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Abstract: Background: The new demands of the current market including for space should be satisfied
by designing modern material flow systems. Designing warehouses using effective material handling
equipment significantly supports cost reduction and efficient space utilization. Sequencing of items is
an important process that leads to enhanced logistics operations. Current approaches are not capable
of fully fulfilling dynamic changes. Methods: In this paper, a puzzle-based sequencing system with
a high density and highly efficient floor space utilization was successfully developed. Accordingly,
two solving methods were investigated: game tree and pathfinding algorithms. A-star was chosen
based on pathfinding algorithms in order to find the shortest solution of the puzzle in which the
sequencing time was decreased. The pre-sorting strategy was proposed to overcome the unsolvable
configuration issue that cannot be solved by the aforementioned methods. Moreover, the shape of the
puzzle was considered. Results: Based on numerical calculations, we found that a square shape was
better than a rectangle in terms of solution steps, and we confirmed the direct relationship between
the aspect ratio and rectilinear distance, which directly affects the pre-sorting steps. Conclusion: Our
results prove that the puzzle-based sequencing system should be highly preferred for effective floor
space utilization compared to the current systems.

Keywords: sequencing; 8-puzzle; A-star algorithm

1. Introduction

Logistics operations can be elucidated by several fixed assets: warehouses, depots,
transport, and material handling. The number and size of these assets are important factors
in effective logistics planning [1]. The capital and operating costs of warehouses embody
23% of logistics costs in the U.S., and 39% in Europe [2]. Two types of warehouses can be
categorized: distribution warehouses, where the products are collected from the point of
origin for delivery to consumers, and production warehouses, where the raw materials
and semi-finished products of production facilities are stored [3]. The proper design of
warehouses is one of the most important factors affecting space utilization, efficiency, and
cost [4,5]. The effective use of space is a goal for almost every company located near
population centers, where high space charges and limited availability of real estate are the
main concerns [6]. Smaller warehouse systems decrease the overall costs, since they are
less expensive to build [7].

Material handling is the movement of raw materials and semi-finished and finished
products to and from productive processes, in warehouses and receiving and shipping
zones [3], and its activities consume 20% to 50% of the total operating costs. Effective
material transport equipment such as rollers, wheels, and sorting conveyors lead to sig-
nificant cost reductions and efficient space utilization [8,9]. For efficient warehousing (i.e.,
put-away, storage, and order picking), an automatic store and retrieval system (ASRS) is
typically used [10]. In an ASRS, cranes operate in parallel and feed the pallet building
workstation; therefore, the robotic palletizer receives a random sequence of items that
should be re-sequenced [11]. Referring to the systems that are applied in real-world ware-
houses, the items are mostly released from ASRS in random sequence [12,13]. Thus, they
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need either optimized release (which is still under research and development [13]) or item
re-sequencing after retrieval for better performance, especially during peak-hours, where
a lack of workforce and other new technologies are highly required at the packing stations
for timely release of the lanes.

Furthermore, mixed model assembly lines have become common in the automotive
industry, and the efficiency of the final assembly depends on the sequence of vehicles being
built [10]. Typically, two types of systems are used to re-sequence the incoming random
items: (a) a temporary storage system that uses parallel lanes [10], and (b) a sortation
conveyor, where the items keep looping until they are in the desired sequence [14]. Poor
floor space utilization is one of the disadvantages of such systems [11]; therefore, a material
handling device with a high-density system is required. Generally, the term density in
logistics is used for storage density, which is the ratio of the space dedicated for storage
to the total storage space including locations such as aisles [15]. However, in this paper,
we defined the density as the areal density, which is the ratio of items to the total material
handling device space.

