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Abstract: This paper is concerned with demand planning for internal supply chains consisting of
workstations, production facilities, warehouses, and transportation links. We address the issue
of how to help a supplier firmly accept orders and subsequently plan to fulfill demand. We first
formulate a linear aggregate planning model for demand management that incorporates elements of
order promising, recipe run constraints, and capacity limitations. Using several scenarios, we discuss
the use of the model in demand planning and capacity planning to help a supplier firmly respond
to requests for quotations. We extend the model to incorporate congestion effects at assembly and
blending nodes using clearing functions; the resulting model is nonlinear. We develop and test
two algorithms to solve the nonlinear model: one based on inner approximation and the other on
outer approximation.

Keywords: supply chain management; demand planning; order promising; capacity planning;
enterprise resource planning; clearing functions

1. Introduction and Literature Review

The tremendous growth of electronic commerce has focused the attention of supplier
firms on the need for both internal and external supply chain integration. To be competitive,
it is now necessary not only to synchronize the activities of one’s own internal supply
chain, but also to develop and manage a partnership with external business partners
and customers. Beamon [1] notes that there has been increasing attention paid to the
performance, design, and analysis of the supply chain as a whole. Keskinocak and Tayur [2]
discuss the role of quantitative models in the electronic commerce context. Customers have
more power and more complex requirements in such a context, which makes flexibility and
customer satisfaction the two major concerns in production–distribution system planning.
Thus, supply chain firms are moving toward customer-oriented planning and decision-
making systems (Askin and Goldberg [3]).

Electronic commerce also makes external supply chain integration possible. External
supply chain integration includes negotiation-based due dates and price setting. High-
speed internet connections allow instant information exchange between supply chain
entities, and consequently reduce transaction costs. A firm can work on the due dates,
configuration, and price of products together with its business partners for mutual benefit.
An internal integration plan is frequently updated as a result of negotiations, while at the
same time providing feedback that impacts the negotiation process itself. Taken to the
extreme, the electronic commerce context can allow a firm to establish a seamless interface
with its external supply chain.

This paper draws on several streams in the literature. The first stream is concerned
with multi-plant coordination and material requirements planning (MRP) systems mod-
elled at the aggregate level. Billington et al. [4] develop mathematical formulations for a
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multi-stage capacity-constrained MRP system. Baker [5] reviews optimization models in
the MRP context, stating that capacity planning is one of the key weaknesses of the MRP
framework and should be done in parallel rather than in sequence with material planning.
Rota et al. [6] develop linear and mixed integer programming (MIP) formulation of a multi-
stage capacity-constrained MRP system, taking into account firm order forecasts and sup-
plier behaviour. While the concept of bill of material is fundamental to assembly systems,
many production–distribution models have ignored this issue. Vidal and Goetschaalckx [7]
point out that most of the models they review do not include bill-of-material constraints.
The models that combine bill-of-material constraints are formulated mainly as MIP in the
literature. Arntzen et al. [8] develop an MIP production–distribution model with bill-of-
material constraints. Jang et al. [9] present a four-module MIP production–distribution
model with bill-of-material constraints. The model we formulate in this paper explicitly
considers bill-of-material constraints and simultaneously addresses capacity planning and
materials planning.

The second stream of research that we draw on is that of demand management.
Demand management is involved with the transfer of demand data, combined from
forecasting, committed orders, and ongoing negotiation, to the production system for
different levels of planning to ensure demands are met (Shapiro [10]). Order promising is
the function within demand management in which firms quote (and subsequently commit
to) due dates and prices. For a firm to quote prices, it should have as precise an estimate
of costs as possible. Since prices and due dates are generally negotiable, the literature on
negotiation in the supply chain context is also relevant. Rosenfield et al. [11] hypothesize
that the shape of the cost versus lead time trade-off curve is a function of four key variables:
the nature of demand, product variety, the economics of transportation, and the structure
of the value-added chain. From a supplier firm’s contractual viewpoint, total cost decreases
with longer delivery time. Moodie and Bobrowski [12] study the due date versus price
trade-off curve from an operational perspective. They design a job shop simulation model
to study different strategies for a firm to negotiate with its customers over price and
promised due dates. The authors use simple step-down functions to approximate the cost
delivery time trade-off curve. Venkatadri et al. [13] propose a linear model to help a firm to
manage demand and quote due dates and prices; however, they do not take in to account
the bill-of-material structure. Upasani and Uzsoy [14] present a literature review of on the
interrelationships between dynamic pricing, lead times, and production planning. The
motivation for this review is that the marketing literature generally ignores capacity issues
while largely focusing on pricing, while the production planning literature assumes that
product demand (or price) is fixed while modelling the effects of capacity.

