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Abstract: A data-driven approach in production logistics is adopted as a response to challenges
such as low visibility and system rigidity. One important step for such a transition is to identify
the enabling technologies from a value-creating perspective. The existing corpus of literature has
discussed the benefits and applications of smart technologies in overall manufacturing or logistics.
However, there is limited discussion specifically on a production logistics level, from a systematic
perspective. This paper addresses two issues in this respect by conducting a systematic literature
review and analyzing 142 articles. First, it covers the gap in literature concerning mapping the
application of these smart technologies to specific production logistic activities. Ten groups of
technologies were identified and production logistics activities divided into three major categories.
A quantitative share assessment of the technologies in production logistics activities was carried
out. Second, the ultimate goal of implementing these technologies is to create business value. This is
addressed in this research by presenting the “production logistics data lifecycle” and the importance
of having a balanced holistic perspective in technology development. The result of this paper is
beneficial to build a ground to transit towards a data-driven state by knowing the applications and
use cases described in the literature for the identified technologies.

Keywords: data-driven; smart; process automation; production logistics; technology; transition;
autonomous systems

1. Introduction

Recent developments in information and communication technologies (ICT) have
the potential to create business value by supporting the transition towards data-driven
manufacturing and autonomous supply chains [1,2]. These technologies enable seamless
data flow and link information to moving goods and material. Implementation of these
technologies is not only a prerequisite for data-driven manufacturing and autonomous
supply chains [3,4], but also increases visibility in the internal logistics operations.

Within data-driven manufacturing, data is the backbone of the system, which embod-
ies intelligence into manufacturing systems. Tao et al. [5] have conceptualized data-driven
smart manufacturing and identified several characteristics. Data-driven manufacturing
systems are self-regulated through exploiting real-time monitoring of manufacturing pro-
cesses. Through exploiting multisource data from manufacturing processes, it will be
possible to have rigorous control over the production process. By applying resource-related
data, tasks and work instructions data, it will be possible to have smart planning and
scheduling across the organization. Customer data such as demands, preferences, limita-
tions and behaviors will be considered for overall system efficiency. Through exploiting
historical and real-time data, it will be possible to perform quality control and preventative
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maintenance proactively [6]. These characteristics open up a new horizon for production
logistics (PL), which is indispensable for any manufacturing system.

Even if it be claimed that data-driven smart manufacturing characteristics are valid
for production logistics [5], current practices within production logistics is still perceived
as a field tied up with non-value-adding activities and lacking high level of responsiveness.
To understand the importance of streamlining the PL processes through digitalization,
following statement is interesting to consider: “A typical manufacturing company dedicates
25% of its employees, 55% of its factory space, and 87% of its production time to material
handling” (Horňáková et al. [7]; adopted from Davich [8]). To facilitate the transition
towards data-driven production logistics, it is important to have a systematic perspective
regarding the possibilities created by technologies. Several studies reviewed these enabling
technologies on a high level in connection with concepts such as smart manufacturing [9],
smart logistics [10] and Industry 4.0 [11]. On the other hand, there are studies that looked in
to this domain in more details by investigating the application of data-driven technologies
in one specific area such as tracing [12], route planning [13] or warehousing [14]. However,
the literature has a gap in addressing the application of data-driven enabling technologies
in production logistics from a systematic point of view, covering all the activities in a
PL system. Thus, we are dealing with studies either conceptualizing data-driven related
topics by discussing the possibilities that the technologies can create on enterprise level or
reporting benefits on detailed level.

In addition to this existing gap, Klingenberg et al. [11] argue that the absence of a
framework in the existing literature reviews with respect to data as the main building block
of the data-driven technologies leads to a conceptual panacea. As a consequence of this
issue, it is not clear how these technologies in cooperation with each other can contribute
to create value for the production logistics systems.

This study intends to cover the described gap by a systematic literature review of
reported applications of enabling technologies in production logistics activities, in order to
clarify how technologies, in cooperation with each other, can create value for PL systems.

1.1. Related Works and Research Gaps

Perceived benefits is one of the major determinants in employing smart data-driven
technologies and methods [15]. Thus, it is necessary to clarify what benefits can be gained
through technologies implementation for companies. As mentioned, earlier studies either
review the data-driven enabling technologies on the enterprise level, such as smart manu-
facturing, smart logistics and Industry 4.0, or discuss the subject on a detailed level focusing
one specific application. For example, enabling technologies for Industry 4.0 with focus on
state-of-the-art and future trends by Alcacer and Machado [16], presenting and discussing
key technologies and their characteristics, and the concept of a smart factory. They describe
the enabling technologies, but little attention has been paid to the use cases and especially
internal logistics of manufacturing firms. Furthermore, innovative technologies adopted in
logistics management is reviewed by Lagorio et al. [17], and implementation of Industry
4.0 related technologies within intralogistics is discussed by Saucedo and Jania [18]. In
another study, 11 groups of smart manufacturing enabling technologies were identified
and their association with smart manufacturing characteristics investigated by Mittal
et al. [19], discussing the application of these technologies on a high level. Oztemel and
Gursev [20] is another example reviewing the enabling technologies and some initiatives
and projects related to Industry 4.0. One study that has discussed application examples of
smart manufacturing, is done by Thoben et al. [21], who have mentioned internal logistics
in a form of cyberphysical logistics systems. Some other studies have covered technologies
applications and use cases targeting production logistics [22–24], but these research lack a
systematic perspective to cover all the related PL activities. From a supply chain perspec-
tive, Chavez et al. [25] introduced a conceptual framework for data-driven supply chains.
Still, the framework does not detail the connection to the enabling technologies and some
specific areas of internal logistics such as material handling.
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In conclusion, even though the mentioned reviews have analyzed applications re-
lated to internal logistics, the overall picture is fragmented and it is not possible to draw
a conclusion on how these technologies can actually be useful for production logistics,
from a system perspective. Either the existing reviews aim to determine the benefits of
implementing enabling technologies on the enterprise level, or they study the applica-
tion of a selected set of enabling technologies on a detailed level. For example, using
RFID for items tracing [12], cloud robotics for route planning [13] or Internet-of-Thing for
warehousing [14].

1.2. Research Purpose, Motivation and Article Structure

The purpose of this article is to review the data-driven enabling technologies and their
relation with production logistics activities, from a comprehensive and system perspective.
Building upon the identified gap presented in Section 1.1 above, there are three major
reasons to perform a systematic literature review in this respect.

First, as technological advancements have created more opportunities to collect big
amount of data from various data sources, the term data-driven appears in literature more
often. Data-driven is widely discussed in relation to decision-making science. However,
from the production logistics perspective and in conjunction with topics such as Industry
4.0 and smart manufacturing, this concept is still elusive with different interpretations,
needing clarity. In a study by Rossit et al. [26], it is discussed as a scheduling approach in
smart manufacturing and cyber-physical systems (CPS). Even though they have referred to
frameworks developed for data-driven decision-making, the result of the work is limited
to scheduling and other activities are not addresses. In another example, Woo et al. [27]
introduced big data analytics platform in manufacturing. In their platform, data-driven
models used a predictive planning tool to support decision-making. In some other studies,
the term data-driven is used to describe the aim of the research but there is little effort to
clarify the data-driven concept in the text, e.g., [12,28,29].

Second, as described in Section 1.1, PL can be perceived as a subsystem for either
manufacturing or supply chain. The consequence of this duality is that it is not clear when to
apply what technology, and for which production logistics activity. There are studies that have
reviewed the data-driven and smart-manufacturing enabling technologies [11,16,19,27,28].
However, to the knowledge of the authors, there is no literature review dedicated to
production logistics. In this research, production logistics refers to those activities that
happen within production systems. In other words, the internal logistics activities that aim
to support manufacturing or production in terms of planning, control and configuration
of logistics flow, is considered as production logistics [30]. All the materials, tools and
information flow that are necessary for a balanced and efficient production process, are
components of production logistics [31].