Many studies have considered high-density systems in order to enhance the efficiency
of logistics processes. The sliding puzzle was invented by Sam Loyd in the 1870s [7], and
is also known as the 15-puzzle, and later, the general version (n2 − 1) became a popular
and interesting subject for logistics researchers, especially in developing storage systems.
Gue [6] developed a new concept based on a puzzle game: a very high-density storage
system (HDSS) for physical goods with an efficient algorithm for filling densely rectangular
storage areas. Later, Gue and Kim [7] developed an algorithm for the retrieval of items
in a puzzle-based storage system (PBSS). They experimentally compared puzzle-based
with traditional aisle-based storage. The results showed that the puzzle-based system
was superior, with multiple escorts regarding the retrieval time, if the storage density
was less than 90%. In [16], Kota et al. extended the analytical results of retrieval time in
PBSS to determine the retrieval time performance when multiple escorts are randomly
located within the system. The GridStore system was developed by Gue et al. [17] in
order to overcomes the inflexibility of automated material handling systems for HDSS by
implementing decentralized control. In GridStore, an arbitrary number of requests could
be retrieved by allowing simultaneous item moving. The major drawback of this system
is the capability of delivering items to only a single side. However, Uludag [18] solved
this limitation by developing a puzzle-based order picking system called GridPick. In the
GridPick system, the orders can be picked from two sides of the grid, allowing for higher
throughput and an improved use of space compared to single-sided systems. A further
improvement was achieved by Gue and Hao [19]. They developed a new system called
GridHub, which was able to transfer orders in four directions simultaneously within the
grid. Subsequently, Hao [20] developed the NU GridHub system to handle bigger boxes
in which one box can occupy more than one conveyor module. Further modification of
GridHub was conducted by Ashgzari and Gue [21]. In the new method, GridPick+, several
limitations of GridPik were addressed. For instance, GridPick+ allowed the requested
items to be delivered into specific picking positions on the edge of the grid. Moreover, the
use of the sequencing function allowed multiple orders to be processed simultaneously.
An algorithm for moving several items at the same time in grid-based storage was designed
by Yalcin et al. [15] by avoiding the items’ conflict. Their experimental results demonstrated
that for storage, the pushback strategy achieved the shortest time and distance, and the
puzzle-based retrieval strategy was most efficient. Yalcin et al. [22] also addressed the
problem of item retrieval from puzzle-based storage with a minimum number of item
moves. In this work, they proposed an exact search algorithm with several search-guiding
estimate functions. Additionally, they discussed the configurations with multiple empty
cells located in the grid with different grid sizes.

In recent research, Shirazi and Zolghadr [23] developed an algorithm for item retrieval
for HDSS. This method guaranteed the deadlock freeness in the algorithm and discussed
different puzzle sizes with a dissimilar number of empty cells. It was observed that
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increasing empty cells up to three cells will increase the average retrieval movement,
while increasing the empty cells above three will decrease the average retrieval movement
sharply. Further research was carried out to formalize arranging smart boxes into an
autonomous delivery vehicle [24]. The authors proposed the snake-line concept utilizing
the puzzle arrangement to find the tradeoff between space and access rapidity and were
able to guarantee the boxes moving continuously with minimum movement.

The system we proposed in this paper was compared with the high-density systems
described in the literature, as illustrated in Table 1. The used system, function, contribution,
and system areal-density are listed in the table to distinguish these works.

Table 1. Comparison among the proposed system and other high-density systems from the literature.

Paper System Function Contribution System Areal-Density
for 35 Boxes

Gue and Kim [7] NAVSTORS
system Storing, retrieval

Describe the relationship
between storage density and

expected retrieval time
94.4% with two escort

Gue et al. [11] GridSequence Sequencing High density, decentralized
control algorithm 72.9%

Kota et al. [16] Puzzle-Based
system Storing, retrieval

Determine the retrieval time
performance for multi-escorts
randomly located in the grid.