The third stream of literature that we draw on is that concerned with modelling
congestion effects in manufacturing/distribution systems. Karmarkar et al. [15] present a
multi-item multi-machine job shop model, based on an approximation of open queuing
network to study the lot-sizing problem. Cohen and Lee [16] use queuing models to
estimate lead time in their production–distribution system. Srinivasan et al. [17] develop
a concave nonlinear capacity function to model congestion effects in the context of an
aggregate scheduling model, where the capacity of a workstation is a function of the
workload at the workstation. Their model plans flows and order releases depending on the
time-varying demand in a manufacturing system. Karmarkar [18] proposes functions that
combine lead time and work in process to capture queuing congestion. The author defines
the “clearing function” as the relationship between work in progress (WIP) and throughput
rate. Missbauer [19] derives a clearing function for bottleneck resources based on the
M/G/1 queue to model the behaviour of queuing networks; non-bottleneck resources have
a fixed lead time. In his order-release model, multiple products are aggregated into product
families. Asmundsson et al. [20] derive a partitioned clearing function empirically using a
simulation model of a downsized semi-conductor wafer fabrication plant. In this approach,
the capacity of a resource is partitioned for each product (the partitioning is achieved
through the formulation), and the effect of the product mix on resource utilization and lead
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time is captured by fitting a concave curve to the results of the simulation. Pahl et al. [21]
summarize the literature on production planning with load-dependent lead times. In
the context of a supply chain and operations planning system, Selcuk et al. [22] show
that the shape of the clearing function plays an important role in the completion time
of orders. Asmundsson et al. [23] develop a production planning model for a single-
stage multi-product system that captures the nonlinear relationship between resource
workload and lead times. They use outer linearization to linearize the clearing function
and extend it to multi-stage systems. Missbauer and Uzsoy [24] examine the use of clearing
functions in multi-stage production planning systems, and discuss how the shape of
the clearing function at a particular stage could be dependent on the decisions made at
earlier upstream stages. Kacar et al. [25] develop a linearized clearing-function-based
production planning model and apply it to a large-scale wafer fabrication facility using
two products and hundreds of operations. They use simulation to show that the clearing
function model yields higher profit than the tradition LP-based production planning
models. Charnsirisaksul et al. [26] look at integrated order selection and scheduling, where
the manufacturer has the flexibility to choose lead times and uses that to maximize profit.
More recently, Kefeli and Uzsoy [27] identify bottlenecks in production systems using
dual prices in the presence of congestion at resource nodes. They compare the dual price
information in the congestion-based production planning model in Asmundsson et al. [23]
with the fixed lead time model that does not capture queuing behaviour (as used in
MRP-based systems). An interesting conclusion in this paper is that improvements at a
workcentre with non-zero dual prices, even though it is not the principal bottleneck, can
lead to improvements in the overall system.

In bringing these three streams together (MRP/ERP, demand management, and con-
gestion in production planning), this paper makes an important conceptual contribution.
For example, the papers on congestion in production systems, such as Asmundsson et al. [23]
and Srinivasan et al. [17], do not deal with material availability issues. On the other hand,
the literature on MRP/ERP and demand management does not deal with congestion. From
a practical standpoint, this is relevant to global network production. From a technical
standpoint, this work could be seen as an important step to incorporate load-based lead
times in MRP/ERP. The remainder of this paper is organized as follows. We present a
linear optimization model for demand planning in Section 2 and illustrate the use of the
model in Section 3. In Section 4, we develop an extension to the basic demand planning
model that incorporates congestion effects at assembly and blending nodes through the use
of recipes. This is the main contribution of the paper, since all previous work on congestion
modelling in production planning has been developed for simple products or WIP. The
resulting optimization model is nonlinear, and we develop linear programming-based
algorithms to solve the model and report on the computational performance. Section 5
concludes the paper by summarizing the work and pointing out future research directions.

2. Optimization Model for Demand Planning
2.1. Background

The setting considered for our model is as follows. A supplier firm receives requests
for quotations (RFQs) from its customers. Some of the quotations are accepted, whereupon
they become committed demands, i.e., product and time commitments made by the firm to
its customers. The problem of interest is how a supplier firm should respond to RFQs in a
capacitated multi-period multi-commodity network, while at the same time planning and
allocating its internal flows.

