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Abstract: Background: This paper aims to improve the overall performance of manual warehouse
Order Picking (OP) processes by proposing an innovative method for designing a picking area layout,
and introducing a storage assignment strategy with respect to ergonomics and workers’ physical
fatigue. Methods: The proposed method categorizes the available picking slots based on size and ABC
analysis. It takes into consideration a set of ergonomic constraints pertinent to the rack heights and
travel distance restrictions for each slot type, leading to the assignment of a location to each slot type
based on its individual characteristics. In doing so, the proposed method introduces an innovative
‘flame-shape’ aisle layout. Finally, the products are assigned to their optimal locations, targeting OP
time minimization, balanced workload allocation, and ergonomics optimization through a ranking
system measuring the ‘difficulty’ of retrieving the products based on their weight, popularity, and
slot location. Results: The proposed method led to a productivity rise of 14.9% along with a significant
decrease of the ‘difficulty’ index, by 31%. Conclusions: The results prove that a prominent performance
improvement can be achieved when both travel distance and manual workload minimization are
targeted for determining the picking area layout and storage design.
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1. Introduction

In today’s shifting competitive landscape, supply chain networks need to continuously
change to accommodate ever-increasing customer expectations. Due to the evolution of
e-commerce especially, customer requirements are becoming increasingly complex, de-
manding enhanced responsiveness, speedy deliveries, and highly customized and variable
product assortments, all of which have brought new challenges and requirements for
warehouse order fulfillment processes [1].

Order Picking (OP) is widely considered a core warehouse process and its efficiency
is considered an important Key Performance Indicator of warehouse management [2],
as it can affect delivery times and, hence, influence customer satisfaction. Although
OP is an eligible process for automation, according to the works presented in [3], small
and medium companies prefer to avoid high investments and maintain their agility by
utilizing traditional and conventional methods. Therefore, the majority of warehouses,
amounting to 80%, still rely on manual OP activities [4,5] while only 5% of them are fully
automated [6]. Given the fact that OP is the most expensive process in contemporary
warehouses, accounting for 50% of the total operating costs [7,8], organizations strive
for efficiency and cost reduction through decreasing OP time [9]. This need has driven
scientific literature to concentrate on travel time minimization, namely the time spent
walking between storage locations, which takes up 50% of the total picking time, while
overlooking secondary activities, such as setup, search, and pick [8,10].

Apart from efficiency aspects, OP is undoubtedly one of the most labor-intensive,
repetitive, and monotonous processes in the warehouse [11]. Considering body posture
during travel, setup, and search, pickers maintain either an upright walking or standing
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position. However, to extract an item from a rack, they might have to bend over, stretch,
or twist their body while manually transferring, holding, pulling, or opening large and
heavy storage units [12]. These repetitive body postures overload specific muscles due to
the force exerted, especially on the back, shoulders, and knees, resulting in daily physical
fatigue [13,14], severe chronic injuries, and MusculoSkeletal Disorders (MSDs) [15]. MSDs
are the most reported causes for absence from work, being responsible for more than half
of all work-related illnesses in the European Union [16].The financial damage caused by
MSDs in pickers is equivalent to the costs associated with reduced productivity, work injury
compensations, and high employee turnover rate, with the latter dictating the need for new
joiners requiring intensive training all over again.

Consequently, in order to ensure increased efficiency and productivity levels, orga-
nizations need to shift their focus on the Human Factor (HF) and workers’ well-being. In
doing so, it is imperative that factors pertinent to physical fatigue, work safety, discomfort,
and common errors be incorporated into the OP decision-making processes [17]. Although
this should be a highly prioritized issue, the extant research on that scientific field is still
limited. Many prominent studies have shed light on this literature gap, starting from the
works presented in [18], which analyzed the interaction between operators and the system,
concluding that the research community resorts to unrealistic assumptions (e.g., determin-
istic time of completion, homogeneity among workers, disregard for rest allowance needs,
and physical fatigue etc.) to simplify operating process modeling, thus entirely failing to
properly consider the HF impact on operations efficiency and vice versa. Additionally, the
authors in [19] elucidated the lack of connection between operating performance and the
HF, while in [10] the existence of said gap was also confirmed a few years later, adding
that OP research merely focuses on quantitative methodologies, without being able to
mathematically integrate work ergonomic factors. Following that, recent studies concluded
again that despite the emphasis paid on Industry 4.0 technologies, the HF, in terms of
safety and health, has been superficially approached in the literature [20,21]. Moreover,
modern supply demands require multi-objective approaches, considering not only travel
time reduction, but also equal distribution of workload to avoid picker blocking [22,23], the
optimization of staffing levels, error prevention, and successful integration of the HF. Lastly,
the authors in [24] noticed that the hits for the keywords “Industry 4.0” and “Internet of
Things” account for 29,521, compared to 254 hits for “Ergonomics” and “Human Factor”,
revealing that scholars still pay much less attention to the human aspect in such operations.

Motivated by the aforementioned considerable literature gap in the area, this paper
proposes an innovative method for integrating storage ergonomic criteria into layout and
storage location assignment design models, with the aim of mitigating physical fatigue in
manual OP activities. According to the authors’ knowledge, such an attempt to include
and appropriately consider the HF in OP optimization has not yet been introduced in the
academic literature. The proposed method is validated through a case study conducted in
a high-tech retail industry. The remainder of this paper progresses as detailed below. In
Section 2, a short literature review on OP methods, storage policies, and relevant research on
HF in OP is provided. In Section 3, the problem description is presented, i.e., the operating
weaknesses in the OP processes of the case study company. Section 4 demonstrates the
proposed method and algorithm, while in Section 5 computational results are demonstrated
and discussed. Finally, the paper concludes with Section 6, where the study’s findings and
limitations are summarized and future research suggestions are made.