94.4% with two
escorts 1

Gue et al. [17] GridStore system Storing, retrieval Retrieve several items by
allowing simultaneous moving ≤94.4% 1

Uludag [18] GridPick Storing, retrieval Higher throughput, retrieve
items to two sides of the grid ≤94.4% 1

Gue and Hao [19] GridHub Storing, retrieval Transfer orders in four directions
simultaneously within a grid

≤95.45% 2≤94.44 for
36 boxes

Hao [20] NU GridHub Sorting, sequencing Delivers requested items in the
desired sequence to any location 56.25% for 36 boxes

Ashgzari et al. [21] GridPick+ Storing, retrieval Increasing in throughput by 77% -

Yalcin et al. [15] Grid-based
system Storing, retrieval

Framework for the efficient
storage and retrieval of items

based on a multi-agent
routing algorithm

Up to 100%

Yalcin et al. [22] PBS system Items retrieval Retrieve items with a minimum
number of items moves ≤94.4% 1

Shirazi et al. [23] PBS system Items retrieval Deadlock prevention algorithm Up to 97.2% 1

Tetouani et al. [24] Puzzle-based
system

Rearrangement while
Routing” strategy

Formalize arranging smart boxes
in an autonomous
delivery vehicle

97.2%

Proposed method
Puzzle-based
sequencing

system
Sequencing

High-density sequencing system,
address unsolvable puzzle

configuration
97.2%

1 Since these systems involve the puzzle-based concept, the areal-density is calculated as (nc − e)/nc, where nc is the number of grid cells
and e is the number of empty spaces in the grid. 2 One rule of GridHub is that at least one empty module has to be in each column or row,
and their experiment was set as a grid with 22 columns and 11 rows.

Although several studies have considered high-density and puzzle-based systems
with their applications, most of them have focused on storage and item retrieval. In
these systems, the items are retrieved in the desired sequence. However, under batch
and/or zoning picking policy, which is applied in most online retailers’ warehouses,
items necessitate further processes such as consolidation and sequencing [13]. To the
authors’ best knowledge, very few contributions have been published in the literature
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that have addressed the issue of item sequencing, for instance, GridSequence, which was
developed by Gue et al. [11]. The proposed system could re-sequence incoming items to
feed a palletizing robot with the required sequence. The GridSequence system consists
of a puzzle grid with (n × m) dimensions, plus one additional row and one additional
column; thus, the whole system dimensions are (n + 1) × (m + 1). The authors showed the
effect of the aspect ratio on the sequencing time in the experimental results, and suggested
that the aspect ratio should be at least 10. Furthermore, adding one more additional column
to the center of the grid can positively affect the system. The major drawback of this system
is low space utilization, since adding rows and columns will occupy more spaces out of the
grid, and decrease the density. A lower density means higher empty spaces in the grid,
and an increase in the floor space usage. Thus, the density plays a key role in evaluating
the utilization of floor space of warehouses (storage and other functions) in urban areas
where the limited space should be utilized efficiently.

The puzzle-based sequencing system was further compared with the GridSequence
system developed by Gue et al. [11] with respect to the density ratio, in order to evaluate
the utilization of floor space in the sequencing system. The density can be calculated as
(nc − e)/nc, where nc is the number of grid cells and e is the number of empty spaces in
the grid, which is 1 in the case of Sam Loyd’s puzzle [7]. In the puzzle-based system, nc is
calculated as (nc = i + 1), where i is the number of items that need to be sequenced. In
the GridSequence system nc is calculated as (n + 1) × (m + 1), where (I = n * m), and e is
calculated as (e = nc − i). Table 2 illustrates the density ratios in the puzzle-based system
versus the GridSequence system for sequencing 8, 15, 24, and 35 items.

Table 2. The density ratio in a puzzle-based system vs. a GridSequence system.