The demand-planning model described in this section involves a multi-commodity
flow allocation problem; the model’s objective is to minimize costs. When the problem is
solved, the supplier firm is able to know what quotations to make in response to the RFQs
(product and date). The model also gives the firm an estimate of the price to be quoted. The
following representation is used for the supply network of the supplying firm in question:
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• Nodes in the network represent external nodes, such as suppliers or customers, and
internal nodes, such as workstations, plants, and warehouses. Production nodes
involve product transformation resulting from manufacturing, assembly, or blending
based on recipes (see below).

• Arcs in the network represent transportation between nodes. In order to simplify
the notation in our model, activities and capacity restrictions are imposed on nodes
instead of arcs.

• A recipe is defined as a process step with input and output products. There is a subtle
difference between the recipe concept and the bill-of-material concept; a recipe models
inputs and outputs at the process level, while a bill of material is always defined at the
product level. For example, a node could represent an assembly step. In this case, a
step in an assembly bill of material could be regarded as a recipe with several discrete
inputs and one output. However, if the node represents a plant, a recipe looks at
inputs and outputs at the plant level. The intermediate steps in the bills of materials
are collapsed to reflect that process level. A recipe could also represent blending with
by-products and is general enough to model any discrete process.

• A new demand or RFQ is defined as a demand under negotiation. In this case, lateness
is minimized through “artificial” penalties, which are penalties set by user discretion.

• As negotiation evolves, a new demand turns into a committed demand when a
quotation (which is a response to an RFQ) is accepted by a customer.

The following are assumed:

• Flows arrive or leave at trans-shipment and demand nodes exactly midway through a
time period. They stay for a minimum of one period at a node.

• At production nodes, it is assumed that flows arrive at the beginning of a time period;
a fraction β of flow may be used for production during the time period (0 ≤ β ≤ 1).

2.2. Notation

The notation used is consistent with Venkatadri et al. [13]. The indices used in the
formulation are:

Items: m
Time Periods: t

Nodes: j,k
Recipes: r

The sets used in the formulation are as follows:

Items: M = {1, 2, . . . , m,}
Time Periods: T = {1, 2, . . . , t,}

Production nodes: IP = {1, 2, . . . , j,}
Trans-shipment nodes: IT = {1, 2, . . . , j,}.
All intermediate nodes: = IP ∪ IT

Suppliers: S = {1, 2, . . . , j,}
Customers: D = {1, 2, . . . , j,}.
All nodes: N = {S ∪ I ∪ D}.
All Arcs: Γ(t,j,t + l(j,k,m),k)

Am
j: Direct successors of resource j for item m

Bm
j: Direct predecessors of resource j for item m

The directed arcs Γ(t,j,t + l(j,k,m),k) represent allowable routings from the output of
resource j to the input of resource k for item m in time period t, where l(j,k,m) is the lead
time between nodes j and k for item m. Supplier nodes do not have predecessors and
demand nodes do not have successors.

The decision variables are as follows:
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fmt,j,t + l(j,k,m),k flow of item m on arc (t,j,t + l(j,k,m),k)

xm
t,j initial inventory of item m at node j ∈ (I∪D) in time period t

Nt,j,r actual number of production runs made using recipe r ∈ Rj at node j ∈ IP in time period t

δm
t,j quantity of item m of committed demand backlogged to customer j ∈ D in time period t

δm
1t,j quantity of item m backlogged in new demand to customer j ∈ D in time period t

sdm
t,j

quantity of committed demand delayed from previous time periods that is satisfied in time period t for
customer j ∈ D

snm
t,j

quantity of new demand delayed from previous time periods that is satisfied in time period t for customer
j ∈ D

The basic parameters are as follows:

um
j capacity utilized by one unit of item m flowing through trans-shipment node j ∈ IT

LXm
j lower bound on the level of stock of item m at node j ∈ I (safety stock)

UXm
j upper bound on the level of stocks of item m at node j ∈ I (space constraint)

l(j,k,m) item m transportation lead time between nodes j and k

Lqm
t,j lower bound on the quantity of item m that can be ordered from node j ∈ S in time period t

Uqm
t,j upper bound on the quantity of item m to order from node j ∈ S in time period t

Ct,j
available capacity of node j ∈ I in time period t. In the case of trans-shipment nodes, Ct,j is in storage units

because space availability is the primary concern in trans-shipment resources.