2. Literature Review

For the purposes of this study, it is highly important that OP methods be thoroughly
analyzed, with an emphasis on manual OP. Additionally, the advantages and disadvantages
of various Storage Policies (SP) are extensively examined. Lastly, as far as the ergonomics
and HF in OP activities are concerned, relevant studies are discussed and literature gaps in
this specific scientific field are highlighted.
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2.1. OP Methods

Picker-to-Parts is the most common method for OP, according to which the picker,
after receiving a transfer order, walks to the corresponding slot location and retrieves the
demanded unit quantity, either manually or by using complementary means [25]. Two
categories of picker-to-parts are identified: the low-level and high-level OP [26]. In the
former case, the worker collects the goods from racks near their body height or from a bin
shelving storage, while in the latter, which is also referred to as “man-aboard”, lifting order-
pick tracks or cranes are used for product retrieval. In this method, picking can be achieved
in various ways. First, there is the Pick-to-Box method, also referred to as Discrete Picking,
where the storage area is divided into picking zones occupying specific staff positions [27].
Order retrieval is achieved via either a progressive or synchronized zone picking system.
In Progressive Zone picking, also called Pick-and-Pass, an order container strictly designated
for an individual order progressively passes from each zone, where the pickers place the
demanded products until all required items are collected [28]. On the contrary, during
Synchronized Zone method, operators from different zones simultaneously retrieve and
place the products into the same order container [4]. This way, less total picking time is
required, under the condition of equally distributed workload among the zones [29].

Contrary to discrete picking, Pick-and-Sort is a method used for grouped customer
orders, i.e., batch picking/picking by article; in other words, having pickers collect bigger
quantities of a product in one trip which are designated for more than one order [30].
Additionally, this method can be combined with the Picking Wave method, when orders
with common destination or shipping time are grouped together so as to accelerate the
picking process [31]. Upon retrieval completion, all goods are sorted accordingly to meet
customer requests, a time-consuming procedure that is prone to miscounts and errors.
Additionally, in Sort-while-Pick, a method relatively similar to Pick-and-Sort, after performing
batch picking of one SKU, the picker instantly sorts the items into individual containers
before moving to the next one [4]. A sub-category of this method is Put-to-Light, in which
the picker moves bin after bin, each consisting of multiple items of a particular SKU (SKU
bin) along a lane of sequentially arranged orders [32]. A light signal, located above each
container designated for an individual customer order (order bin), turns on and informs
the picker where and how many items of each SKU he/she should place in it. Put-to-Light
can be particularly efficient provided that the grouped orders have common characteristics
and product requirements.

Relevant to the latter method, the Parts-to-Picker strategy includes mechanized and
automated retrieval means, such as AS/RS, aisle-bound cranes, mini loads, and carousels,
which bring the items in front of the worker [33,34]. Although this method has started to
attract research interest [4] since it results in substantial expenditure drop, limited need
for human interaction, and therefore fewer mistakes, it is also associated with various
operational limitations. For instance, bottlenecks due to mechanisms’ fixed order retriev-
ing capacity can be responsible for delays, high lead times, and decreased workforce
utilization rates [30].

2.2. Storage Policies

A storage policy is defined as a set of rules and parameters according to which the
products are stored inside a warehouse until picked to fulfill a customer order [4]. There
are two main and commonly separated stock areas inside a distribution centre. The first
one, called the “pick stock”, is the area from which pickers pick items to fulfill an order, and
is restricted by dimensional limitations to ensure fast product collection, while the other,
called the “bulk stock”, is responsible for replenishing the “pick stock” [4]. The storage
policies detailed below mostly refer to product allocation in the “pick stock”.

First, according to the Random Storage Policy, every incoming SKU is assigned to any
currently available picking slot [35]. This method provides high levels of space utiliza-
tion [36], while due to randomized product allocation, an equal workload distribution
is commonly observed, thus eliminating worker congestion issues [22]. However, high
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differentiation of goods prevents pickers from familiarizing themselves with picking loca-
tions, thus impacting retrieval speed and efficiency. The exact opposite of the random is
the Dedicated Storage Policy, in which every product maintains a fixed position based on its
characteristics [4]. Although this method allows pickers to develop cognitive ergonomics
and be instantly aware of the exact location of goods [37], space utilization drops since a
slot remains unavailable to other products, even when the associated SKU is out of stock.
To add insult to injury, this method cannot be efficiently applied to seasonal products,
which need to change positions often.

A policy highly associated with product popularity is the Full-Turnover Storage Policy,
in which products are assigned to storage locations based on their turnover, i.e., the fast-
moving SKUs are assigned near the depot in order to minimize picker travel distance [36].
A predecessor strategy of that method is the Cube-per-Order (COI) Storage Policy, in which
items are assigned based on the ratio of an item’s storage space requirement (cube) to its
popularity (number of storage/retrieval requests for the item) [38]. Also, the Full-Turnover
demonstrates similar characteristics to the Volume-Based Storage Policy, in which SKUs are
assigned to locations near the pick-up/drop-off point based on their picking volume [39].
The Class-Based Storage Policy is a combination of previously detailed methods and the most
commonly employed one [40], according to which products are divided into classes, i.e., A,
B, C, etc., based on their popularity. Although each class covers a dedicated storage area,
product allocation inside each class is random [41]. This way, this storage policy combines
benefits from both the dedicated and random storage policies. The number of classes is
quite important. According to the works presented in [42], by assuming an infinite number
of items, the number of classes does not impact the demanded storage capacity. However,
for a finite number of items, the choice of the number of classes is critical, since the bigger
the number of classes, the smaller the number of items per class and, therefore, more
storage space is required to store all items, which then increases the average travel time for
storing/retrieving items [40]. According to [4], frequently preferred classification layouts
are the “Across-aisle” or the “Within-aisle” Storage Policies (Figure 1), in which high-moving
products are assigned to locations near the depot and hence, the travel distance required
is minimized.
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Last, according to the Correlated Storage Policy, alternatively called family grouping, the
more items with demand dependence that are assigned to nearby storage locations, ideally
in the same aisle or zone, the quicker the picking process will be [43–45]. The authors
in [22] considered the correlated policy as the optimal storage method, when combined
with traffic control and equal workload distribution.