Number of
Items (i)

Puzzle-Based System
Density = (nc − e)/nc

GridSequence System
Density = (nc − e)/nc

8 nc = 9, e = 1 88.8% nc = 15, e = 7 53.3%
15 nc = 16, e = 1 93.7% nc = 24, e = 9 62.5%
24 nc = 25, e = 1 96% nc = 35, e = 11 68.5%
35 nc = 36, e = 1 97.2% nc = 48, e = 13 72.9%

As shown in Table 2, the puzzle-based system can provide a higher density than the
GridSequence system. Better space utilization is quantified, with a practical example; to
sequence 35 boxes with sizes of 35 cm × 35 cm = 0.1225 m2, GridSequence would occupy
5.88 m2, while the proposed puzzle-based would occupy 4.41 m2. Therefore, a puzzle-based
sequencing system is recommended to reduce the space as well as reduce the cost.

The contribution of this paper is twofold. First, we realized a high-density sequencing
system based on the puzzle movement concept, with highly efficient floor space utilization
concerning the minimum item movements. These points are directly related to better
energy efficiency and, consequently, to lower operational costs. Second, we propose a pre-
sorting strategy to overcome the unsolvable configurations of the puzzle, which obstruct
the operational process. The analysis here carried out represents a tool for improving the
warehouse activities in terms of both space utilization and time-consumption, in addition
to minimizing the workforce.

The rest of this paper is structured as follows. Section 2 presents a puzzle-based
system and solving methods, followed by a description of the A-star algorithm and puzzle
solvability condition. In addition, a proposal to overcome unsolvable scenarios is presented
in this section. A comparison between different shapes of the puzzle, with a discussion of
the factors that affect the number of solution steps, is presented in Section 2. The results
and discussion are provided in Section 3. The conclusions are given in Section 4.
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2. Puzzle-Based System
2.1. Sliding Puzzle

A sliding puzzle is a single-agent sliding game consisting of (n × m) − 1 tiles and
one blank, distributed in an (n × m) grid. The process for solving this is to rearrange
a random configuration of numbers in the initial state by sliding the blank tile in one of
four allowable moves (Up, Down, Right, and Left) to reach the goal state, which is the
proper sequence of numbers [25], as shown in Figure 1.
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There are different shapes for such a puzzle. The (n2 − 1) puzzle is a specific type,
where the board is square (n × n) with (n2 − 1) numbered tiles and one blank [26]. The
8-puzzle is one of the most famous (n2 − 1) puzzles. The 15-puzzle and 24-puzzle are
extended versions of the 8-puzzle. In the 8-puzzle, there are 9! = 362,880 different configu-
rations, and only half of them are solvable [27]. Many researchers are interested in methods
to solve such puzzles with the fewest moves (the shortest path to the solution).

2.2. Puzzle Solving Methods

There are two typical methods for finding the shortest path to the solution: game tree
and pathfinding algorithms.

2.2.1. Game Tree

This method creates a tree of all configurations (states) that can be generated for
the puzzle, and finds the target configuration in this tree. In the game tree, all states are
represented by nodes, and the depth of the tree denotes the number of solution steps. The
procedure is as follows:

1. Start tree creation from the target state;
2. Find the input node (the initial configuration) in this tree;
3. Track the path which leads to the initial node.

The game tree method could guarantee finding the shortest path to the solution.
However, we might face two problems: the huge number of states that could be generated,
and the scenario of searching for different targets (specific configurations).

(i) The huge number of states

Equation (1) provides the total number of nodes that could be generated in the tree
for the 8-puzzle:

NStates = 1 +
d

∑
i=1

bi , (1)

where NStates is the total number of states in the tree; b is the branching factor; and d is the
depth of the tree. The branching factor is the number of nodes that could be expanded
from the previous node in the tree. Figure 2 shows the concept of branching factor of the
8-puzzle.

From Figure 2, the branching factor was about 3 (when the blank tile is in the corner,
there are two possible moves; when it is along edges, there are three; and when it is in
the middle, there are four). Regarding the depth, Figure 3 illustrates the histogram of
the solution steps for all solvable configurations of the 8-puzzle as well as the Probability
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Density Function (PDF) for a normal distribution. We obtained an average solution depth
of 22. The same result was confirmed with the work by Reinefeld [28].
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Referring to Equation (1), the number of nodes that could be generated for depth 22
and branching factor 3 is 3.13× 1010 nodes. This huge number of nodes not only requires
time to be generated, but is also inefficient in terms of memory [29]. By tracking the
repeated states, we cut the tree down drastically into 9!/2 = 181,440 nodes.