Third, as ICT technologies are constantly evolving, there is a need to have an updated
view on technologies that enable data-driven PL. In this research, data-driven production
logistics refers to a closed loop PL system where all the activities are triggered by data
and the outcome of activities are presented with data for further use. In this respect, data
is collected from various sources by means of enabling technologies. Data analysis has a
wide scope in order to have an accurate representation of physical objects and processes.
Data need to be internalized through data integration, discovering meaningful information
through extracting data features. The data time line has importance for the PL data-driven
system, as some activities such as fleet control require real-time data in order to create
value for the system.

The technologies discussed in the literature can be considered to be on three different
levels [11]. The first is on the device or component level such as sensors or RFID (radio
frequency identification), which usually are physical entities. The second is on the method
level such as Wi-Fi. Connectivity protocols and software system development approaches
such as SoA (service oriented architecture) are perceived as methods. The third is on the
system level such as IoT (Internet-of-Things) and CPS (cyber-physical systems), which
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may consist of several devices and methods. As a result, in this article technology refers to
devices, methods and systems, which are the result of scientific knowledge being used for
practical purposes, in line with Collins dictionary [32].

In order to meet the purpose of this paper and cover the discussed gaps, it is first
required to identify the enabling technologies and their application in PL. Secondly, it is
necessary to understand how can the identified technologies create value from a system
perspective. Two key research questions were posed in guiding the review:

1. What are the data-driven enabling technologies and their use cases in production
logistics activities, as described in the literature?

2. How does the data-driven enabling technologies contribute to value creation in
production logistics from a system perspective?

In the following section, the review methodology is outlined. In the result section,
findings on the identified technologies key activities (RQ1) and the value creation discus-
sion (RQ2) are presented. Based upon these findings, the discussion elaborates on the
role of data life cycle in value creation for/within production logistics. In addition, the
interconnection of the identified technologies was discussed. Finally, the article culminates
with conclusions and future research possibilities.

2. Methodology

The method selected for reviewing the technologies enabling the data-driven smart
production logistic was a systematic literature review (SLR). SLR was chosen as it helps to
bring together relevant studies regardless of their location or even disciplinary background.
Furthermore, an advantage of SLRs is that by keeping the research process transparent
and unbiased, readers can have a clear conclusion and provide new opportunities for
other researchers to have new experiments by knowing the exact details of the study
performed according to SLR. In addition, properly managed, an SLR can shed light on a
specific aspect of the reviewed studies [33]. In this case, this SLR highlights production
logistics as one key manufacturing subsystem, which requires further studies. To the best
of our knowledge, there is no literature review that has mapped the technologies and
their relation to production logistics activities in the context of Industry 4.0 and smart
manufacturing. This SLR is carried out in-line with the approach suggested by Tranfield,
Denyer and Smart [34], using a three-stage process to perform a systematic literature review:
(1) planning the review, (2) conducting the review and (3) reporting and dissemination.

2.1. Planning the Review

This first stage concerns planning the review of literature covering technologies en-
abling data-driven PL activities. To perform the review, several databases were examined
and Scopus was chosen since it is the largest abstract and citation database of peer-reviewed
literature. Compared to other examined databases, this database has rich material regard-
ing production logistics, smart manufacturing, Industry 4.0 and data-driven enabling
technologies. Scopus also integrates other databases such as the Web of Science, which
makes it a reliable source for this study.

Initial Scoping

In order to define the initial scope, the authors defined three categories of search
keywords/terms. Category 1 concerns keywords related to emerging concepts such as
data-driven manufacturing/logistics, smart/intelligent manufacturing, smart/intelligent
logistics, smart/digital factory, Industry 4.0, cyber-physical systems (CPS), digital twin,
and Internet-of-Things (IoT). As the primary goal of this paper was to emphasize the role of
data in PL systems, data-driven was chosen for the first category. Amongst the mentioned
terms, Industry 4.0 is an elusive concept, vaguely defined and including a multitude of
concepts [35], and already broadly discussed in the literature, hence excluded. The other
terms such as CPS, IoT and digital twin have been mentioned in some of the literature as
enabling technologies. Choosing any of these more specific terms could limit the search
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scope. Terms such as smart/digital factory are less common compared to smart/intelligent
manufacturing. To choose between smart and intelligent, the number of hits in Google
Scholar was compared. Consequently, beside data-driven, smart was chosen as the second
keyword for the first category. Category 2 frames the context of the study. Authors dealt
with several options such as manufacturing logistics, production logistics and internal
logistics. As internal logistics applies to any possible sort of operation such as a healthcare
system, hence is this term not appropriate for this research. As both the “manufacturing”
and “logistics” terms have relevant material, it was decided to keep both of the terms for
the second category. Category 3 defines the ultimate search items, which is the technologies.
To make sure other related work would be captured, “solution” was also added to this
category as the last keyword.

2.2. Conducting the Review

As a consequence of the initial scoping, the search query was defined as follows: ((“data-
driven” OR smart) AND (manufacturing OR logistic*) AND (technolog* OR solution*)).

A wildcard was used to maximize the search outcome. The results were limited
from different angles: Time was limited from 2016-March 2020, language was limited
to “English”. In order to ensure the quality of the material, only those articles that are
published in journals picked for further review and the type of sources was limited to
“journals”. Subject areas were limited to the following:

• Engineering;
• Computer Science;
• Business, Management and Accounting;
• Decision Sciences;
• Mathematics;
• Social Sciences;
• Economics, Econometrics and Finance;
• Environmental Science.

In addition, in order to make the search query even more precise, several keywords
that were not relevant to this research, such as machining, cryptography, semiconductors,
additive manufacturing, 3D printing and reference modeling were excluded from the
search. This search query resulted in 717 hits. Figure 1 illustrates the number of articles
per year from 2016 to mid-2020. It is clear that data-driven smart manufacturing and
data-driven smart logistics are increasingly receiving attention by researchers.

Figure 1. Number of articles by year within data-driven smart manufacturing and logistics technologies.
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In the next step, based on the criteria shown in Table 1, all the abstracts of 717 articles
were screened and 544 articles excluded from the list. It is worth mentioning that there
were many articles related to city logistics, transportation and manufacturing that have
keywords in common with production logistics, but perceived as irrelevant and off-topic,
and thus removed. The remaining 173 papers were picked for full paper reading. After
full paper screening, 57 other papers were excluded from the list, as they did not match
the inclusion criteria listed in Table 1. During the full paper review, a backward snowball-
search in the references of the relevant articles was carried out to search for further relevant
articles; 26 new articles found in this step and added to the list. In total, 142 articles
remained in the final list. Figure 2 illustrates the described steps.

Table 1. Inclusion and exclusion criteria.

Inclusions Exclusions

Production logistics
Any research related to

internal logistics of production
or manufacturing companies.

City logistics, cargos, road
transportations, machining,

assembly, product development,
retailing, production planning,
product design, maintenance,

housing construction.

Enabling technologies

Any relevant technologies that
might enable data collection,
data processing, data storage,

data streaming and data
analysis or data visualization.

Automation technologies such
as introduction of robots that
are only focused on physical

aspects of the flow.

Production logistics
activities

Any relevant activities such as
kitting, route planning,

warehousing, packaging,
material movement, which is

associated with enabling
technologies

Mathematical modeling
optimization and data security.

Figure 2. Systematic literature review steps in this research.

