIF and PAC). Tables 3–8 below are the population of all classifications
for each segment.
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Figure 3. Coordinates for all facilities in the workspace.

Table 3. Descriptive Statistics for Academic Buildings.

Segment (1) Population

Engineering Faculty 11,000

Mathematics Faculty 9260

Science Faculty 6000

Health Faculty 3643

Arts Faculty 3000

Environment Faculty 3000

Others 1200

Total population 37,103

Total facilities 54

Average per facility 687

Table 4. Descriptive Statistics for Parking Lots.

Segment (2) Population

Campus parking 4000

Total population 4000

Total facilities 20

Average per facility 200
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Table 5. Descriptive Statistics for Student Residence Buildings.

Segment (3) Population

Columbia Lake Village—North 404

Columbia Lake Village—South 400

William Lyon Mackenzie King Village 320

Student Village 1 1381

Ron Eydt Village 960

Tutors’ Houses 100

Minota Hagey Residence 70

University of Waterloo Place 1650

Others 200

Total population 5285

Total facilities 8

Average per facility 660

Table 6. Descriptive Statistics for Research Parking Buildings.

Segment (4) Population

David Johnson Research Park 4000

Others 100

Total population 4100

Total facilities 6

Average per facility 683

Table 7. Descriptive Statistics for Athletic Buildings.

Segment (5) Population

Columbia Icefield 2100

Physical Activities Complex 2100

Others 100

Total population 4300

Total facilities 2

Average per facility 2150

Table 8. Descriptive Statistics for University Plaza.

Segment (6) Population

University Shops Plaza 3200

Total population 3200

Total facilities 1

Average per facility 3200

It was given in the previous section that the time horizon T = 28 (approximately
equivalent to a month), but it can also be separated into four periods (weeks). Based on
the functionality of each segment, with time varying from Monday to Sunday, we may
empirically define the facility in the different segments and the different days in utilization
rate Ukt. For instance, the utilization rates for the academic buildings are 100 out of 100,
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but there are 30 out of 100 during the weekend. The complete estimated utilization rates
for different functional buildings for each day over a week are as follows in Table 9:

Table 9. The Estimated Utilization Rate for Different Functional Buildings for Each Day over a Week.

Functionality Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Academic Buildings 100 90 90 80 90 30 30
Parking Spots 100 100 100 100 100 20 20
Residence Buildings 50 50 50 50 60 100 100
Research Park Buildings 100 90 90 80 90 10 10
Athletic Buildings 50 50 50 60 50 100 100
University Plaza 100 100 70 80 90 50 50

Thus, the demand dkt of each building in segment k on day t, where t ∈ {1, . . . , 7}, in
a week, is able to be defined as

dkt = Ukt ×
Total Population(k)
Total Facilities(k)

.

As for having a unified standard, we calculate the lower bound of opening facilities in
constraint (8) by taking a floor of 70% of the number of facilities in segment k over the total
facilities in the workspace:

nk =

⌊
p× the Number of Facilities in Segment (k)

91
× 70%

⌋
.

For example, n1 =
⌊

18× 54
91 × 70%

⌋
= b7.47c = 7. Similarly, the upper bound of

opening facilities in constraint (7) by taking a ceiling of 130% of the number of facilities in
segment k over the total facilities in the workspace,

mk =

⌈
p× the Number of Facilities in Segment (k)

91
× 130%

⌉
.

The following Table 10 is the maximum (minimum) number of Robomarts that are
allowed in segment k,

Table 10. Bounds on the number of Robomarts.

Functionality Min (nk) Max (mk)

Academic Buildings 7 14

Parking Lots 2 6

Residence Buildings 1 3

Research Park Buildings 0 2

Athletic Buildings 0 1

University Plaza 0 1

4.3. Computational Experiments

In this section, we use all parameters discussed in the Data Collection section to solve
our problem. All numerical experiments have been run on an Apple M1 processor, limited
to 16 GB of RAM. Gurobi has access to 8 physical cores and 8 logical processors, using up to
8 threads. This model is MILP and has M (=239,512) variables and N (=239,694) constraints
(excluding sign constraints). We use Gurobi version 9.5.1 by [77] to solve this optimization
model. Since default settings in Gurobi generally work well, we are keeping all settings as
default. Specifically, we use Gurobi’s API embedded in Python 3.11.2.
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MILP models are generally solved using a linear-programming based branch-and-
bound algorithm. The Gurobi provides advanced implementations of the latest MILP
algorithms including deterministic parallel, nontraditional search, heuristics, solution
improvement, cutting planes, and symmetry breaking.