(ii) Searching for different targets

In the case of different targets, we needed to generate a tree of nodes for each goal.
Thus, we had to generate 9! = 362,880 trees and about 13.16× 1010 nodes in total. One pro-
posal to overcome the problem associated with generating such a huge number is to search
for input state in the current tree using the following steps:

1. Change the desired target to the target in the current tree;
2. Apply the same changes to the input;
3. Find the new input in the current tree.

Figure 4 shows the proposal for searching in the current tree.
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Since tiles changing might give unsolvable configurations, this method will not work
for all the cases in our system. The solvability of the puzzle is an important concept,
therefore, the solvability condition will be discussed in Section 2.3.

2.2.2. Pathfinding Algorithms

To reach the puzzle solution, pathfinding algorithms can be applied by creating
a tree of puzzle configurations (nodes), starting from the initial state until the goal state
is matched, and then tracking back to the path, which leads to the goal. When reaching
the goal state (node), the process of node creation will stop; therefore, generating a huge
number of nodes can be avoided. There are two different types of pathfinding algorithms:

(i) Uninformed algorithms (blind algorithms)

Such algorithms work without using any external information to guide the agent
to reach the goal state. Breadth-first search (BFS), depth-first search (DFS), and iterative
deepening depth-first (IDDF) are some such algorithms [29,30].

(ii) Informed algorithms

In these algorithms, some information can be used to lead the algorithm and direct
it to achieve a better performance. Greedy, A-star (A*), and the iterative deeping A-star
(IDA*) algorithm are the most common pathfinding algorithms [29,30].

Among the algorithms that extend search paths from the root, A-star is optimally
efficient [30,31]. Hence, A-star was the core algorithm in this study.

2.3. A-Star Algorithm

In the A-star algorithm (A*), the nodes can be evaluated using the cost function
(function (Equation (2)), which is the sum of two factors: the heuristic function, which
estimates how close the current node is to the goal, and the cost from the initial node to the
current one [32].

f(n) = g(n) + h(n), (2)

where f(n) is the evaluation function for the A* algorithm; g(n) is the cost from the initial
node to the current node n; and h(n) is the estimated cost from the node n to the target.

The estimation function used in this research was the Manhattan distance, since it
showed better performance for the informed search techniques [29,31]. The Manhattan
distance or city block distance is the absolute vertical and horizontal distance between the
tile in the current configuration and its appearance in the goal configuration. Figure 5 shows
the layout of the A-star algorithm for solving the n-puzzle with the fewest solution steps.

The A-star algorithm allows us to avoid many nodes that should not be selected,
avoiding the waste of time caused by searching a large number of useless nodes. The whole
search process has strong directionality [33]. Figure 6 illustrates the implementation of the
A-star algorithm for the 8-puzzle.
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The conditional sentences in Algorithm 1 describe the implementation of the A* algorithm.

Algorithm 1: A* Implementation for 8-puzzle

1: if solvable then
2: Check Manhattan distance
3: else
4: End Algorithm
5: Repeat until finding the target
6: if Manhattan 6= 0 then
7: Find a blank
8: Perform Procedure switching blank
9: Search for minimum cost
10: else
11: Input is the target
12: end if
13: end repeat

The procedure of switching the blank with neighbors in order to generate branch
nodes is described as Algorithm 2:

Algorithm 2: Procedure: Switching blank

1: if blank in a corner then
2: Repeat 2 times: switch blank
3: else
4: if blank in along edges then
5: Repeat 3 times: switch blank
6: else
7: if blank in the middle then
8: Repeat 4 times: switch blank
9: end if

Switching blank involves three steps:

• Switch blank with a neighbor;
• Increase the depth (level in the tree which denotes the solution steps) by 1;
• Recalculate Manhattan distance.