In order to minimize the risk of bias in the selection process, inclusion and exclusion
criteria were developed, inspired by the PEO model (see [36]). Three main areas, including
“production logistics”, “enabling technologies” and “PL activities” were determined by the
authors to examine inclusion and exclusion criteria. Table 1 shows these criteria.
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In addition to the mentioned criteria, all the selected papers needed to be of high
quality with respect to:

• Clarified aims and RQs;
• Clarity in study design and method;
• Contribution to the research field;
• Connection to the research field;
• Good theoretical alignment, and data quality.

Figure 3 depicts the journals and respective number of articles that were analyzed in
this review. It should be noted that the figure only illustrates journals that had more than
one hit.

Figure 3. Reviewed journals with more than one article.

In total, 78 journals were included in the original 717 records in the SLR, whereof 50 of
them had one article for further analysis. International journal of advanced manufacturing and
International journal of production research have the highest number of articles in this review.

The next section is the third stage of the SLR, which is reporting and dissemination.
Technologies and key activities (RQ1) identified in the full text screening and the discussion
regarding value creation (RQ2) are presented in more details.

3. Identified Technologies and Related Production Logistics Activities

In the review of the 142 articles, 47 technologies were identified. These were divided
into 10 groups based on their similarities and types. As explained in Section 1, each of the
identified technologies belong to one of the three levels of technologies: device/component,
methods or systems. For example, technologies for auto identification are devices, while
embedded systems or IoT are perceived as system level technologies consisting of several
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technologies such as sensor networks, wireless connection and data analysis. Wireless com-
munication protocols such as Wi-Fi, ZigBee or Bluetooth are methods, here also considered
as technologies. Table 2 shows the identified technologies.

Table 2. Identified production logistics data-driven enabling technologies

Technology Group Technologies

Auto Identification

RFID (Radio Frequency Identification)
Barcode
QR code

FOT (Fingerprint of Things) and tag free traceability

Vision systems and image processing Vision systems
Point cloud

Mobile and industrial robots
Industrial robots

Drones
AGV and mobile robots

Internet-of-Things/
Internet-of-Services

IoT
IoS

RTLS (Real-Time Locating system)
Node-RED

Smart devices

AR (Augmented Reality)
VR (Virtual Reality)

Pick by X (Voice or light)
Smart glass

Smart gloves
Smart watches

Tablet, mobile phone, etc.

Artificial intelligence and Big data

BD analytics
AI

Machine learning
Apache Flume

Apache Hadoop
Apache Kafka

MQTT

Wireless connection and communication networks

Cellular networks (2G/3G/4G/5G)
Wireless connection

Bluetooth
Ultra sound

Ultrawide band
Wi-Fi

ZigBee
Industrial communication networks

GPS (Global positioning system)
Industrial wireless networks

Sensor networks

Cloud and Fog/Edge computing Cloud computing
Fog/Edge computing

Cyber physical systems and simulation

CPS
Digital twin

Embedded systems
Holonic manufacturing and Multi agent systems

Simulation
SoA (Service Oriented Architecture)

Blockchain
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Based on the goal of this paper, enabling technologies found in literature were re-
viewed with respect to their application in PL activities. All these activities are in line with
inclusion and exclusion specifications presented in Table 1. The activities were categorized
into three different groups as follows:

• Category 1: Shopfloor operational-related activities including activities that have a
direct impact on material movement and material handling. The activities concern
physical flow of material. In a PL system with a low level of automation and digital-
ization, usually these activities involve physical effort. From goods receiving until
delivery to internal customers, all activates that involve direct contact with physical
goods and material fall under this category.

• Category 2: Planning and scheduling-related activities are regarded as those logistics
activities that are aimed to guide the overall operation, and make plans and schedules
for an efficient production flow. While the first category concerns physical material
flow, this category is about those activities that are known as planning and scheduling.
Activities in this category are designed to assure PL system efficiency.

• Category 3: Control, track and trace-related activities are mainly focused on activities
that monitor the behavior of logistics system elements such as resources, goods
movement and inventory level. Activities in this category control the physical flow
of material from items identification until conditions monitoring. This category is
essential to increase efficiency of the activities in the two other categories.

For each of these categories, following sections and following tables depict production lo-
gistics activities and the data-driven enabling technologies identified in the reviewed literature.

3.1. Category 1: Shopfloor Operational-Related Activities

This category includes operational-related activities, including activities that have
a direct impact on material movement and material handling. Usually these activities
involve physical interaction with parts, raw material, machines, etc. For example, refilling
material buffers, packaging, material-delivery to different working stations and kitting of
material and parts for assembly. As presented in Table 3, each of the identified technologies
are used for activities in one or several of the PL activities areas. Each of the identified
technologies in the category “Described Technologies” in Table 3 belong to one of the three
levels of technologies: device/component, methods and systems.

Table 3. Production logistics activities in Category 1 and association with the identified technologies in the literature.

Production
Logistics
Activities

Described Technologies References

Category 1.
Shopfloor operational-

related
activities

Material ordering and
buffer replenishment

• AGV and mobile
robots

• Big data and BD
analytics

• Cloud computing
• Barcode
• Vision system and

image processing
• Sensor networks
• Embedded

systems

• CPS
• IoT
• RFID
• GPS
• AI
• Hadoop
• QR code

[10,12,15,22,28,35,37–
60]

Goods receiving
quality control and

registration

• Cloud computing
• Edge computing
• Vision system and

image processing
• Industrial robot

• CPS
• RFID
• AR
• Flume

[34,51,61–67]
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Table 3. Cont.

Production
Logistics
Activities

Described Technologies References

Kitting • AR [62]

Packaging

• Barcode
• AGV and mobile

robots
• CPS

• RFID
• AR
• IoT

[10,14,36,62,68–70]

Palletization • AR [62]

Picking and
Pick and place

• Vision systems
and image
processing

• AGV and mobile
robots

• Industrial robot
• Digital twin
• Cloud computing
• Sensor networks

• CPS
• IoT
• RFID
• AR
• Pick by X
• Smart glass
• Simulation

[10,14,62,65,69,71–82]

Material transportation
and internal

transportation
optimization

• Vision systems
and image
processing

• AGV and mobile
robots

• Digital twin
• Edge computing
• Cloud computing
• Sensor networks
• MAS and NEIMS

• CPS
• IoT
• RFID
• Simulation
• AR
• Industrial robot

[12,13,15,34,40,62,71],
[72,74,75,77,83–103]

Warehousing

• Vision systems
and image
processing

• AGV and mobile
robots

• Industrial robot
• Digital twin
• Big data and BD

analytics
• Cloud computing
• Edge computing
• Sensor networks
• MAS and NEIMS
• Smart glass
• Smart gloves
• Smart watches
• Tablet, smart

phone, etc.

• Point cloud
• Block chain
• Drone
• CPS
• AI
• IoT
• RFID
• QR code
• AR
• Pick by X
• VR
• Barcode

[10,14,27,28,43,45,46,49–
53,58,62,63,68,71,73–
75,79,91,98,103–121]

Some key examples from Table 3 of how technologies (device/component, methods
or systems) were reported to be used in shopfloor operational related PL activities are
described in the following.