2.3. Human Factor in OP

Besides accelerated technology advancement, humans still comprise a core factor
in logistics operations due to their ability to remain agile and adaptable in a dynamic
environment [3]. Other than that, mental capacity and analytical thinking allow humans
to handle and solve complex problems, which is their main competitive advantage over
machines. Although the human contribution to OP efficiency is an important field of
research, only a few prior studies have examined that connection, as discussed below.
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The authors in [46] created a stochastic model to optimize product layout in a manual
OP warehouse, aiming at picking time minimization, while the authors in [47] developed a
storage policy based on a logical, from pickers’ perspective, OP sequence, with the aim of
reducing OP duration and errors. The research presented in [48] investigated the impact
of handling storage units from pallets on the spine. The authors concluded that the most
severe impact is observed during the manual lifting of boxes from the ground level. In [49],
the authors conducted a pioneering analysis utilizing the concept of “Golden Zone” picking,
as introduced in the works of [50,51] in order to improve OP performance. The authors
of the latter study found a statistical difference in the pick times of SKUs in the golden
zone, i.e., the area between a picker’s waist and shoulders, compared to SKUs not in the
golden zone. Although the authors in [49] concluded that placing fast moving products
in the golden zone can significantly reduce time and effort, they did not take into account
potential congestion of warehouse operators in the aisles and assumed fixed space capacity
for all SKUs regardless of their daily demands in units.

In 2011, the authors in [52] analyzed and highlighted the importance of the under-
studied field of human safety in storage operations, while the authors in [53] explored
employees’ mental capacity, focusing on the ability of human learning in OP systems.
In [54], a model for designing ergonomic OP operations was developed, taking into consid-
eration pickers’ individual characteristics and physical stress. The numerical validation of
the model concluded that 0.85 m is the optimal height for storing popular products. Follow-
ing that, two notable literature reviews were conducted on human and ergonomic aspects
in OP processes to evaluate how these factors could improve operators’ performance and
well-being [10,55].

Additionally, the authors in [56] generated a bi-objective optimization model based
on Pareto frontiers, which produced a set of trade-offs between picking time and energy
expenditure based on the energy expenditure model presented in [57]. The authors sug-
gested that future research should focus on warehouse and aisle layout design, with the
aim of reducing manual effort in OP. Based on the aforementioned study, economic and
ergonomic analyses were performed in [12], considering three technical design options
for racks, i.e., full-pallets, half-pallets, and half-pallets equipped with a pull-out system.
The authors concluded that succeeding research should assess different rack layouts, ac-
commodating products stored in boxes, or conduct case studies using already developed
models. Furthermore, the authors in [58], by utilizing the OWAS (Ovako Working Posture
Analyzing System) index and the energy expenditure concept, concluded that the least
ergonomic height for OP is the ground floor level, while heights at 1.4 m and 0.85 m from
the floor were deemed as the most ergonomic ones. Also, the setup, travel, and search
phases, which are performed in standing or upright walking positions, require relatively
low energy consumption, while pick postures including twisting, stretching, and bend-
ing substantially affect body fatigue. Similar to [58], the authors in [59] used the OWAS
method to propose a solution to the storage assignment problem. The authors developed a
multi-objective model based on binary integer linear programing, taking into consideration
OP time, energy expenditure, and health risks. The research presented in [17] also pointed
out which devices should be used in industrial contexts to monitor fatigue level in OP,
with to the aim of enhancing picker performance. Later on, the same authors proposed an
integration model for product assignment based on both workload and cost, using both
full and half pallet configurations [60]. In [61], a layout and assignment optimization was
performed in a U-shaped picking area whose shelves are built from pallet cages, aiming to
minimize walking distance and body strain during OP, using the model proposed in [57].
In [62], a Monte Carlo simulation model was presented, estimating the average rate of
energy expenditure (Kcal/min) and fatigue allowance for female order pickers in manual
OP systems with high demand rates. Finally, analyses on fatigue accumulation and rest
allowance were also performed in [63,64].
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3. Problem Description

The picking area of the facility studied in this paper fulfills both physical and online
orders. It consists of 40 identical aisles equally divided into two mezzanine floors, where
material flow is achieved via a conveyor belt. On both floors, the layout overview is
designed as follows. The depot aisle and conveyor belt cross vertically each aisle from its
front side. On the opposite side, the aisles lead to a back aisle as depicted in Figure 2, where
bins replenish the picking slots before they become empty. It can be assumed that all aisles
maintain equal distance from the depot.
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Each double-sided aisle is approximately 8 m long and consists of two similar sides
of static slots divided into five bays, each estimated at 1.6 m, with five racks, each with a
depth of 0.5 m. The static racks have a height of 0.39 m; thus, the total bay height is roughly
2.4 m (Figure 3).
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The storage area provides an additional storage type called dynamic slots. These slots
consist of inclined rollers, as illustrated in Figure 4, and their depth is 2.5 m, i.e., five times
the depth of a static rack. When replenishing from the backside of the bay, storage units
slide to the front, from where they are retrieved during picking. The case here is that the
conveyor belt progresses across the dynamic slots. Thus, a sequential number of bays are
assigned to each picker, who moves in a narrow space between the conveyor belt and the
dynamic storage slots to pick the required items. As a result, the required travel distance is
limited to the bare minimum, since pickers already stand in front of the picking locations.
Although dynamic slots will not be further analyzed in the specific study, the products
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stored there have been considered in the overall analysis for developing the proposed
method, so they extensively affect the produced results.
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The OP method chosen is Progressive Zone Picking, as the storage area under discussion
is divided into eight zones. Each zone requires roughly the same number of pickers, which
fluctuates throughout the day depending on the workload. In each zone, both discrete and
batch picking take place. Radio Frequency (RF) picking is implemented for identifying
products and receiving order information, since it ensures greater efficiency and lower
error possibility than the paper based method. When an order container arrives at the pick
zone, the first picker available scans its barcode to identify which SKUs and quantities are
needed to be retrieved. In case the container is strictly designated for an individual order,
discrete picking is applied. However, if there is a multitude of similar orders consisting of
few items, they are grouped together, so that pickers can retrieve bigger quantities from
each SKU in one travel. Following that stage, upon returning to the depot area, pickers
transfer the SKUs into smaller boxes; each with a unique barcode for each order placed
inside the order container.