2.4. Solvability Condition

The solvability can be checked by the inversion, which indicates that a pair of tiles
in the current state is in reverse order of their places in the goal state. When the number
of inversions is even, the puzzle is solvable; otherwise, it is unsolvable [34]. For example,
if we have an 8-puzzle with the following configuration state (2, 1, 5; 4, blank, 3; 8, 6, 7),
regardless of the blank, the inversion is calculated as follows:

The Investigated Tile Tiles Follow the Investigated Tile Number of Inversions

2 1 1
1 - 0
5 4 and 3 2
4 3 1
3 - 0
8 6 and 7 2
6 - 0
7 - 0

Total inversions 6
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The total inversions are six, which is an even number. Thus, the example configuration
is solvable.

Proposal for the Solvability Problem

As mentioned before, the 8-puzzle has 9! different configurations, and only half of
them are solvable. Since the state configurations in practical implementation in the ware-
house are random, we will not be able to carry out sorting for unsolvable states (9!/2 states
in the case of the 8-puzzle). Therefore, we need a scenario in which all states of the puzzle
are solvable. In order to build such a scenario, we provided a pre-sorting strategy.

The products moving to the sorting area enter in a random configuration, which
might be an unsolvable configuration. Therefore, we have to pre-sort the products on the
sequencing board so that the pre-sorted configuration is a solvable one. The pre-sorting
process is as follows:

1. Check the solvability by calculating the inversion number;
2. In case of an odd number of inversions, move the first six tiles to their specific

positions on the sequencing board;
3. Switch the last two tiles on the board.

Figure 7 shows a flowchart of the pre-sorting process, and Figure 8 shows an example
of the pre-sorting process for an unsolvable input configuration.
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2.5. Board Shape

Different shaped boards can carry out the sequencing task. Therefore, four different
sizes with two shapes were discussed with the same number of tiles. A 2 × 3 puzzle has
6! = 720 states, and half of them are unsolvable. By keeping the blanks in the corner of the
puzzle to satisfy the reality of practical implementation in the warehouse, we reduced this
to only 60 solvable states. For the same input and output configurations, all 60 states were
examined, as shown in Figure 9.
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Figure 10 illustrates the effect of different board shapes and sizes of the puzzle on the
solution steps. The results of Figure 10 are summarized in Table 3.
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Table 3. Comparison of the performances of a 3 × 3 puzzle with different board sizes and shapes
regarding the solution steps.

3 × 3 Better [%] Same [%] Worse [%]

vs. 2 × 3 61.6 38.4 0
vs. 2 × 4 58.3 41.7 0
vs. 2 × 5 58.3 41.7 0

From the table, the 3 × 3 board showed a better performance than the 2 × 3, 2 × 4,
and 2 × 5 boards by 61.6%, 58.3%, and 58.3%, respectively. One of the reasons for these
results is the difference in the number of blanks in the different shapes and sizes of the
puzzle. In a scenario where the same size puzzle has the same number of blanks, many
factors affect the number of steps for different shapes.

2.5.1. Branching Factor

The branching factor is the number of states that can be generated from each state
in the tree. Usually, the branching factor measures the space complexity of the searching
algorithm. The higher the branching factor, the lower the overhead of the repeatedly
expanded states [31]. In our case, the analyzed data were generated from the target state,
where we used the opposite concept of the branching factor. If the branching factor is
higher, more states would be generated for a specific level in the tree (the level denotes the
solution steps). Figure 11 illustrates an example of the effect of the branching factor on the
number of generated states at the same level in the tree.
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Figure 11. The effect of the branching factor on the number of generated states in the same level.