β
a value between 0 and 1 indicating the percentage of flow coming into an IP node during a time period

that can be used for production

Parameters relating to assembly or blending are as follows:

OPTj,r output item set at node j ∈ IP, using recipe r ∈ Rj

IPTj,r input item set at node j ∈ IP, using recipe r ∈ Rj

Pj recipe set at node j ∈ IP

ROm
j,r number of units of output item m∈ OPTj,r produced when recipe r ∈ Rj is run at node j

RIm
j,r number of units of input item m∈ IPTj,r consumed when recipe r ∈ Rj is run at node j

Vj,r
capacity utilized by one production run of recipe r ∈ Rj at node j ∈ IP. Vj,r and Ct,j in IP nodes are usually

in available machine time. IPTj,r and OPTj,r come from the bill of materials and describe recipe r.

The parameters relating to demand planning are as follows:

dm
t,j committed demand of item m for customer j ∈ D in time period t

dm
1t,j demand a firm may satisfy other than committed demand of item m for customer j ∈ D in time period t (RFQ)

lm lateness order cost applicable to lateness for committed demand per time period

l1m lateness order cost applicable to lateness for new demand per time period

Rm
j unit revenue realized when item m is delivered at node j ∈ D in response to committed demand

Rm
1j unit revenue realized when item m is delivered at node j ∈ D in response to new demand

The parameters in the cost function are as follows:

sm
t,j„k,t+l(j,k,m) cost of ordering one unit of item m in time period t from node j ∈ S to node k∈ (I∪D) with a lead time of l(j,k,m)

cj item-independent unit cost at node j ∈ I per time period

cm
j item-dependent unit production cost at node j ∈ I for item m per time period

hm
j unit holding cost of item m at node j ∈ (I∪D) per time period

bm
j,k unit arc cost (sum of transportation and holding costs) between node j and k for item m per time period

The ordering cost sm
t,j„k,t+l(j,k,m) changes depending on the supplier selected and may

change for the same supplier at different time periods. For a node k ∈ (I∪D), the lead time
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may be different depending on the connected supplier. Parameter cj is only dependent on
resource j, which can be interpreted as labour cost or facility maintenance cost. Parameter
cm

j is dependent on both item m and resource j, which can be interpreted as production or
handling cost. All other unit node costs can also be incorporated into either cj or cm

j.

2.3. The Demand Planning Model

Without loss of generality, it is assumed that lateness to committed demand is allowed
with a penalty.

Our objective (1) is to minimize overall costs:

FC( ft,j,k,m) + ∑
j∈{I∪D}

∑
m∈M

hm
j ∑

t∈T

(
xm

t+1,j+xm
t,j

2

)
+ ∑

m∈M
lm ∑

j∈D
∑

t∈T
δm

t,j + ∑
m∈M

lm
1 ∑

j∈D
∑

t∈T
δm

1t,j

− ∑
m∈M

∑
j∈D

Rm
j ∑

t∈T
sdm

t,j − ∑
m∈M

∑
j∈D

Rm
1j ∑

t∈T
snm

t,j

(1)

The first term in (1) is the flow-related total cost FC(ft,j,k,m), defined as:

FC( ft,j,k,m) = ∑
t∈T

∑
j∈S

∑
k∈Am

j

∑
m∈M

sm
t,j,t+l(j,k,m),k f m

t,j,t+l(j,k,m),k + ∑
j∈I

cj ∑
t∈T

∑
m∈M

∑
k∈Am

j

f m
t,j,t+l(j,k,m),k

+ ∑
j∈I

∑
m∈M

cm
j ∑

t∈T
∑

k∈Am
j

f m
t,j,t+l(j,k,m),k

+ ∑
j∈I

∑
m∈M

∑
k∈Am

j

bm
j,k ∑

t∈T
f m
t,j,t+l(j,k,m),k

According to the assumptions, flows stay for at least one time period when going
through a node. Thus, the ordering, node-independent, and node-dependent costs, as
seen in the first three terms of FC(ft,j,k,m), are flow dependent. The fourth term in the flow
cost function FC(ft,j,k,m) represents the arc costs, which usually include transportation and
holding costs.