As far as product assignment into picking locations is concerned, the Random Storage
Policy has been chosen. Three picking slot sizes are provided; small-, medium- and large-
sized slots, with the latter having twice the volume of the second, and four times the
volume of the former. Upon a new arrival, the product is assigned to the smallest slot size
into which its storage unit can fit. However, the location of the selected slot, i.e., floor, aisle,
bay, rack, is random. Every SKU maintains the same slot, for as long as it is in stock or an
upcoming arrival is scheduled. Otherwise, namely in the case an SKU becomes obsolete, a
different SKU takes its place and is assigned to this particular slot.

Although this operational strategy seemed to have been working satisfactorily in
previous years, the ever-growing, fast-paced business environment has led to hampered
performance and productivity issues which need to be addressed. First, the storage location
assignment strategy applied led to inadequate inventory in the picking slots. Consequently,
replenishment needs skyrocketed during periods of high demand, and the system’s re-
sources were unable to fulfill them on time. Second, the oversight of not conducting
turnover and popularity analyses led to constant congestion of pickers in specific aisles,
while others remained almost unvisited during the day. Hence, the unequal distribution
of transfer orders among aisles was conducive to a significant increase in average picking
time. Third, it was observed that the Random Storage Policy severely impacted pickers’
physical health, since highly popular SKUs were assigned to locations far away from the
depot at inefficient heights, requiring long travel distance and forcing pickers to resort to
unnecessarily intense body motions. Thus, over the course of time, workforce performance
substantially dropped.
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Taking into account the aforementioned operational weaknesses, the current study
aims to boost productivity rates, by reducing picking time and relieving workers’ physical
fatigue. To do so, it aims to redesign the aisles’ layouts by proposing an upgraded slotting
policy in accordance with product characteristics and enhanced warehouse ergonomics.

4. Proposed Method

The proposed method discussed further on was developed using MATLAB software
and Microsoft Excel. For the purposes of this study, a sample of 5842 SKUs was examined.
After defining the new types of slots needed, a layout redesign and storage assignment
method was proposed and implemented in the case study facility, with the aim of enhanc-
ing OP performance by mitigating workers’ physical fatigue through an innovative OP
difficulty ranking system.

4.1. Selection of Slot Sizes

In the initial layout, products were assigned to slots based on their unit dimensions, so
that the required picking storage space was minimized. However, this strategy overloaded
the system with frequent replenishment demands. Therefore, the company decided to
determine the slot size selection based on the demanded unit quantities of each SKU, with
the aim of achieving sufficient inventory levels for seven days, with no replenishment
needs in the meantime. Based on the average daily demand and number of items included
in one unit, the number of boxes needed was estimated for each product. In this direction,
an algorithm was developed, exploring the six degrees of freedom of a rigid body in a three-
dimensional space. In such a manner, the optimal placement orientation or combination of
orientations was defined for each SKU, targeting the storage of all the demanded units per
product while minimizing the dead volume in the selected slot. Nevertheless, this algorithm
is out of scope for the current study, and will be presented in authors’ future work.

Although all slots have the same depth and height because of the fixed rack structure,
their length varies according to their size. Assuming S is the length of the medium-sized
slot, S2 would be the length of the small-sized slot, equal to half the length of S, and 2S the
length of the large-sized slot, equal to double the length of S.

4.2. Classification of SKUs Using ABC Analysis

In order to decrease picking time and effort, it is imperative that a popularity analysis
be conducted based on products’ turnover rates, which is defined as the daily number of
times a picker needs to travel to a specific location and retrieve a demanded quantity of an
SKU. By applying Pareto’s principle, products were classified into three categories. SKUs
with more than five transfer orders per day were classified as “A” products, i.e., the most
fast-moving ones. SKUs with less than five but more than one transfer order fell into class
“B”, while the rest into class “C”. Every SKU is characterized by two factors; its popularity
class and the minimum slot size in which it can fit. Thus, by having three turnover classes
and three slot sizes, nine different combinations emerge; in other words, nine different slot
types. The new slot types are notated as XY, with the first symbol designating the class, i.e.,
A, B, or C, and the second the slot size, i.e., S2, S, or 2S.

4.3. Number of Slot Types per Aisle

The main goal of the proposed method is to design an “ideal aisle” which meets
the system’s needs and can be reproduced across the picking area, assuming equal travel
distance from the depot to the starting point of each aisle. First, it is important to specify
the exact number of slots which can fit in a rack, i.e., the space between two consecutive
columns separating bays from one another.

• Nine small-sized slots (S2)
• Four medium-sized (S) plus one small-sized slot (S2)
• Two large-sized (2S) plus one medium-sized (S) or two small-sized slots (S2)
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As it can be easily inferred, there can be diverse combinations, given that every length
type is a multiple of the others. The steps for estimating the number of slots per aisle are
detailed below.