In Figure 11, two different shapes are illustrated, and we note that in level 3 (three steps
to the solution), the square shape had more generated states than the rectangular one due
to the difference in the branching factor. Figure 12 shows the average branching factor for
both shapes discussed in the previous example.
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2.5.2. Maximum Rectilinear Distance of One Tile

We suggest Equation (3) for calculating the maximum steps of a tile:

rd = (L + W)− 2, (3)

where rd is the maximum rectilinear distance of the tile; L is the length of the board; and W
is the width of the board.

A smaller distance for one tile results in a better board, since it decreases the number
of initial steps of the pre-sorting process. Figure 13 illustrates the maximum distance that
the tile can move.
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From Figure 13, we noted that different board shapes could have the same rd. With
this in mind, we compared the performance depending on the maximum board capacity,
as illustrated in Table 4.

Table 4. Comparison of different board shapes and sizes of puzzles, and the max. capacity in the
case of the same rd.

Max. Rectilinear Distance of One Tile Max. Capacity Board Size

4
7 2 × 4
8 3 × 3

5
9 2 × 5
11 3 × 4

6
14 3 × 5
15 4 × 4

7
17 3 × 6
19 4 × 5

8
20 3 × 7
23 4 × 6
24 5 × 5

9 23 3 × 8

10 26 3 × 9

From Table 4, we concluded that in the case of rd, being the same for different board
sizes and shapes, square puzzles provide more capacity than rectangular ones.

3. Results and Discussion

In this section, we numerically show how the shape of the puzzle affects the solution
steps. Then, we investigate some factors affecting the pre-sorting steps, which will affect
the overall steps of the operation.

In order to generalize the comparison of different shapes of the puzzle, the same size
and number of blanks were used. First, we investigated the 16-boxes size of the puzzle.
This size can sort 15 boxes with two different shapes (4 × 4 and 2 × 8). As Figure 14 shows,
we generated 2 × 105 non-random states for both shapes, starting from the target state.
Figure 14 illustrates the performance of the generated states regarding the solution steps.
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To verify the validity of our method to generate the state tree, we compared our
8-puzzle tree with other works regarding the following factors: maximum number of states,
maximum solution steps, and average solution steps. Table 5 illustrates the comparison
between our results for the 8-puzzle with others.

Table 5. Our generated tree for the 8-puzzle vs. other works.

Comparison Factor Our Generated Tree Other Works [25,28,35]

Maximum number of states 181,440 181,440
Maximum solution steps 31 31
Average solution steps 21.97 ≈22

According to Table 5, we were able to validate our method, and the same program
was used to generate the 2 × 105 states for different shapes in this section.

In the generated tree of 16-boxes size of the puzzle, we noticed a clearly significant
difference in the state numbers of the two puzzles in the same tree depth (solution steps).
In other words, states in one shape of the puzzle need more solution steps than the second
shape. The equation that describes the number of states that need more solution steps is
as follows:

N =
Smax.2

∑
i=Smax.1+1

Ni, (4)

where N is the number of states that need more solution steps; Smax.1 is the maximum
solution steps of the first shape; Smax.2 is the maximum solution steps of the second shape;
and Ni is the number of states in depth i.

According to Equation (4), for all generated states, 88.35% of states could provide
fewer solution steps in the 4 × 4 board than in the 2 × 8 for the 2 × 105 states. Furthermore,
Equation (5) provides an increasing percentage of solution steps for different shapes.

Splus =
|Smax.1 − Smax.2|

Smax
× 100%, (5)