The second term in (1) is the inventory cost for all nodes in {I} and {D}. If the inventory
at {D} is not the firm’s responsibility, it can be omitted. The third and fourth terms in
the objective function are the lateness costs for committed demand and new demand,
respectively. The lateness penalty for committed demand should reflect the value of
contractual penalty and loss of goodwill. The lateness penalty for new demand can be
assigned a very small number to give incentive for the model to satisfy new demand when
applicable. It is also a goodwill cost, but in the sense that it should reflect the goodwill
incurred by trying to satisfy an RFQ. The last two terms in the objective function are
revenues for satisfying committed and new demand, respectively. They provide further
incentives for order completion.

Constraint (2) is the inventory conservation equation for each item at trans-shipment
nodes. Inventory is dependent on the inflow and outflow at the node.

xm
t+1,j = xm

t,j + ∑
k∈Bm

j

f m
t−l(k,j,m),k,t,j − ∑

k∈Am
j

f m
t,j,t+l(j,k,m),k ∀j ∈ IT, ∀t, ∀m (2)

Constraint (3) is the inventory conservation equation for each input item at production
nodes. Inventory is dependent on the inflow and quantity consumed in assembly at the
node. Constraint (4) is inventory conservation equation for each output item at production
nodes. Inventory is dependent on the quantity transferred in assembly and outflow at
the node. ∑

r∈Rj

Nt,j,rRIm
j,r

and ∑
r∈Rj

Nt,j,rROm
j,r represent the number of input components

consumed for assembly over all recipes used and the number of output components
produced, respectively.

xm
t+1,j = xm

t,j + ∑
k∈Bm

j

f m
t−l(k,j,m),k,t,j − ∑

r∈Rj

Nt,j,rRIm
j,r
∀j ∈ IP, ∀t, ∀m ∈ IPTj,r (3)
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xm
t+1,j = xm

t,j − ∑
k∈Am

j

f m
t,j,t+l(j,k,m),k + ∑

r∈Rj

Nt,j,rROm
j,r ∀j ∈ IP, ∀t, ∀m ∈ OPTj,r (4)

Constraint (5) is the inventory conservation equation for each input item at demand
nodes. Inventory is dependent on the inflow and satisfied demand.

xm
t+1,j = xm

t,j + ∑
k∈Bm

j

f m
t−l(k,j,m),k,t,j − sdm

t,j − snm
t,j ∀j ∈ D, ∀t, ∀m (5)

Constraint (6) limits the outflow at each trans-shipment node.

∑
m∈M

∑
k∈Am

j

um
j f m

t,j,t+l(j,k,m),k ≤ Ct,j ∀j ∈ IT, ∀t (6)

Constraint (7) imposes capacity limitations on production nodes.

∑
r∈Rj

Vj,r Nt,j,r ≤ Ct,j ∀j ∈ IP, ∀t (7)

Constraints (8) and (9) are imposed to ensure that the outflow does not exceed the
initial inventory.

∑
k∈Am

j

f m
t,j,t+l(j,k,m),k ≤ xm

t,j ∀j ∈ IT, ∀t, ∀m (8)

∑
k∈Am

j

f m
t,j,t+l(j,k,m),k ≤ xm

t,j ∀j ∈ IP, ∀t, ∀m ∈ OPTj,r (9)

Similarly, Constraint (10) ensures that the total input item m consumed in time period
t is less than or equal to the sum of its initial inventory and a proportion of the inflow in
time period t decided by the parameter β.

∑
∀r∈Rj

Nt,j,rRIm
j,r
≤ xm

t,j + β ∑
k∈Bm

j

f m
t−l(k,j,m),k,t,j ∀j ∈ IP, ∀t, ∀m ∈ IPTj,r (10)

Equalities (11) and (12) specify upper and lower bounds on the quantity of raw
materials that can be bought from all suppliers.

∑
k∈Am

j

f m
t,j,t+l(j,k,m),k ≤ UQm

t,j ∀j ∈ S, ∀t, ∀m (11)

LQm
t,j ≤ ∑

k∈Am
j

f m
t,j,t+l(j,k,m),k ∀j ∈ S, ∀t, ∀m (12)

Equalities (13) and (14) define the decision variables sdm
t,j (satisfied committed de-

mand) and snm
t,j (satisfied new demand). In addition, sdm

t,j and snm
t,j take into account

delayed demand accumulated from previous time periods.

sdm
t,j = dm

t,j + δm
t−1,j − δm

t,j ∀j ∈ D, ∀t, ∀m (13)

snm
t,j = dm

1t,j + δm
1t−1,j − δm

1t,j ∀j ∈ D, ∀t, ∀m (14)

Constraint sets (15) and (16) are bounds on inventory at nodes and non-negativity
requirements, respectively. If lateness is not desired or allowed, the model can be eas-
ily simplified.