1. Calculation of the number of products classified in each category of the nine slots
developed above, according to their characteristics and corresponding percentages.

2. Assuming that each aisle can accommodate 100 products in total, the percentages
found in Step 1 are converted in S length according to Equation (1).

Length of XY Slots per 100 Products = (Percentage of products demanding XY slots) ∗ LXY

LS
(1)

3. The total length per aisle of XY slots needed for 100 products is calculated in S length.
4. Since each rack can accommodate four S-sized slots and one S2-sized slot, the total

rack length equals to 4.5 S. Therefore, for an aisle consisting of 50 racks, the total slot
length equals to 225 S.

5. Knowing the length of each slot type per aisle in S level, the total rack length required
for 100 products, and the total rack length per aisle, the number of each slot type per
aisle is calculated according to Equation (2).

Number of XY Slots per Aisle = round
((

(Length of XY Slots for 100 Products) ∗ (Total Rack Length per Aisle)
Required Rack Length per Aisle for 100 Products

)
∗ LS

LXY

)
(2)

After applying the above described methodology, the total length of the estimated
number of slots resulting from the ROUND function was adjusted accordingly, so as to
approach as much as possible the maximum rack length per aisle, i.e., 225 S.

4.4. Ergonomic Constraints

As previously mentioned, the conveyor crosses all aisles from their front side. Ac-
cording to literature, the classification of slots preferred in such a layout structure is the
“across-aisle”, based on which a vertical separation of classes can be observed, such as the
one shown in Figure 5, with “A” products occupying the bays closest to the depot, followed
by “B” and “C” ones at the back.
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Although the aforementioned classification has considerable merit, the approach
taken in this paper differs in that it introduces several ergonomic criteria, which refer
not only to the travel distance but also the ergonomics of the height at which each slot
is located. Considering that walking is the least intense physical activity in a warehouse,
this study proposes that “A” products, which would be expected to be placed in slots
close to the conveyor, should occupy positions in distant bays with one essential limitation:
rack ergonomics.

According to the concept of “Golden zone” picking, in our case the most ergonomic
rack is the 3rd one, as its middle point is approximately 1.2 m from the ground, which
is higher than a picker’s waist but lower than his/her shoulders (Figure 3), taking into
consideration that the average picker height is around 1.73 m. The 2nd and the 4th rack are
almost equally ergonomic, placed in second and third rank respectively, since their height
levels are not far away from the golden zone yet they require more intense movements
compared to the 3rd rack. The 4th rack, at 1.69 m, forces pickers to resort to constant arm
raising, thus leading to shoulder straining and pain, while the 2nd one requires slight
bending for reaching items at 0.8 m. The 1st rack, placed at the ground level, is a quite
inefficient picking height since it compels workers to bend over or kneel repeatedly, thus
hurting their back, waist, and knees in the long run. The 5th rack, situated at a height
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of 2.13 m, is indisputably the least ergonomic one since it requires the use of a step stool
enabling pickers to reach for the products and endangers them of getting hit by a falling
object, which can cause severe blunt force trauma and leave them out of work for a long
period of time, or render them incapable of returning to work. This is why placing bulky
and heavy products on high racks should be prohibited.

It goes without saying that decreasing human workload will yield substantial results
in terms of performance improvement. In the short-term basis, workers will be more
efficient and faster in their day-to-day OP tasks, while in the foreseeable future physical
pain will substantially diminish. Thus, by investing in ergonomics and ameliorating
working conditions inside their distribution centers, companies will manage to extend the
productive lifespan of workers. Based on the above, Tables 1–3 present the bay and rack
constraints based on each slot class and size.

Table 1. Bay Constraints based on Class.

CLASS Bay 1 Bay 2 Bay 3 Bay 4 Bay 5

A
√ √

- - -
B

√ √ √ √
-

C
√ √ √ √ √

Table 2. Rack Constraints based on Class.

CLASS A B C

Rack 5 - -
√

Rack 4 -
√ √

Rack 3
√ √ √

Rack 2
√ √ √

Rack 1 -
√ √

Table 3. Rack Constraints based on Slot Size.

SLOT S2 S 2S

Rack 5
√ √

-
Rack 4

√ √
-

Rack 3
√ √ √

Rack 2
√ √ √

Rack 1
√ √ √

It is worth underlining that the bays’ identification numbers, i.e., 1 to 5, represent the
sequence of bays at each side of an aisle, starting from Bay 1 at the front side next to the
depot, culminating in Bay 5 at the back. So, the bigger the identification number of the bay
is, the longer the travel distance. It is worth mentioning that A-class slots may be located
at more distant bays as long as they are placed in ergonomic racks. On the contrary, “C”
slots can be situated at bays right next to the depot on condition that they are placed at the
least ergonomic heights. Also, with regard to size, 2S slots, i.e., the large sized ones, are not
allowed to be placed in racks above the 3rd one, as they are more likely to accommodate
heavy and bulky products.

4.5. Layout Algorithm

An aisle is visualized as a four-dimensional matrix, notated as

SL(r,x,y,s)

• The first dimension of the matrix (r) can take the values 1 or 2, and represents the
left or right side of an aisle, as perceived by a picker looking at the aisle from the
conveyor side.
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• The second dimension (x) represents the bay number and increases as the picker
progresses along the aisle. Since each side of the aisle has a total of five bays, x takes
values from 1 (closest to the depot) to 5 (farthest from the depot).

• The third dimension (y) represents the rack number in each bay and can take values
from 1 (lowest rack) to 5 (highest rack).

• The fourth dimension (s) represents the ascending number of slots on each rack,
starting from the point closest to the depot. Each rack can accommodate from three
(two 2S and one S2) to nine (S2) slots.