Park et al. [37] designed and implemented a digital twin to address issues concerning
dynamic situations of personalized production. One of the applications in their study
was about the buffer handling process, which required constant monitoring of the buffer
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level. To meet the aim of the study, a CPS was designed and implemented and other
technologies such as a collaborative robot. In a similar case, Thoben et al. [21] investigated
a gear manufacturer working based on lean production, which is one of the first Industry
4.0 lighthouse projects in Germany. The CPS was established to increase the efficiency of
the lean production. As a result, the buffer level was kept low despite high production
variation. The delivery to production stations was based on demand-driven milk runs,
which led to higher flexibility, a lower buffer level and dynamic scheduling. Load carriers
were equipped with sensors that could monitor environmental parameters such as the
temperature and acceleration. Operators had a PC to be able to communicate with the
CPS to receive information regarding delivery or collection needs in real-time. Other IoT
technologies such as auto-ID including RFID and QR codes can play a significant role to
control buffer levels and WIP [12,37,38,107]. Trentesaux et al. [72] mentioned the possibility
to solve issues such as inventory updates triggered by real-time events controlled in real-
time based on service-orientated architecture (SOA) orchestration. In such a system, holons
are used to act as an agent or a CPS to induce actions in the physical world.

Hohmann and Posselt [84] highlighted the effect of using CPS for goods registration
in goods receiving as it can decrease the required time. To make sure that packages that
arrive from suppliers have acceptable quality, vision inspection systems can be used to
examine the dimension, shape, positioning and package orientation [61]. A ceiling camera
can be used as a route-planning instrument to guide the AGV to transport different parts
to different sections of the warehouse [74]. According to Egger and Masood [62], AR has
the potential to be used for quality inspection by improving reaction speed and failure
investigation. From a logistics perspective, parts may be investigated on the pallet as they
arrive at goods receiving. Franceschini et al. [122] developed a prototype to do this task
(Egger and Masood, 2020). Al-Jaroodi et al. [63] argued that edge computing can facilitate
raw material quality control. Quality investigation data can be constantly communicated
with other systems and provide an end-to-end integration amongst the existing systems.
To make sure the right product has been received, vision systems can be used to monitor
parameters such as dimensions, object ID, supplier ID, etc. [65,66].

To prepare kits for mixed-model assembly through order picking, Egger and Masood [62]
mentioned that AR technology can be superior to conventional paper-based methods.

According to Sarupuri et al. [123], AR has the potential to help operators to have better
performance in warehouses with high-rack storage [62]. Besides, according to experiments
handled by the Fraunhofer Institute for Material Flow and Logistics in Dortmund, Germany,
AR has the potential to be used in packaging and palletization [62], as the packaging speed
and use of the space are improved [124].

By using 5G, it will be possible to have an efficient infrastructure for a smart storage
system as it can accelerate the communication amongst system components [104].

Chen [46] argued that RFID can realize warehouse automation through electronic
tags and stackers to manage warehouse scheduling and inventory highly intelligently. As
an example, RFID technology can be used to register the incoming and outgoing flow
of products into the warehouse environment [49] or to manage the expiration dates of
products [51]. Chen et al. [98] highlighted the potential of CPS to support the idea of
smart warehouses. According to Damiani et al. [105], AR and VR have the potential to
be used to train warehouse operators to increase the quality of operators’ interactions
with their environment. Chung et al. [50] argued that a block chain has the potential to
facilitate distributed, transparent, safe and scalable processes compared to centralized
processes. For example, warehouse carry-in, warehouse load and warehouse carry-out
processes can benefit from a block chain as the real-time trade transactions data can
be analyzed to draw meaningful rules and have efficient decision-making. Culler and
Long [74] introduced a smart warehouse project, where vision systems such as Kinect
cameras were mounted on an AGV for obstacle avoidance. The main task for the AGV was
to transport items within the warehouse environment. Semwal et al. [103] also introduced
a CPS-based testbed warehouse where AGVs communicate with racks equipped with
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embedded boards with sensors. The communication amongst smart entities happens
over Wi-Fi. Avventuroso [106] developed a digital twin system based on IoT to mimic
warehouse operation. The results have proven that the decision-making process is more
efficient. Bortolini et al. [52] argued that use of sensor networks in workstation storage helps
to reduce the WIP inventory level as the system can adjust the replenishment request to the
central warehouse according to the real-time data collected from the workstation storage.
Within a CPS-based material handling system, data mining, predictive analytics and smart
algorithms can be used in cloud or edge computing services for warehouse management
and supply chain value [63]. Liao et al. [75] proposed a smart factory prototype where
delivery orders from the cloud centre are sent to AGV to transport empty product containers
from warehouses to production lines for further operation. Each of the product containers
is equipped with an RFID tag, which retrieves data for that specific product from a cloud
system through IoT. Zhong et al. [44] investigated a case study where RFID was used as
a means to support warehouse management. As the warehouse manager finished with
the logistics planning, raw materials were identified and prepared for delivery in the
warehouse. In the next step, an operator got instructions over a mobile RFID reader to
locate the required materials and transport them from the warehouse to machine buffers.
The connections happened over an IoT-enabled network. Some other similar cases used
RFID/QR codes in warehouse management mentioned in the table above. To manage
warehouse operations including material movement, Zhang et al. [110] implemented a
cloud-based smart system. Apart from other applications, operators were equipped with
various types of handheld terminals such as tablets connected to a “warehouse management
software database” through a web service in real-time. As a result, logistics activities were
triggered automatically and the data was circulating constantly amongst the warehouse,
WMS, managers and operators.

Gregor et al. [125], Lu et al. [89] and Liu et al. [86] highlighted the role of AGVs as they
can receive orders and relevant data from the CPS to complete material movement tasks.
Wang et al. [91] described a system where an AGV was equipped with an RFID reader to
read and write data to the products’ RFID tags. Researchers have mentioned the role of
mobile robots supplied with real-time data to perform material movement and internal
transportation of parts and materials [13,74,87,90,92–94,96,97,102]. Szafir et al. [102] did
experiments with drones to locate misplaced boxes in a warehouse environment. Li
et al. [60] described how industrial wireless networks along with cloud computing and big
data can support smart manufacturing. Part of their work focused on material movement
through a conveyor system connected to a cloud server and controlled in real-time for
product transportation. Müller et al. [126] highlighted the role of sensor networks to collect
real-time information from production, communicate with cyber systems and, after being
analyzed by algorithms, transfer it back to physical equipment, in this case a conveyor
system. To facilitate the connection with the operators responsible for material handling,
devices such as tablets can be used. Tablets are connected to the CPS that collects data
in real-time by means of RFID tags [94]. Beside, artificial intelligence application has
been highlighted by Lee et al. [127]. Gröhn et al. [101] explored an automated system
benefit of RIFD and sensor networks to control the conveyor system to transport materials
across a production facility. CPS can be used to facilitate a highly flexible demand-driven
material flow through simulation as data collection happens through technologies such
as RFID tags and an electronic Kanban system [35]. Liao et al. [75] described a smart
factory testbed built by Lego based on holonic manufacturing principles. Each holon has
the possibility to make decisions and interact with other holons by having equivalent
decision levels. One of the applications of the smart factory testbed in their experiment
was autonomous decision-making regarding transportation of empty product containers
between working stations.

Pick by vision can be used to indicate the picking location and picking quantities [62].
Smart glasses can be used to pick parts from a shelf as the glass can read the barcode
and the operator has free hands to do the picking activities [71]. Costanzo et al. [73]



Logistics 2021, 5, 24 13 of 32

developed a point cloud environment where a collaborative robot could perform pick
and place activities for in-store logistics scenarios with application in warehouses. Liao
et al. [75] used a collaborative robot that received data from an IoT-based system equipped
with a Raspberry Pi transmitting the destination place. The robot picked the object and
placed it into the address received from the Raspberry Pi. In another similar case, Stark
et al. [76] discussed the use of a digital twin for pick and place activities handled by robots.
A Raspberry Pi was connected to sensors and actuators that communicated with the
picking robot over Wi-Fi. Microcontrollers translated the commands for the picking robot.
Lee et al. [14] tested a framework built upon an IoT-based WMS aiming to optimize order
picking. Ramakrishnan et al. [128] used IoT beacons to manage shopfloor inventory leading
to improved order picking. Wang et al. [78] analyzed an AR application in parts picking
from storage. The operator received orders, locations and picking quantities through AR.
In a case study by Meng et al. [69] in food manufacturing, RFID was used to form an
IoT-based system, in which a robot picked raw materials from input crates and placed
them inside empty food packages. In another case by Leung et al. [80], a cloud-based
database was developed to support e-order consolidation and parts picking from storage.
Kembro et al. [65] mentioned that vision systems and image processing can support picking
activities by controlling whether the object is removed from its location or not.