LXm
j ≤ xm

t,j ≤ UXm
j ∀j ∈ I, ∀t, ∀m (15)

All
{

xm
t,j, δm

t,j, δm
1t,j, sdm

t,j, snm
t,j, f m

t,j,t′ ,k(t
′ > t), Nt,j,r

}
≥ 0 (16)

The optimization model then is:



Logistics 2021, 5, 3 8 of 24

DPP: Minimize (1)
Subject to: (2) to (16)

2.4. Using the Model

DPP is a versatile model that can be used for order promising, internal flow planning,
capacity planning, and bottleneck elimination. The dual price on the capacity bundle
Constraints (6) and (7) can be interpreted as the improvement in the objective function if
an additional resource j unit in time period t is made available. The additional resource
unit means extra storage units or production time in trans-shipment nodes or production
nodes, respectively. Bottlenecks can be identified by looking at these dual prices.

Bottleneck Elimination for Capacity Planning

The direct way to eliminate an identified bottleneck is to increase capacity. An updated
model with increased capacity could be solved to find and alleviate the next bottleneck
resource. Another option is to modify the capacity constraint for capacity planning. Instead
of treating capacity as just one parameter, it may be broken up into several levels. For
example, there may be two capacity categories at a node j, regular time capacity and
overtime capacity, with overtime capacity having a higher cost. In general, there could be
n capacity categories. The decision variable Cn,t,j represents the capacity in category n at
node j in time period t. The capacity parameter UCn,t,j is the upper bound of Cn,t,j. The unit
capacity cost in category n at node j in time period t is CCn,t,j. By replacing Constraints (6)
and (7) by (17) and (18), respectively, and adding Constraint (19) and Bound (20), we get
the new model DPP′.

∑
m∈M

∑
k∈Am

j

um
j f m

t,j,t+l(j,k,m),k ≤
N

∑
n=1

Cn,t,j ∀j ∈ IT, ∀t (17)

∑
r∈Rj

Vj,r Nt,j,r ≤
N

∑
n=1

Cn,t,j ∀j ∈ IP, ∀t (18)

Cn,t,j ≤ UCn,t,j ∀j ∈ IP, ∀n, ∀t (19)

Cn,t,j ≥ 0 ∀j ∈ I, ∀n, ∀t (20)

The DPP objective function (1) is modified as follows by adding the term Cn,t,j:

Min : O1 + ∑
j∈I

∑
t∈T

∑
n

CCn,t,j · Cn,t,j (21)

Model DPP′ is now solved as:
Minimize (21)
Subject to: (2) to (5), (8) to (20)
Assuming that CCm,t,j (for example, regular time cost) < CCm+1,t,j (for example, over-

time cost) DPP will always choose less expensive capacity modes before choosing more
expensive capacity. Thus, explicit information about the bottleneck could be obtained, and
the bottleneck could then be removed by adding new capacity tiers.

Several other extensions to DPP are possible; however, they are not discussed due to
lack of space. One such extension is explicitly modelling customer orders and the lateness
of those orders. Details can be found in Wang [28]. The DPP model is quite close to the
models in Chen et al. [29] and Chen et al. [30], who pioneered the research literature in order
promising. Ball et al. [31] present a generic framework for order promising and discuss
applications at Dell and Toshiba. There are other models in the literature of this nature. As
already mentioned, Arntzen et al. [8] formulated a large-scale model for global production
and distribution (GSCM) that incorporates multi-product bill of materials for a large
electronic supply chain. Shapiro et al. [32] developed a strategic production and distribution
planning application for a large consumer products company. Degbotse et al. [33] presented
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a semiconductor supply chain planning strategy implemented at IBM. They decomposed
the problem by dividing the bills of materials product structure horizontally and vertically
into complex and simple portions for the stages of semiconductor manufacturing; the
complex portion was solved with an MIP and the simple portion with heuristics containing
embedded LPs. Fordyce et al. [34] discussed planning and scheduling in semiconductor-
based packaged goods companies.