The required number of slots per aisle will be equally divided between its two sides.
However, because the number of some slot types per aisle is not even, the storage as-
signment on the two sides will be different. Table 4 summarizes the location constraints
for each slot type for variables x and y in the SL matrix, i.e., bay and rack, based on the
above-analyzed ergonomic factors.

Table 4. Constraints of X and Y Values.

Slot Type Bay Rack

Xmin Xmax Ymin Ymax
A2S 1 2 2 3
AS 1 2 2 3

AS2 1 2 2 3
B2S 1 3 1 3
BS 1 3 1 4

BS2 1 3 1 4
C2S 1 5 1 3
CS 1 5 1 5
CS2 1 5 1 5

The algorithm receives as input the needed number of each slot type per aisle and the
ergonomic constraints specified above. The process begins with placing the slots on the left
(r = 1) and then on the right side (r = 2) of the aisle.

The order in which slots will be placed is in accordance with Table 4 and, thus, class
“A” will be first, “B” second, and “C” third, since assignment starts from Bay 1. As far as
the slot sizes within each class are concerned, large slots, i.e., 2S slots, will be placed first
followed by S, and finally S2 slots. Large sized slots have a height restriction and, thus,
must be placed before the smaller ones. Also, small sized slots can be placed in the space
left by large- and medium- sized slots.

For each type considered, in order to achieve as much uniformity as possible between
the two sides of the aisle, the condition to be checked for an even number of slots is

NXY_stored <
NXYtot

2
= NXY_max (3)

while, for an odd number of slots, the condition to be checked is

NXY_stored <
NXYtot

2
+ 1 = NXY_max (4)

where
NXY_stored = number of XY slots per side

NXYtot = total number of XY slots per aisle

Conditions (3) and (4) specify that for even numbers, half slots will be stored on the
right and half on the left side. For odd numbers, half slots plus one will be stored on the
left side for as many types as they can fit. As for the rest, one additional slot will be placed
on the right side. The final number of slots per aisle side is presented in Table 5.
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Table 5. Number of slots per aisle side.

Slot Type Left Side Right Side Total Slots per Aisle
A2S 4 4 8
AS 3 3 6

AS2 2 2 4
B2S 10 10 20
BS 16 15 31

BS2 8 7 15
C2S 12 13 25
CS 26 26 52
CS2 21 20 41

For each slot type, following the order above, the algorithm starts by filling all empty
slots starting from the bay closest to the depot, i.e., xmin with respect to the bay and rack
limitations. Then, it moves on to the next bay until it reaches the farthest bay allowed, i.e.,
xmax, or until all slots of the specific type, for the particular side of the aisle are placed.

As far as the racks are concerned, the placement does not necessarily start from the
lowest to the highest rack. As for the large sized slots, which need to be located in low level
racks, the process will be initiated from the lowest (ymin) to the highest rack (ymax). On the
contrary, medium- and small-sized slots are progressively assigned from the highest to the
lowest rack with regard to their respective ergonomic constraints. For this reason, variables
xpr and ypr are used, indicating the bay and rack from which the placement will start.

Starting from the left side of the aisle (r = 1) for the first slot type, the starting point (xpr,
ypr) is assessed. The algorithm examines if there is available length (Lxy_remain) for the slot
under consideration (LSLOT) to be placed in. If there is not, the rack examined is increased
or decreased by one, according to the slot type and the same condition is checked again.

Lxy_remain > LSLOT (5)

In case the available length of a particular rack is sufficient, the slot is assigned there.
The length of the slot at hand is then subtracted from the available length of the rack. Note
that the initial available length for all racks is 1.6 m.

Lxy_remain = Lxy_remain − LSLOT (6)

The number of XY slots stored (NXY_stored) is increased by one.

NXY_stored = NXY_stored + 1 (7)

Finally, the total number of slots available on the specific rack is increased by one. This
step is very important for slot naming which will be conducted after the placement. The
number above is fed in a matrix as

D(r, x, y) = D(r, x, y) + 1 (8)

which represents variable s in the matrix SL(r,x,y,s).
Consequently, conditions (3) or (4) are checked again for the left side of the aisle. In

case the logical condition is true, the process is repeated. However, if the available length
of the initial rack is not adequate, the algorithm proceeds to examine the next rack in order.
If no rack of the bay under examination fulfills this condition, the next bay in sequence is
assessed, starting again from the initial rack. The loop is completed either when all the
slots of a particular type, for the left side, have been placed in a rack, i.e., conditions (3)
or (4) have turned false, or when there is no more space left for the specific slot type, so
until condition (5) turns false for all racks. In such case, the same steps are followed again
for the next slot type in order. Once all nine slot types have been examined, the algorithm
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continues with the right side of the aisle (r = 2), initializing the available rack length and
repeating the whole process for the remaining slots. This way, an “ideal aisle” is created,
which can be reproduced across the picking area.

The same layout design policy was also applied for dynamic slots, where the only
ergonomic factor examined is the rack height since walking is negligible in this case, as
stated in Section 3. However, that configuration is out of scope for this study and is only
mentioned to support the final findings that incorporate products stored in that area.

Next, new names have to be assigned to the altered slot layout. To that end, an
8-number code is used, notated as

AA BB CC DD

The first two numbers represent the number of the aisle, while the second two define
the number of the bay. Note that the value BB can take values between 1 and 10, since there
are 10 bays per aisle and the sequence is diagonal, with Bay 1 being the first bay on the left
side of the aisle, Bay 2 the first bay on the right side, Bay 3 the second bay on the left side
and so on. CC represents the number of the rack, starting from the ground floor, and can
receive values between 1 and 5. Finally, DD is a counter of the consecutive slots in each
rack, starting from the point closest to the depot. The layout algorithm is demonstrated in
the flowchart presented in Figure 6.
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4.6. Optimal Storage Location Assignment

Following the layout redesign, products have to be assigned to their optimal locations
in order to minimize OP time, improve resource allocation, and mitigate the intensity of
physical workload. However, several factors require further examination, as explained below:

• The slot type, which is defined by product popularity class and the size required to
accommodate them.