Based on Section 5, the demand is weekly periodic. Then, we expect the model to
make the same decision over the weeks. Table 11 shows what buildings are open during
the planning horizon. We show the days that we change our decisions. For instance, the
buildings that are open between day 1 and day 6 are the same.

Table 11 shows that we only open new buildings and close the current buildings over
the weekend. We again change our decision on weekdays. It is expected because the
utilization rates of some of our segments are significantly different during the weekend.

Specifically, we close buildings 12, 55, and 83 (that, based on Table 3, are Conrad
Grebel university college, Parking lots, Research building 375, respectively) and open
buildings 63, 77, and 81 (that are Parking P, Student Village, University of Waterloo Place,
respectively). The interesting point is that all of the buildings 63, 77, and 81 are around
students’ residences. Students are mostly in the residence area instead of the academic
campus during the weekends. Then, it is worth closing some stores and opening new ones
in students’ residences.

Table 11. Results—Optimal Objective Value = 43175.7, CPU Time = 12.99 s.

t Id of Opened Buildings

1 (Monday) 0, 2, 3, 5, 10, 12, 17, 27, 34, 40, 44, 48, 54, 55, 76, 83, 89, 90

6 (Saturday) 0, 2, 3, 5, 10, 17, 27, 34, 40, 44, 48, 54, 63, 76, 77, 81, 89, 90

8 (Monday) 0, 2, 3, 5, 10, 12, 17, 27, 34, 40, 44, 48, 54, 55, 76, 83, 89, 90

13 (Saturday) 0, 2, 3, 5, 10, 17, 27, 34, 40, 44, 48, 54, 63, 76, 77, 81, 89, 90

15 (Monday) 0, 2, 3, 5, 10, 12, 17, 27, 34, 40, 44, 48, 54, 55, 76, 83, 89, 90

20 (Saturday) 0, 2, 3, 5, 10, 17, 27, 34, 40, 44, 48, 54, 63, 76, 77, 81, 89, 90

22 (Monday) 0, 2, 3, 5, 10, 12, 17, 27, 34, 40, 44, 48, 54, 55, 76, 83, 89, 90

27 (Saturday) 0, 2, 3, 5, 10, 17, 27, 34, 40, 44, 48, 54, 63, 76, 77, 81, 89, 90

4.4. Sensitivity Analysis

In this section, we will change the parameters to see how variability can affect our re-
sults.

4.4.1. Time Horizon

First, we analyze the impact of the length of time horizon on our results. Table 12
shows the results when we increase (decrease) the time horizon. For instance, as we
increase the time horizon, it will take more time to find the optimal solution. In addition,
our optimal objective value would increase since we are adding more positive terms to our
cost.

Moreover, we see that the opened and closed buildings remain the same as we increase
the time horizon. The reason is that our demand is periodic over the weeks. By increasing
the number of weeks, the optimal decision to open and close some stores would be the
same. Figure 4 shows the results, in which red line represents the objective value and the
blue line represents CPU run time.
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Table 12. Sensitivity Analysis on Time Horizon.

T Id of Opened Buildings Id of Closed Buildings Objective Value CPU Time (S)

14
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83, 89,
90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 21570.1 12.43

21
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83, 89,
90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 32372.9 6.08

28
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83, 89,
90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 43175.7 12.99

35
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83, 89,
90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 53978.5 17.02

42
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83, 89,
90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 64781.3 20.40

Figure 4. The impact of the time horizon on the objective functions and CPU process time.

4.4.2. Number of Facilities to Be Located (P)

Now, we change parameter P and see how it affects our results. Variability of P is
important since it would help the company to decide the number of stores they want to
buy and create on the campus.

Note that we could also consider a fixed cost of buying each store in our model (i.e.,
we could add the Price of each facility to the objective function). However, since in our
optimization model P is fixed and given, we do not need to consider it. Figure 5 shows the
results when we change P. First, it seems that the running time is not directly dependent
on P. However, P is determining the complexity of the problem. In addition, the objective
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value is obviously decreasing as we increase P since we did not consider the price of each
store.