3. Illustrative Example

The business case for such systems is seen in the electronics and aviation industries,
where queuing effects are experienced due to variations in processing times. For example,
in the electronic industry, semiconductor wafers undergo reentrant process steps through
several workstations, effectively creating a queuing network. In the aviation industry,
machining can be quite intricate and varies every time a component is made, making the
processing time non-deterministic. In addition, in the defense aviation industry, assembly
time is non-deterministic because it is not only complex, but also involves extensive testing.

Consider a simple internal supply chain network with three assembly plants, two
warehouses, one upstream supplier, and three downstream customers (Figure 1). Mate-
rial flow starts from suppliers, undergoes transformation and finally reaches customers.
NC, TC, and LT are abbreviations for the node cost, transportation cost, and lead time,
respectively. Note that direct shipping is allowed between assembly node 4 in stage 3
and customer node 7 in stage 5, with a higher transportation cost. Node 7 is supplied by
nodes 4, 5, and 6, and node 8 is supplied by nodes 5 and 6. Node 9 is supplied only by
node 6. We assume that the supplier’s supplier charges a constant price for raw materials.
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Figure 1. Example of a supply chain network.

The bill of materials is shown in Figure 2. Tables 1–4 show the parameter settings.
Raw material (items 1 to 6) are purchased by the firm from a supplier in stage 1. They then
enter assembly nodes 2 or 3, where two recipes are used. Sub-final items 3 and 7 leave
stage 2 and enter assembly node 4 for final production. End product 8 goes through either
warehouse 5 or 6 in stage 4 to reach the customers in the final stage. We also set an upper
bound on space requirements at assembly nodes of 600 and 300 units for input items and
for output items, respectively. The length of each time period is one week.
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Table 1. Unit holding costs per time period (4% of unit cost).

Item ID 1 2 3 4 5 6 7 8
Unit Cost 4 10 18 5 3 2 15 200

Unit Holding Cost 0.016 0.04 0.072 0.02 0.012 0.08 0.06 0.8

Table 2. Capacity consumed per time period by a unit in trans-shipment nodes.

Node ID Item ID Capacity Consumed by Unit

2 8 8
3 8 8

Table 3. Capacity consumed per time period by a production run in production nodes.

Node ID Recipe ID Capacity Consumed by Production

4 1 1
4 2 2
5 1 1
5 2 2
6 3 3

Table 4. Product-dependent unit cost in all intermediate nodes per time period.

Node ID Item ID Product Dependent Unit Cost

2 8 2
3 8 2.2
4 1 0.645
4 2 0.8
4 3 0.965
4 4 1.025
4 5 1.14
4 6 1.26
4 7 1.45
5 1 0.77
5 2 0.925
5 3 1.09
5 4 1.15
5 5 1.265
5 6 1.385
5 7 1.575
6 3 1.215
6 7 1.7
6 8 2.75
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The scenarios below show how the model can be used for demand planning. In all
the scenarios below, the value of β in DPP was assumed to be 0. All problems below
were run on a Pentium III Personal Computer with a Celeron CPU running at 850 MHZ
using MINOS 5.5. The problems ran in less than a few seconds. The objective function
values below are in the same units (dollars, Euros, yen, etc.) as the unit, unit holding, and
transportation costs.

3.1. Base-Case Scenario: Quoting Due Dates to Customers

It is assumed that initial inventories are 200 units in IT nodes, and 100 units and
50 units in IP nodes for input and output products, respectively. Table 5 shows the RFQ
data at customer nodes 7, 8, and 9 for time periods 6 to 12. Let us assume that none of this
demand is committed, that is, all demand values are treated as new demand or RFQ with
assumed lateness cost on new demand.

Table 5. RFQ for all customers in basic scenario.

Node/Time Period/Demand 6 7 8 9 10 11 12

Node 7 80 75 120 135 170 140 100
Node 8 30 45 50 45 55 40 35
Node 9 50 150 20 100 20 25 60

Total Demand 160 270 190 280 255 205 195

Solving DPP, the optimal objective function value obtained is 227,204.74, showing
that all deliveries can be made within 12 time periods. However, this does not mean every
delivery can be made in time. Scenario 1 (base case) in Table 6 shows the total amount of
lateness to customers 7, 8, and 9. The lateness values in the table should be used by the
firm to promise orders.

Table 6. Lateness in various scenarios.