3.2. Category 2: Planning and Scheduling-Related Activities

This category includes planning and scheduling-related activities, regarded as those
logistics activities that are aimed to guide the overall operation, and make plans and
schedules for an efficient production flow. Planning and scheduling of deliveries, layout
planning and delivery route planning are some of the examples. As presented in Table 4,
each of the technologies has an application in one or several of the PL activities areas.
Each of the identified technologies belong to one of the three levels of technologies namely
device or component, methods, and systems.

Table 4. Production logistics activities in Category 2 and association with the identified technologies in the literature.

Production
Logistics
Activities

Described Technologies References

Category 2.
Planning and
scheduling-

related
activities

Logistics resource
planning

• Vision systems
and image
processing

• Digital twin
• Big data and BD

analytics
• Cloud computing
• MAS and NEIMS

• CPS
• Hadoop
• IoT
• RFID
• Barcode

[10,22,44,48,50,53,55,67,
68,84,85,97,104,107,110,

113,129–131]
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Table 4. Cont.

Production
Logistics
Activities

Described Technologies References

Route planning

• Vision systems
and image
processing

• AGV and mobile
robots

• Big data and BD
analytics

• Holonic
manufacturing

• MAS and NEIMS
• Cloud computing
• Edge computing

• CPS
• AI
• Barcode
• IoT
• RFID
• Digital twin
• Sensor networks

[10,12,13,49,61,67,74,83,
84,115,119,129,131–138]

Delivery planning and
scheduling

• AGV and mobile
robots

• Big data and BD
analytics

• Digital twin
• Cloud computing
• Tablet, smart

phone
• Edge computing
• Holonic

manufacturing
• Sensor networks
• MAS and NEIMS

• Barcode
• AI
• CPS
• IoS
• IoT
• RFID
• RTLS
• QR code
• Pick by X

[10,15,38–40,44,45,48,
54,63,86,93,98,106,112,
113,115,116,129,132–

135,137,139,140]

Workflow analysis

• Vision systems
and image
processing

• Big data and BD
analytics

• Cloud computing
• Machine learning
• Big data and BD

analytics

• Hadoop
• IoT
• RFID
• Flume

[40,44,53,65,83,85,119]

Modeling and
simulation

• AGV and mobile
robots

• Big data and BD
analytics

• Embedded
systems

• Digital twin

• IoT
• RFID
• AR

[48,72,141]

Layout planning and
optimization

• Big data and BD
analytics

• Simulation

• RFID
• VR [119,142]

Some key examples from Table 4 of how technologies (device/component, methods
or systems) were reported to be used in planning and scheduling-related PL activities are
described in the following.

Al-Jaroodi et al. [63] argued that by integrating the services of manufacturers, suppliers
and transportation systems, it is possible to optimize raw material delivery scheduling. To
realize the integration, forming a CPS-based system that collects data from the shopfloor in
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combination with data analytics techniques is necessary. Chen et al. [98] developed a CPS
for circuit breaker production. In their case, multisource heterogeneous data was constantly
collected from production lines. From a production logistics perspective, big data analytics
can be used to do intelligent material assignment. In a similar case, Zhong et al. [44]
proposed using RFID and wireless communication to support big data analytics aimed to
have several managerial implications including logistics planning and scheduling. The role
of big data analytics also highlighted for PL planning and scheduling has been highlighted
within smart factory context [143,144]. Hopkins and Hawking [116] mentioned pick up
and delivery window planning as one of the big data analytics applications. Mahroof [115]
investigated AI adoption in warehouse management and highlighted the importance of
managing flexible planning techniques supporting long-range planning through matching
short-term and long-term goals. Ding et al. [48] proposed a digital twin-based CPS for
smart manufacturing. Part of their job focused on resource scheduling including logistics.
They used an RFID tag, an embedded system device and a travelling pallet that were
configured to each part or each batch of parts. As the parts became intelligent, they had the
ability to communicate with the surrounding area through connectivity means such as Wi-
Fi, Bluetooth and Zigbee. To deal with synchronization of logistics and production caused
by high fluctuating demands, Qu et al. [131], Zhang et al. [110] and Hwang et al. [145]
used IoT and cloud. Yu [146] developed a system benefit from IoT and GIS and witnessed
improvements in logistics planning (adopted from [10]). Zhang et al. [110] proposed a
method to improve the synchronization between production and warehouses. The system
was built upon IoT and RFID tags and QR tags were used to collect the constant flow of
data. Warehouse operators were equipped with tablets as forklift drivers were constantly
updated with location information through their tablets. Consequently, any change in the
production plan was communicated to the warehouse through IoT. Some other authors such
as Zhuang et al. [147], Semunab et al. [139], Qu et al. [134] and Qu et al. [131] also suggested
using RFID as a representative of IoT for planning and scheduling related activities. Zhang
et al. [133] developed an active sensing system of real-time and multisource manufacturing
information. Part of the architecture of the system was dedicated to material delivery. In the
system, RFID and sensor networks had a central role and communication benefitted from a
wireless connection. Kamagaew et al. [148] discussed the role of MAS in delivery planning
using 50 different unmanned vehicles in a research project. The vehicles autonomously
sought for their tasks and moved in the research hall. The system capacity adjusted
depending on seasonal fluctuations as agents were capable of communicating with each
other and other systems that controlled the planning and scheduling (adopted from [135]).
A similar case regarding a MAS application for planning and scheduling was highlighted
by Leusin et al. [140]. Sicari et al. [54] did an IoT-based case study for smart transport
logistics where smart vehicles in combination with RFID tags and RFID scanners were used
to complete the material ordering process within a warehouse environment. Node-RED
was used to manage the ordering data flow, warehouse data flow, RFID scanner data flow
and smart vehicle data flow.

Regarding resource planning, according to Chung et al. [50], cognitive manufacturing
requires IoT technology to collect data and technologies such as Hadoop to analyze big
data collected from multiple sources. Accordingly, one of the main goals of such a system
is to minimize the human resource utilization rate. Da Silva et al. [97] highlighted the role
of big data in resource planning. In addition to other technologies mentioned in Table 3,
Zhang et al. [129] and Trappey et al. [53] discussed cloud computing as one of the main
enablers for effective resource planning as data is updated and available in real-time.

As described by Frank et al. [28] adopted from Gilchrist [149], AI in combination with
an ERP system can be used to predict long-term production demands and transform them
to daily production orders. As a result, the raw material order volume will be more precise.

Using auto-ID technologies such as RFID in production lines can help to have a more
accurate demand assessment. Besides, Kanban bins might be equipped with sensors
capable of tracking fill rates. This can form a CPS, which at the end helps to have an
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effective material ordering system [34,150]. Dai et al. [49] highlighted the role of big data
in material ordering as a large amount of data collected from the shopfloor may be used to
analyze the consumption rate and predict the order point.

According to Cui et al. [141] a digital twin can play a central role to simulate the
logistical processes in order to provide real-time bidirectional management between a
physical object and its digital twin. Ding et al. [48] mentioned that a digital twin can
help to optimize resource allocation and relevant planning in manufacturing processes
including PL.