Figure 5. The impact of the number of facilities on the objective functions and CPU process time.

In addition, Table 13 shows how our decision changes in different P. There is one
interesting point in our decisions. Compare P = 12 with P = 15. In P = 15, we do not
use the same opened building we used in P = 12. This shows that, as we want to add one
building, we may no longer need another building.

Table 13. Sensitivity Analysis on Parameter P.

P Id of Opened Buildings Id of Closed Buildings Objective Value CPU Time (S)

12 2, 5, 10, 17, 27, 35, 44, 54,
65, 76, 83, 90, (63, 89) 63, 89, (65, 83) 58,616.4 58.07

15
2, 3, 5, 10, 27, 35, 45, 48,
63, 66, 74, 76, 83, 89 , 90
(81, 17, 61, 79)

81, 17, 61, 79, (83, 3, 66,
76) 49,402.9 7.79

18
0, 2, 3, 5, 10, 12, 17, 27, 34,
40, 44, 48, 54, 55, 76, 83,
89, 90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 43,175.7 12.99

21

0, 2, 5, 7, 10, 12, 17, 23, 26,
34, 40, 44, 48, 53, 54, 55,
76, 83, 85, 89, 90, (64, 77,
81, 3, 79)

64, 77, 81, 3, 79, (7, 55, 83,
76, 85) 38,266.5 7.89

24

0, 2, 3, 5, 6, 10, 12, 17, 23,
34, 40, 44, 48, 53, 54, 61,
67, 76, 80, 81, 83, 87, 89,
90, (64, 78)

64, 78, (80, 87) 34,874.4 107.60
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4.4.3. Cost Coefficients

Followed by two previous sections, we want to discuss the effects of changing the
opening and closing costs together on our results. Table 14 shows the results when we
increase (decrease) the cost coefficients. Considering the case in which costs are both zero,
the model tries to open (and close) any building in each period. In other words, it does not
care how many building it wants to open or close each day. Another noteworthy point is
that running time increases as we increase the costs. It shows that the trade-off between
keeping current buildings and opening (closing) other buildings is becoming important
and challenging to the model.

Table 14. Sensitivity Analysis on Cost Coefficients (together).

γo(c) Id of Opened
Buildings Id of Closed Buildings Objective Value CPU Time (S)

0

0, 2, 3, 10, 12, 17, 26, 35,
45, 48, 54, 65, 76, 83, 86,
88, 90, (1, 4, 5, 23, 26, 27,
34, 40, 44, 56, 63, 81, 89)

4, 5, 27, 34, 40, 44, 56, 63,
81, 89, (23, 26, 35, 45, 65,

86, 88)
42,900 3.90

2.5
0, 2, 3, 5, 10, 12, 17, 27,
34, 40, 44, 48, 54, 55, 76,
83, 89, 90, (63, 77, 79, 81)

63, 77, 79, 81, (12, 55, 76,
83) 43,049.3 9.34

5
0, 2, 3, 5, 10, 12, 17, 27,
34, 40, 44, 48, 54, 55, 76,
83, 89, 90, (63, 77, 81)

63, 77, 81, (12, 55, 83) 43,175.7 12.99

10
0, 2, 3, 5, 10, 12, 17, 27,
34, 40, 44, 48, 54, 55, 76,
83, 89, 90, (80, 81)

80, 81, (12, 83) 43,382.3 58.45

20
0, 2, 3, 5, 10, 12, 17, 27,
34, 40, 44, 48, 54, 55, 76,
83, 89, 90, (81)

81, (83) 43,658.2 82.58

Figure 6 shows that the initially opened buildings remain the same and start to
dynamically be changed as we increase the opening/closing cost. Moreover, the objective
value increases as we increase the opening cost. In addition, in the case of high opening
costs, we prefer not to open new buildings (and close the current open buildings) since it
would be costly.
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Figure 6. The impact of opening/closing cost of facilities on the objective functions, the dotted line
represents the objective value.