• The weight of storage units, which is an extremely important factor, since products
with unit weight above 10 kg should not be assigned to racks higher than the 3rd one.

• Equal allocation of workload and transfer orders among aisles, with to the aim of
preventing picker collision.

• The initial storage aisle of each product is the first to be examined, so that the time and
movements needed for transferring the products to their new locations are limited to
the bare minimum.

Knowing the daily turnover value of 5842 SKUs, the total daily orders can be easily
calculated and divided equally among the 40 aisles, considering a maximum margin of
error of 1.26%, found after trials. The maximum transfer orders per aisle are therefore
defined according to the following equation:

Max Transfer Orders per Aisle (Tmax) =
∑5842

1 Turnover Product i
40

(1 + 0.0126) (9)

Applying a random order of the given SKUs, the slot type required for the first product
in line, its initial aisle, and its daily turnover are provided as inputs in the algorithm.
Subsequently, the availability of the demanded slot type is examined for the initial aisle,
followed by checking whether the total transfer orders of the aisle, including the turnover of
the product to be assigned there, exceed the maximum limit or not. After examining these
conditions, all slots are sequentially examined, starting from the first slot of Rack 1 in Bay 1,
until an empty slot of the demanded type is found whereupon the product is assigned and
the available number of its slot type in this specific aisle is reduced by one and registered
as “full” in the system. This way, double entries are prevented and only empty slots
are checked.

However, if the transfer orders of an aisle exceed the maximum limit (Equation (9)) or
there is no empty slot of the demanded type, then the next or previous closest aisle of the
same mezzanine floor is examined. This process continues until the product is successfully
assigned to a location. After completing the loop, the next SKU in line is examined.

4.7. OP Difficulty Ranking System

Considering that ergonomics is hard to quantify, the authors suggest that in order
to compare the initial and improved layout with respect to this metric, the difficulty of
OP should be measured. In this vein, an innovative OP difficulty ranking system was
proposed, according to which, the difficulty of handling each product is rated based on its
daily transfer orders, rack, bay and weight (Table 6), as follows.

Difficulty Ratei = (TOi) ∗ [(DBi) + (DBi) ∗ (WUi) ∗ (AUi) + (DRi) + (DRi) ∗ (Wbi)] (10)

AUi =
di

TOi
(11)

According to Equation (10), there are several factors impacting the difficulty in product
handling. First, a “Bay Difficulty Rate” ranking system is defined (Table 7, since the location
of bays in a picking area determines how difficult it will be for a picker to walk to a slot and
back to the depot, while carrying the average number of units of product i retrieved per
transfer order. Likewise, a “Rack Difficulty Rate” ranking system is defined (Table 8), taking
into consideration the effort required to retrieve a product from a particular rack based
on its storage box weight. Box handling might include replenishing, shifting, opening of
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cartons, moving to reach, and count products etc. Daily transfer orders of the product
under examination are also included in this equation. This is essential, because the more
repetitive a task is, the more difficult it becomes. Thus, the bigger the turnover, the more
times a picker has to handle a particular SKU and as a consequence, the greater his/her
physical fatigue will be.

Table 6. Description of Symbols used in Equations (10)–(12).

Symbol Description

TOi daily transfer orders for product i
DBi bay difficulty rate for product i
DRi rack difficulty rate for product i
Wbi storage box weight for product i
WUi weight of one unit of product i
AUi average number of product i units carried per transfer order

di daily demand of product i in number of units

Table 7. Bay Difficulty Rate Ranking System.

Bay 1 2 3 4 5

Difficulty Rate (DB) 0.5 1 1.5 2 2.5

Table 8. Rack Difficulty Rate Ranking System.

Rack Difficulty Rate (DR)

5 5
4 3
3 1
2 2
1 4

As depicted, the racks have been rated according to the ergonomic constraints pre-
sented in Section 4.4, starting from a minimum value of 1 for the 3rd rack to a maximum of
5 for the 5th one. As far as the bay difficulty rating values go, it was decided by the authors
for them to be exactly half of the respective rack difficulty rating values, since according
to the existing literature on this topic [58], walking is the least intense activity a picker is
required to perform. Hence, the closer the bay is to the deposition point, the lower the
difficulty rate, starting from 0.5 for the 1st bay and reaching up to 2.5 for the 5th one.

For the SKUs stored in dynamic slots, a different formula was developed based on
the same variables and rating system as Equation (10). Again, for the reasons mentioned
above, only the ergonomics pertinent to racks are considered. Thus, Equation (10) is
transformed into

Difficulty Ratei = (TOi) ∗ [(DRi) + (DRi) ∗ (Wbi)] (12)

Considering Equations (10) and (12), the “Total Difficulty Rate” is defined as

Total Difficulty Rate = ∑5842
1 Difficulty Ratei (13)

5. Results

Following the analysis presented in Section 4.2, the first metric to be examined is
the categorization of products into the three classes based on their daily transfer orders.
Therefore, class “A” accounts for 16% of the total SKUs and 55% of the total daily transfers.
Correspondingly, the percentages referring to class “B” amount to 31% and 33%, while
class “C” percentages are complementary, as depicted in Figures 7 and 8.
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Considering the constraints presented in Section 4.4 and the layout algorithm for
developing an “ideal aisle” described in Section 4.5, the resulting storage layout is demon-
strated below.