Cao et al. [12] adopted from Kim et al., [151], Dai et al. [49] and Zhang et al. [96]
proposed methods for route planning and navigation by employing RFID technology.
Position data from the shopfloor was collected in real-time and facilitated route planning
and traffic management in a shopfloor environment. To transport parts, materials and
machines, different means such as automated driving technology were already in use in
production areas. Zhang et al. [129] suggested the use of AGVs that navigate based on
machine learning techniques. Similar to this, Wan et al. [13] and Qu et al. [134] highlighted
the role of using intelligent AGVs for route planning and logistics navigation. According to
Winkelhaus and Grosse [10], Yang et al. [152] developed an architecture of a cloud platform
for intelligent logistics management including logistics navigation. Mahroof [115] investi-
gated the role of AI in warehouse management and route planning within a warehouse
environment by controlling the amount of travel time in the warehouse. Zhang et al. [96]
described a system consisting of several AGVs communicating via RFID and a ZigBee
network to perform route planning and collision avoidance.

According to Trappey et al. [153], IoT can have a significant role in logistics workflow
analyses by employing related technologies such as RFID, WSN and cloud computing
bases for data collected in real-time. Huang et al. [83] argued that deploying IoT technology
increases visibility and traceability in production processes. Data collected from the
shopfloor can be used to have precise bottleneck prediction and further helps to have
proactive dispatching based on the future bottleneck. Zhong et al. [44] introduced big data
analytics for physical internet-based logistics data from a smart shopfloor equipped with
RFID tags and wireless communication networks. The logistics trajectory was visualized
through big data analytics aiming to evaluate the efficiency of logistics operators and
operations through the defined behaviors and KPIs. The evaluation results could be used
as managerial guidance for efficient decision-making.

According to Huang et al. [83], by analyzing RFID logistics data through a big data
approach, logistics trajectories can be discovered for shopfloor layout optimization. Turner
et al. [142] reviewed the possibility of using discrete event simulation (DES) and virtual
reality in industry. In this respect, one of the areas was layout optimization, which had the
potential to be investigated further to benefit from DES and VR technology.

3.3. Category 3: Control, Track and Trace-Related Activities

This category includes control, track and trace-related activities, mainly focused on
activities that monitor the behavior of logistics system elements such as resources, goods
movement and inventory level. These activities control whether the operation is following
the plans and schedules in a reactive manner and has the possibility to be done proactively
to help the system to adjust its behavior in line with the latest changes. As presented in
Table 5, each of the technologies has an application in one or several of the PL activities
areas. Each of the identified technologies belong to one of the three levels of technologies
namely the device or component, methods and systems.
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Table 5. Production logistics activities in Category 3 and association with the identified technologies in the literature.

Production
Logistics
Activities

Described Technologies References

Category 3.
Control, track and

trace
related activities

Items identification

• Vision system and
image processing

• AGV and mobile
robots

• Sensor networks
• Big data and BD

analytics
• Cloud computing
• Edge computing
• Embedded system
• FOT and tag-free

traceability

• CPS
• QR code
• IoT RFID
• Barcode
• Digital twin

[12,14,15,19,27,37,43,46–
49,52,54,58,65,67,69,75,84,
90,91,98,104,107,109,119–
121,131,132,140,154–161]

Items positioning
(localization)

• Vision system and
image processing

• AGV and mobile
robots

• Big data and BD
analytics

• Edge computing
• Cloud computing
• Cellular networks
• Ultrasound
• Ultra-wideband
• Embedded

systems
• Sensor networks
• Bluetooth

• Barcode
• CPS
• Digital twin
• GPS
• 5G
• Wi-Fi
• Zigbee
• IoT
• RFID
• RTLS
• QR code

[10,12,15,19,37,43,46,48,
54,58,64,67,69,72,74,75,
82–84,86,89,98,104,107,

109,111,114,119,121,132,
140,141,150,159,161–166]

Items tracing (flow)

• Vision system and
image processing

• Block chain
• AGV and mobile

robots
• Big data and BD

analytics
• Cloud computing
• Edge computing
• Networks and

communication
networks

• Embedded
systems

• FOT and tag-free
traceability

• Sensor networks
• Simulation
• Cellular networks
• Wireless

connection

• Barcode
• CPS
• Digital twin
• Hadoop
• Wi-Fi
• Zigbee
• IoT
• RFID
• QR code
• Pick by X
• 5G
• Bluetooth

[5,10,12,14,15,19,27,34,43,
45,46,48,49,51,53,56,58,64,

65,67–69,72,74,76,82,83,
98,104,107,109,111,119–
121,134,139–141,154–
158,160,163,165–172]
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Table 5. Cont.

Production
Logistics
Activities

Described Technologies References

Inventory level
controlling

• Vision systems
and image
processing

• Block chain
• AGV and mobile

robots
• Big data and BD

analytics
• Cloud computing
• Sensor networks
• MAS and NEIMS
• Simulation
• Machine learning

• Barcode
• CPS
• Digital twin
• AI
• IoT
• RFID
• SoA
• Pick by X

[10,12,14,15,27,34,38,41,
49–52,54,56,57,59,67,72,

76,97–99,104,109,115,
116,119,121,139,141,155,

156,161,173–177]

Items condition
monitoring

• Vision system and
image processing

• Big data and BD
analytics

• Sensor networks

• RFID
• IoT [53–55,67,70,121,170]

Some key examples from Table 5 of how technologies (device/component, methods or
systems) were reported to be used in control, track and trace related activities PL activities
are described in the following.

To monitor items’ conditions such as temperature, humidity, vibration, etc., several
technologies have been mentioned by researchers. According to Zhang et al. [70], RFID
biosensor tags can be used for history checking, contamination warnings and status track-
ing. The biosensor tags monitor antigens–antibodies to detect bacteria. Similar cases to
monitor environmental parameters by means of RFID sensors were reported by [54,67,121].
Tao and Qi [55] mentioned that by using smart chips, environmental data can be collected
and uploaded to the cyber world. With big data, the cyber section can analyze any changes
in product conditions. La Scalia et al. [170] proposed a system to use smart sensors to
monitor the temperature, humidity, CO2 and volatile organic compounds (VOCs). Apart
from the sensors, cloud computing and GPS are other technologies that support real-time
condition monitoring of perishable products. Trappey et al. [53] mentioned that WSN
can be used in cold-chain logistics to monitor brightness, humidity, temperature, pressure
and sound.