5. Discussion

In this paper, we propose a mixed-integer linear formulation for the Dynamic Modi-
fied Stochastic p-Median Problem in a Competitive Supply Chain Network Design. The
presented model takes into account the robust optimization and time horizon as a novel ap-
proach, which enables the decision-maker to consider uncertainty and short-term changes
in the supply chain network design. The robust optimization approach used in this study
allows for the consideration of different scenarios and uncertainty in demand and supply,
which is crucial in real-world applications. Additionally, the time horizon approach al-
lows for the dynamic nature of the problem to be captured, which is important in today’s
fast-paced business environment.

The proposed model was tested using computational experiments, and the results
demonstrate the effectiveness of the proposed approach in handling the dynamic and
stochastic nature of the problem. The results also provide valuable insights for practitioners
and researchers in the field of supply chain network design. The proposed model can
be extended and applied to other similar problems in the field, such as facility location,
transportation and logistics, and inventory management.

One of the main contributions of this study is the integration of robust optimization
and time horizon in the mixed-integer linear formulation for the Dynamic Modified Stochas-
tic p-Median Problem. The robust optimization approach allows for the consideration
of different scenarios and uncertainty, while the time horizon approach allows for the
dynamic nature of the problem to be captured. This integration provides a more realistic
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and practical solution to the problem, which can be useful for practitioners and researchers
in the field.

Another important contribution of this study is the application of the proposed model
to a competitive supply chain network design problem. This application is relevant and
valuable as it provides insights into how the proposed model can be used in a real-world
context. The results of the computational experiments demonstrate the effectiveness of
the proposed model in handling the dynamic and stochastic nature of the problem and
provide valuable insights for practitioners and researchers in the field. For instance, we
can change over the problem definition to solve any other location problems. Covering
location problems are valuable to investigate, such as trying to find the optimal number of
Robomarts [75] that can serve all facilities in the workspace if the single Robomart can only
serve facilities within a limited number of miles.

The results of the computational study demonstrate the effectiveness and robustness
of the proposed formulation in solving the DMS-P-MP. The results show that the number of
opened and closed buildings remains constant as the time horizon advances, even though
the demand patterns change over time. This highlights the ability of the proposed formula-
tion to adapt to changing demand patterns and ensure that the supply chain network is
both cost-efficient and responsive to changes in demand. Moreover, the robustness of the
solution is demonstrated by its ability to provide effective solutions even in the presence of
uncertainty in demand patterns. The proposed formulation can be applied to real-world
problems, providing decision-makers with an effective and robust tool to optimize their
supply chain network design in a dynamic and uncertain environment. The ability of the
formulation to take into account the periodic nature of demand and adapt to changing
demand patterns makes it a valuable tool for decision-makers who are facing challenges in
designing a cost-efficient and responsive supply chain network.

While the cost of opening or closing a store is currently considered as a constant
parameter in the model, it is recognized that this cost could vary dynamically based on
various factors such as the distance between different locations. This presents an exciting
opportunity for further research, where the dynamic nature of opening and closing costs
could be explored and incorporated into the model.

One limitation of this study is that the Robomart can only be located at specific
facilities (nodes) in the proposed model. In reality, however, the Robomart can also be
located somewhere on the route between two nodes (edges). This limitation may affect
the validity and applicability of the proposed model in real-world scenarios. To address
this limitation, it is possible to consider analogous absolute p-median problems to simulate
reality. This approach would involve the inclusion of edge-based locations for the Robomart
in the model, which would provide a more realistic representation of the problem. However,
this would require additional mathematical development and computational resources,
and would be a subject for future research.

Another potential area of future research is to make the problem an Adaptive Robust
Optimization (ARO) problem [64]. In this approach, the number of trucks p would be
determined in the first stage and other variables in the second stage. This would enable a
more flexible and dynamic approach to supply chain network design, as the number of
trucks can be adjusted in response to changes in demand and supply.

In summary, the proposed model in DMS-p-MP takes into account the robust op-
timization and time horizon as a novel approach, which enables the decision-maker to
consider uncertainty and short-term changes in the supply chain network design. The
results of the computational experiments demonstrate the effectiveness of the proposed
model in handling the dynamic and stochastic nature of the problem and provide valuable
insights for practitioners and researchers in the field. The proposed model can be extended
and applied to other similar problems in the field of supply chain network design. The
integration of robust optimization and time horizon in the proposed model provides a
more realistic and practical solution to the problem, which can be useful for practitioners
and researchers in the field.
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