As can be clearly noticed, the produced layout, which can be rightfully described as a
flame-shape, has each class encircled by the next one. Figure 9 represents the left side of the
“ideal aisle”, as perceived by a picker standing between the two sides of racks. In this case,
the conveyor is located at his/her left side. Respectively, Figure 10 illustrates the right side
of the “ideal aisle”. With respect to the ergonomics constraints, A-class slots are located
only in the 2nd and 3rd rack, occupying space up to the 2nd bay. It is worth mentioning
that even though “A” slots in Bay 2 are not located right next to the depot, their rack level is
significantly more ergonomic than the 1st or 4th rack of Bay 1, where they would be placed
instead, according to the traditional strategy (Figure 5). “B” slots are assigned around “A”
slots starting from Bay 1, where they occupy moderately ergonomic racks, and progressing
up to Bay 3, where they are spread across all allowed racks. “C” slots can be found in any
bay or rack, even next to the conveyor belt, at the least ergonomic height, i.e., the 5th rack.
This way, the common perception which suggests that fast-moving products should always
be placed near the depot and slow-moving ones at the back of the aisle, can be brought
down, as it only considers travel distance while overlooking the importance of retrieving
effort and physical fatigue. Finally, it is important to highlight that under no circumstances
can large volume slots (2S) exceed the 3rd rack, as they can potentially contain heavy and
bulky products.
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This placement not only decreases picking effort, from an ergonomic point of view,
but it also reduces total picking time since pickers can perform repetitive tasks faster and
more efficiently throughout their daily work shift. Following the implementation of the
proposed storage layout, the company’s WMS reported a notable productivity growth by
14.9%. In particular, the transfer orders performed by a picker in one hour increased from
94 to 108.

Considering the distribution of transfer orders among the aisles, the initial sys-
tem presented major discrepancies, with total daily orders fluctuating between 70 and
350 (Figures 11 and 12). These conditions created considerable operational problems in
several aisles, where picker congestion obstructed material flow, leading to surges in
picking time and effort. By applying the optimal storage location assignment strategy
presented in Section 4.6, products were allocated not only based on their slot type but also
the maximum number of orders allowed per aisle, hence, resulting in equally distributed
workload (Figures 13 and 14). It is worth noting that the increase in total orders, which can
be observed in the improved system, is completely justified, since the products transferred
from dynamic to static slots are also taken into consideration as a consequence of the
slotting redesign.
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Additionally, taking into consideration the aisle where each SKU was initially located,
the needed transfers of products to new aisles were limited down to the bare minimum, as
the primary aisle was the first to be examined for slot availability. Only 18% of products
were assigned to new aisles, while only 1% had to change floors. Lastly, 8% of all processed
SKUs were transferred from dynamic to static slots, 5% from static to dynamic ones and,
hence, 87% of the products maintained their initial storage area.

Finally, as far as the ergonomics improvement goes, after comparing the “Difficulty
Rate” of OP for the initial and improved system, it was observed that it plunged by
31% (Table 9).

Table 9. Ergonomics Improvement.

Storage System Difficulty Rate

Initial 994,121.69
Improved 682,525.12

Change Percentage −31%

6. Conclusions

OP is a labor intensive activity which is still conducted manually in the vast majority
of contemporary warehouses. Research has been focusing on decreasing OP time by
minimizing travel distance in order to reduce OP expenses, which comprise a substantial
part of a warehouse’s overall operating costs. Although the need of integrating human
factors into design models has been challenging scholars for many years, only a few
academic studies focus on enhancing OP performance by alleviating workers’ physical
fatigue. To that end, this paper aims to address the aforementioned research gap by
introducing a layout design and storage assignment model for OP with respect to ergonomic
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criteria. The proposed method was implemented in the distribution center of a major
retail corporation which offers more than 50,000 different SKUs in total. Approximately
6000 SKUs were examined in the current study, which were divided into nine storage
types based on their popularity class, i.e., A, B, and C, by applying Pareto’s principal. The
volume of each slot was determined based on the retailer’s decision to maintain adequate
inventory levels for seven days, with no replenishment needs in the meantime. After
categorizing products into classes, the layout design was developed to meet the system’s
needs in terms of slot types, followed by products’ optimal assignment into slots based
on their individual characteristics, i.e., daily transfer orders, demand, weight, and initial
aisle while targeting equal workload distribution among aisles to avoid picker collision.
Finally, by utilizing the proposed OP difficulty ranking system, the initial and improved
storage layouts were compared. Based on the above, this case study introduces a new
layout type, the flame-shape, according to which fast-moving products should be placed not
only closer to the depot, compared to slow-moving ones, but also in efficient height levels
that will not force pickers into strenuous and repetitive body movements. Vice versa, this
new layout dictates that less popular goods are eligible for being assigned to slots right
next to the depot, under the condition of being placed in less ergonomic racks. Following
the proposed method’s implementation, a productivity rise to 14.9% was observed and
equal distribution of transfer orders into aisles was achieved, with a maximum variation of
1.26%, as well as a decrease in difficulty levels by 31%.

It is beyond the shadow of a doubt that this study, in spite of its merits, has its fair share
of limitations. First, the proposed method is customized based on the layout configuration,
OP methods, capacity, and requirements of the particular distribution center. Thus, future
research may extend its application in different storage configurations, covering broader
product characteristics and dimensional restrictions. In this direction, the proposed algo-
rithm could be adjusted accordingly to be able to take as input variables the aforementioned
factors, which were constants in the current case, and, therefore, be used by any distribution
center. Second, the difficulty ranking system, and, more precisely, the generated difficulty
rates were defined empirically, through observation and interviews with pickers as well as
academic sources. On those grounds, future studies could incorporate alternative methods
for measuring physical effort, such as electromyography techniques monitoring muscular
stress, the energy expenditure model proposed in [57], and devices recording heart rate or
oxygen consumption. Last but not least, the correlation between SKUs could be considered
in future works, for instance, by placing products that appear often in same orders near
one another with the aim of maximizing OP efficiency.
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