For items identification, items positioning and items tracing, one of the most cited
technologies is RFID, as the references listed in Table 3. In some cases, RFID has been
regarded as part of IoT and CPS technologies since it creates most of its value through con-
nections with other logistics systems such as ERP, WMS, etc. [14,84,109,119]. Lai et al. [166]
mentioned that many researchers have worked on finding accurate object location within
an indoor environment with the help of different interfaces including Wi-Fi, Bluetooth,
ZigBee, UWB, ultrasound, etc., and RFID as one of the main technologies. As mentioned by
Zhang et al. [70], RFID can be a subsystem for technologies like block chains. Block chain
implementation assists factories, distribution centers and retailers to trace their items from
the very beginning until the final stages. Cui et al. [141] did a literature review and the
results showed that almost 25% of big data applications concern monitoring. Cloud com-
puting and sensor networks are two main technologies discussed by Mehmood et al. [58],
as they can enable machine-to-machine communication amongst logistics equipment and
machines. The communication amongst different machines and systems relies on cellular
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networks to facilitate mobility. Wigger et al. [157] investigated the possibility of tracing and
identification of printed circuit boards (PCB) through fingerprint-of-things (FOT), in this
case surface pattern photography. Fiducial markers would be soldered onto 115 PCBs by
solder paste screen printing. Each soldered PCB would have unique identification. Using
image processing technology, each of the PCBs would be uniquely tracked and identi-
fied. Similar cases have been reported for other materials such as paper, plastic, cork and
metal [158]. Meroni et al. [155] designed an IoT-based monitoring platform to improve mul-
tipart business process monitoring. To meet the goal of their research, smart objects were
used to share processed data in real-time. Objects equipped with smart sensors interacted
via usual communication means such as Wi-Fi and 4G. The communication amongst smart
objects followed the MQTT protocol suitable for a low bandwidth and resource constraint
environment. Zhong et al. [107] used laser scanner and image processing technologies
in addition to RFID. RFID tags helped to identify the objects and the laser scanner was
used to observe the movement of resources in the production area. Kembro et al. [65] also
highlighted the role of vision systems for object identification and visual goods tracking.
In addition to the benefits of CPS to trace items, it is important to have reliable and near
real-time communication technologies such as 5G. The reason is that current industrial
standards have limited capacity to support constant streaming of large amounts of captured
data such as videos [163,178]. Cannizzaro et al. [162] mentioned Wi-Fi and Bluetooth Low
Energy (BLE) as technologies that facilitate indoor positioning. In line with their argument,
implementing Wi-Fi requires effort in terms of topological distribution and the number
of Wi-Fi access points, which increase costs and power consumption. On the other hand,
BLE is suitable for short-range energy-efficient communication and compatible devices
can transmit periodic messages. Chen et al. [98] proposed a CPS framework for smart
manufacturing. The system benefits from AGVs, sensor networks and IoT technologies for
production logistics activities. The AGV and RFID tags constantly update the digital twin
with positioning and identification data. Data are transmitted over a cloud and shared
with other subsystems in real-time.

4. Discussion

The identified technologies and their association with major PL activities are presented
in Section 3. However, in order to further elaborate on RQ2, it is needed to determine
on what level each of the technology groups are associated with PL activities categories.
Besides, value creation as the main concern of any technological development need to be
further analyzed. The following describes these concerns in more details.

4.1. Share Assessment of the Identified Technologies

Considering the technology grouping presented in Table 2, Figure 4 illustrates the
share of each technology group within each PL activities category discussed in the literature.
For instance, in 21% of the cases, “Auto Identification” technologies was mentioned as the
data-driven enabling technology that has an application in production logistics.
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Figure 4. Share of the identified technologies supporting production logistics (PL) activities.

In the literature, autoidentification technologies have the highest share among the
technologies for all three categories. Auto-id technologies have the most hits for category 3
in the literature, with 28% of articles on category 3 describing Auto-id solutions. In many
cases auto identification technologies are mentioned alongside other types of technologies
such as IoT or mobile robots in order to support a working process like material ordering.
For category 2 and 3, much of the literature mentioned the importance of using technologies
such as RFID as the preferred data collection method to perform activities such as real-time
tracking, delivery planning and items historical condition monitoring. In some cases,
auto-id technologies are part of a bigger technological system such as the block chain.
Nevertheless, the literature review suggests that auto-id technologies can be applied either
as a stand-alone technology or as a subsection of a bigger solution such as IoT or CPS. This
explains why it was noticed so often in the literature.

Cyber-physical systems received more attention in the literature to perform planning
and scheduling related activities (category 2) compared with the two other categories. For
category 1, the share of CPS is 12% and one of the purposes of using this technology is
to increase efficiency on the shopfloor as stated in Section 3. Even though the number
of use cases for CPS in category 2 is less, there are evidences of creating value for PL
systems through integrating CPS with other information systems such as ERP and WMS. In
addition, CPS is mentioned as one of the main enabler of a smart factory concept including
smart warehouse and smart material handling.

As tracking and tracing activities require constant monitoring of the moving items
across production facilities, the role of wireless technologies become more obvious, as
pointed out in Figure 4. The same argument is true for planning related activities in
category 2. For category 1, the role of wireless connection technologies are less mentioned
by the literature despite the fact that an effective connectivity has a fundamental role in a
well-established data-driven system.

IoT and IoS (Internet of Services) related technologies appeared with almost the
same frequency for all three categories. Dealing with the synchronization issue between
manufacturing and internal logistics is one of the main use cases mentioned for IoT/IoS.
In addition, in line with cases from Section 3, constant connectivity of PL instruments
facilitates optimization of the material flow and work flow analysis.

For shopfloor operational activities, AI and big data (BD) analytics are mentioned
more often compared with the two other categories. As stated in Section 3, cases related to
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decision-making have been reported for AI and data analytics in shopfloor activities. As a
result, those activities that require real-time feedback from the cyber space can benefit from
AI related techniques to address the issues in an optimal manner. For planning purposes
such as warehouse management, AI and BD have shown great potential according to the
literature stated in Section 3. One of the prerequisites of resource planning is to analyze
data from multiple sources. According to the findings, BD analytics has the potential to
address this issue. To complete the tracking activities in category 3, literature suggests
using AI alongside vision systems or sensor networks.

Cloud computing is mentioned more often for planning and scheduling related activi-
ties compared with the two other categories. Cloud computing technologies are mentioned
in the literature together with other technologies such as smart devices. This is mainly to
assure constant data availability. Cloud computing support activities such as condition mon-
itoring, internal navigation, resource planning and machine-to-machine communication.

To deal with the physical movement of items across the production facilities and
dealing with stationary activities such as packaging and palletization, mobile robots and
industrial robots are mentioned more in category 1. In fact, AGVs, industrial robots and
drones are mentioned very few times in the two other categories.

Using smart devices in shopfloor operation has more hits in the literature as it involves
physical material flow operation. In fact, the number of cases for controlling and tracking
are few, with the exception of some described cases in planning related activities.

Vision systems and image processing has more appearance in shopfloor operational
related activities as it can support activities such as quality control and navigation. It has
even use cases for tracking items movement. Limited applications were mentioned for
planning and scheduling by using smart cameras to inventory control.

Block chain technology is mentioned in the literature with a limited number mainly in
conditions where several actors play a role across the supply chain. Tracking and tracing
items and managing inventories are some examples.

4.2. The Role of Data Life Cycle in Value Creation

Each of the aforementioned technologies contribute to do one or several steps of
acquiring, transferring, storing, analyzing or visualizing data [11]. Considering the data
applications presented in Section 3, just collecting data from the shopfloor will not be
enough to create value for the PL system. In order to create value for PL systems, it is
important that the collected data from data sources, follow the data life cycle presented in
Figure 5. As illustrated, the identified technologies support the value creation process by
contributing to one or several steps of the presented data life cycle.
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Figure 5. Data life cycle in production logistics adopted from [5,49,116].

There are several data sources such as raw material, products, machines, human re-
sources, physical environment such as buildings and existing IT systems such as enterprise
systems and information systems. Any technology such as auto-id, vision systems, robots
and sensor networks can be used to collect data [65,91,118,170]. To transfer the collected
data, cellular networks and wireless connections can be used [104]. As the volume of data
is significantly large, data needs to be stored for further use. Before storing the data, it is
necessary to process the collected data, as there might exist redundancy, duplications and
noise, and generally raw data might be of low quality. Typically, the data preprocessing
includes data cleaning, data integration and data compression [49].

For data storage, there are different possibilities including conventional database
technologies and new approaches such as cloud services. Cloud services have the potential
to provide a flexible, cost-efficient solution [110]. The data can be stored either as structured
(digits, symbols and tables) or unstructured (video, audio, etc.) [5]. In order to use the value
of the data, the massive amount of data needs to be reduced in to ordered, meaningful
and simplified data [179]. Real-time analytics help to monitor the performance of the
system in real-time and align the operation with strategic goals and targets. Predictive and
prescriptive analytics support planning, forecasting and simulation for envisioning and
execution of strategies [116]. The results support production logistics activities to create
value for the production process.