where Splus is the increasing percentage of solution steps; Smax.1, Smax.2 are the same as in
Equation (4); and Smax is the total solution steps. Based on Equation (5), the results prove
that the 4 × 4 board achieved 23.8% of steps better than the 2 × 8 board at 2 × 105 states.
Overall, when increasing the number of states in both given boards, the 4 × 4 board
performed better than the 2 × 8 board in terms of the number of steps.
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Next, we considered a 36-boxes size of the puzzle, which can sort 35 boxes. In this
case, there are four different shapes (6 × 6, 4 × 9, 3 × 12, and 2 × 18). The same analysis as
in the previous case with the size of 16-boxes was carried out. Figure 15 shows the solution
steps of all states with the same number of boxes for different shapes.
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We observed the same trend in Figure 14 for our 16-boxes size of the puzzle in
Figure 15. For all generated states, and referring to Equation (4), we confirmed that 44.63%,
76.60%, and 96.92% of states provided fewer solution steps in the 6 × 6 board than in the
4 × 9, 3× 12, and 2× 18 boards, respectively. Moreover, from Equation (5), the 6 × 6 board
provided 7.14%, 13.33%, and 31.57% steps fewer than the 4 × 9, 3 × 12, and 2 × 18 boards,
respectively. From these results, we deduced that the square shape of the puzzle had
a better performance than the rectangular shape. However, more analyses are necessary to
verify how the pre-sorting steps for different shapes will affect the overall solution steps.

The pre-sorting process plays a key role in the whole sorting system in practical
implementations. Therefore, we considered several factors that can affect the pre-sorting
steps, for instance, the rectilinear distance of one tile.

As mentioned in Section 2.5.2, the puzzle shape affects the rectilinear distance of one
tile, rd as well as the number of initial steps in pre-sorting. Figure 16 illustrates the initial
steps to fill in the sequencing board with different sizes and shapes concerning rd.
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As is clear from Figure 16, increasing the rectilinear distance of one tile will also
increase the pre-sorting steps. However, a reasonable question arises when dealing with
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different shapes: how does the Aspect Ratio (AR) of the puzzle affect the performance in
terms of solution steps? To answer this question, we investigated the relationship between
the aspect ratio and rectilinear distance.

The Aspect Ratio is the number of columns divided by the number of rows of the
puzzle, and this has a direct effect on the rectilinear distance of one tile, rd, and further
on the pre-sorting steps. Table 6 illustrates the corresponding rd of the aspect ratio for the
different puzzle shapes and sizes outlined previously.

Table 6. Aspect Ratio and rectilinear distance of one tile for different puzzle sizes.

Puzzle Size Aspect Ratio Rectilinear Distance

4 × 4 1 6
2 × 8 4 8
6 × 6 1 10
4 × 9 2.25 11

3 × 12 4 13
2 × 18 9 18

According to Table 6, we confirmed the direct relationship between the aspect ratio
and rectilinear distance. Thus, a smaller AR reduces the rd, which also reduces the pre-
sorting steps.

From all results illustrated in this study, we concluded that the square puzzle was
the most efficient shape in our sequencing system. However, the research findings have
a number of possible limitations, namely the puzzle capacity. The maximum capacity
of the puzzle is restricted by the size of the board. In fact, a high number of tiles would
lead to an unreasonable search time and number of steps. Multiple solutions could solve
this limitation such as (a) using multi-puzzles of the same size for one line, and (b) using
a buffer-line along with input-line to temporarily store the extra items. These scenarios are
still under investigation.

4. Conclusion

Item sequencing has become necessary in order to increase the efficiency of logistics
operations. In this study, we focused on the material handling devices that could carry
out the sequencing task. We developed a puzzle-based sequencing system with highly
efficient floor space utilization. Different searching techniques were discussed, and the
A-star algorithm was chosen to find the shortest solution for the puzzle. Furthermore,
a pre-sorting process was proposed to overcome unsolvable configurations. In the pre-
sorting process, we switched the last two items; therefore, different filling-in processes
might affect the overall steps to reach the final goal of the puzzle.

Two shapes of puzzle with the same size were considered to achieve the minimum
number of solution steps. The results clarified a different number of states in the same
level of the generated tree for both shapes with different sizes. For different puzzles, if we
give a random state, there is a high probability that it will be in the tree with the higher
number of states in the same level. Based on the results of the numerical calculations, it can
be concluded that a square shape can provide a shorter solution than a rectangular shape.
The findings suggest that a puzzle-based sequencing system would be preferred for highly
efficient floor space utilization.
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