The processed data will be visualized through managerial dashboards or operators’
interface will be used for other systems such as enterprise resource planning (ERP) or
warehouse management systems (WMS). The visualized data on managerial dashboards
and operator interface can support decision-making processes or work instructions [94].
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4.3. PL Activities Correlation Assessment for Value Creation

As presented in Section 3, there are three categories for PL activities. In order to
complete the data life cycle and create value, all these three categories have to be linked
to each other by means of data transferring technologies as shown in Figure 6. Three
categories of PL activities are linked with their data-driven enabling technologies. In the
centre of the picture, the connectivity technologies transfer the collected or analyzed data
through the PL system. Cloud data center store data and solutions such as edge computing
can be used to perform near device computations. Those data that require longer storage
will be stored in the cloud data centre.

Figure 6. The correlation between three categories of PL activities and their respective data-driven technologies.

In the operational-related activities category, data acquisition and data visualization
technologies support activities such as picking, packaging, warehousing, etc. Data is
captured from these activities to follow the data life cycle steps and will come back to the
shopfloor in the form of work instructions and decision-making support visualized by
means of a human–machine interface (HMI) such as pick by vision. If the activities are
automated, the machines or robots will receive instructions or decision-making support
such as real-time coordinates for AGV navigation. As the operations move on, these
activities need to be monitored to make sure they are in line with the operational targets.
Technologies such as RFID, virtual reality (VR) and vision systems play an important role in
monitoring. Tracing and tracking the operation is heavily dependent on data transferring
technologies such as IoT, wireless networks and cellular networks.

The stability of networks is necessary to make sure data is produced and consumed
at the right time. Otherwise, data will have less value for the operation. To have an
efficient PL system, in addition to having a long-term plan and strategy, it is essential
to have a dynamic planning system to be able to cope with the latest changes occurring
on the shopfloor. This will not happen unless there are strong data analysis tools and
techniques that can analyze historical and real-time data. Big data, block chain and AI are
some examples of these technologies. Dynamic delivery planning, dynamic route planning
and dynamic logistics resource planning are some examples of the activities that require
real-time data. Layout planning, modeling and simulation, and workflow analysis are
examples of activities that need historical information. The data produced by each of these
three categories needs to be transferred through technologies such as industrial wireless
networks, wireless connections, cellular networks and enterprise service bus (ESB). To store
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the data, cloud services can provide a flexible and cost-effective solution as the data will be
available with no physical restrictions. The data is available to all other activities and all
stakeholders can access the required data at any time.

In order to have a balanced data-driven PL system, it is imperative that each of the
three PL categories receives consistent support from the enabling technologies. Data
quality needs to be secured in all the data life cycle stages, from data acquisition to data
visualization and user interface. It is reasonable to argue that data availability should be
the main concern for a data-driven system.

As a result, all the means and technologies should have a high level of reliability,
which indicates any technology introduction requires thorough consideration. The en-
abling technologies should be developed and implemented in a homogenous manner,
aiming to create a balanced system supporting data flow across the system. Considering
the importance of system reliability and data availability, partial investment in enabling
technologies will not be sufficient. Consequently, regardless of the type of technology, a
systematic approach towards PL development is a prerequisite to meeting data-driven
manufacturing and autonomous supply chains. This result has importance for PL system
owners, as they should pose clear requirements towards technology developers to deliver
a reliable, robust and homogenous system. Besides, long-term targets should be favored
over short-term outcomes in organizational strategies.

The number of industrial implementation for some of the technologies is few in
comparison with older technologies such as RFID. For example, there is little empirical
evidence from implementing technologies within data storage, data processing, and data
visualization. Most of the work is in the preparatory or theoretical level.

The variety of technologies in data acquisition is relatively high compared to other
data life cycle stages. High variation in data collection challenges other steps in the data
life cycle as having so many data sources and data formats requires considerable effort
to complete the life cycle and create value. In addition, the technologies maturity level is
inhomogeneous. Technologies related to data acquisition and data transfer have a longer
implementation history compared to technologies in data storage, data processing and
data visualization. Companies who wish to invest on technologies should be aware of the
fact that, those new technologies might suffer from immaturity. As an example, AI, Big
Data analytics, block chain and machine learning are constantly evolving compare to some
other technologies such as RFID and Barcode. This can cause compatibility issues as some
of the older technologies might be obsolete and new technologies might have integration
problems with legacy systems. As a result, having a long-term perspective in technology
assessment is inevitable.

5. Conclusions and Future Research

In this paper, data-driven PL enabling technologies and their use cases were presented
based on a SLR through reviewing 142 journal articles, and their association with PL activi-
ties were discussed. Production logistics activities were divided into three main categories
including shopfloor activities, planning and scheduling activities, and controlling, tracking
and tracing activities. The identified technologies were grouped in to 10 types and for
each PL activity category, the share of technologies assessed accordingly. The result helps
researchers and business owners to have a more precise picture on how technologies are
mentioned in the literature for PL activities from a system perspective. This helps to build
a ground to transit towards a data-driven state by knowing the applications and use cases
described in the literature for the technologies.

In addition, it is discussed how the identified technologies can contribute to value
creation from a holistic perspective. The production logistics data life cycle is presented
and different steps within the life cycle is described. As discussed in Section 4, performing
data collection, data transfer, data storage, data analysis and data visualization should
happen as a chain in order to create business value for the production logistics system.
Simply collecting or storing data does not lead to value creation.
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It is argued that employing a data-driven approach in PL requires balanced long-
term attention to technological enablers as the maturity level of existing technologies are
inhomogeneous. Some of the technologies might become obsolete over time and some
others are evolving and will have wider applications such as data analytics. This needs to
be considered in technology assessment processes. In line with Figure 6, there are several
technologies that are associated with PL activities categories. Even though data transfer
technologies have no direct value-creation for PL, their stability is of great importance to
have a sustainable data-driven system.

This research has contributed to both academia and industry in the following ways.
Several activities within production logistics are presented with respect to those technolo-
gies that help to adopt a data-driven approach for manufacturing and autonomous supply
chains. Categorizing the PL activities is also helping the researchers to have a more com-
prehensive perspective regarding technology assessment. This research has provided the
opportunity to have a wider look onto the digitalization journey for companies by present-
ing the “big picture” while identifying technologies and their application in data-driven
PL. From a value creation perspective, the importance of having a long-term perspective
and balanced development are discussed. This will help decision makers for any future
investments.

Following points are suggested for future research:

• This study did not investigate the impact of each technology on PL system perfor-
mance. Thus, for future research, it is suggested to study and measure how system
performance can be affected after the PL system is transited towards a data-driven
state. The outcome of this paper is beneficial to suggest technologies enabling the
transition towards a data-driven state. In particular and considering Figure 6, those
technologies related to PL planning and scheduling have a shorter history of im-
plementation compared to the two other categories. As a result, it is hard to judge
the efficiency of the technologies in the planning and scheduling category within
different industrial situations. It is therefore interesting for future research to examine
the efficiency and implementation feasibility of technologies related to planning and
scheduling from a production logistics perspective.

• Even though this study has discussed the supporting role of identified technologies
to complete the data-life cycle and value creation, still, the corresponding role of
each technology in each phase of data-life cycle needs further investigation. By
performing such a study in future, it will be clear which areas need more attention
from a technology developers’ perspective.

• This study carried out a quantitative assessment on technology share for PL activity
categories. Thus, it will be interesting to investigate which of these use cases has
been already proven and are feasible for implementation and which technologies
require further approval. This can be significant to recognize the challenges ahead of
a digitalization transition.
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