Scenario Node ID Time Period Total Lateness

Scenario 1:
Base Case

7 10 123.34

8 10 25

9 9 23.34

9 10 20

Objective Function Value = 227,204.74

Scenario 2:
Increased Demand

for Customer 8

7 10 193.34

8 10 25

9 9 93.34

9 10 20

Objective Function Value = 278,427.98

Scenario 3:
New Recipe

7 10 131.9

7 11 17.17

9 9 36.67

9 10 31.67

Objective Function Value = 257,674.85

Scenario 4:
Order Cancellation

7 11 6.67

9 11 6.67

Objective Function Value = 159,620.03
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3.2. Order Change: Increased Demand for Customer 8

Assume that customer 8 increases demand from time period 10 from 55 units to
90 units even before the firm has had a chance to respond to the RFQ in Table 6. By
the running the model again, it is seen that this change causes increase in lateness for
customers 7 and 9, and the optimal objective function value is 278,427.98 (see Scenario 2
in Table 6). The increase in objective function value includes two types of cost: the cost to
push more product through the system and the cost of late deliveries at customers 7 and 9,
beyond the lateness they agreed to. Clearly, the firm should charge customer 8 at least the
difference in cost (278,427.98 − 227,204.74 = 51,223.24) in order to accept the increase.

3.3. New Recipe

Assume that the customer at node 8 comes in with an RFQ for a second item that has
a new bill of material (Figure 3) in addition to the older RFQ for item 8, all before the firm
has responded to any RFQ. The new final item 12 is assumed to have higher RFQ lateness
cost than item 8. The customer asks for an additional 25 and 15 units of item 12 at time
periods 11 and 12, respectively.
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After solving DPP, the result shows that this scenario causes even more lateness for
the other two customers. The optimal objective function value is 257674.85 (Scenario 3
in Table 6). Thus, the firm should charge the customer at least the difference in cost
(257,674.85 − 227,204.74 = 30,470.11) to accept this change to the RFQ.

3.4. Order Cancellation

Going back to the basic scenario, it is assumed that the RFQs are accepted. Subse-
quently, customer at node 8 cancels his or her order in time period 10. DPP is solved again
to evaluate the consequence of this cancellation. The optimal objective function value drops
to 159,620.03 (Scenario 4 in Table 6), and lateness for the other two customers is greatly
improved. Only customers 7 and 9 will have late deliveries; in each case, 6.67 units of
demand in time period 11 will be delayed by 1 period.

3.5. Demand Planning and Capacity Bottleneck Alleviation

Another feature of this model is its ability to identify the resource bottlenecks of
each time period dynamically. The goal is minimizing total cost, instead of lateness. Four
decision factors determine how to alleviate a bottleneck: dual price, sensitivity, cost of
adding one unit of capacity, and the ceiling on how much capacity can be added. At
any given point in time, the resource with the highest positive value after subtracting
the corresponding cost of adding a unit of capacity from its dual price is regarded as the
bottleneck at that time period. The amount of capacity to be added is decided by the
sensitivity range and the ceiling. Demand managers can find and remove core bottlenecks
using the algorithm described below:



Logistics 2021, 5, 3 13 of 24

Bottleneck Alleviation Algorithm

Step 1: Solve the model DPP and obtain resource dual prices and sensitivity ranges.
Step 2: Find the resource with the highest value after subtracting the correspond-

ing cost of adding capacity from its dual price. If the value is positive, go to step 3;
otherwise, stop.

Step 3: Add capacity up to the ceiling or upper bound determined by the sensitivity
range of the bottleneck.

Step 4: Go to step 1.
The procedure thus alleviates bottlenecks by solving the model repeatedly after capac-

ity modifications. Consider the base scenario and the effects of adding overtime capacity,
which cannot exceed 15% of the regular capacity for all production. Assume that the cost
of adding one unit of capacity is 100 for node 4 and 130 for node 5. After DPP is solved, the
dual prices on the capacity constraint are as specified in Run 1 of Table 7.

Table 7. A Summary of four runs of the bottleneck alleviation algorithm.

Node
ID

Time
Period

Capacity
Cost

RUN #1 RUN #2

Capacity Dual
Price Improvement

Sensitivity
Range
(Upper
Bound)

Capacity Dual
Price Improvement

Sensitivity
Range
(Upper
Bound)

4 2 100 600 165.88 1025.09 615.56 600 165.9 1025.4 615.56
4 3 100 600 123.03 537.29 623.33 600 123.04 537.52 623.33
4 4 100 600 80.17 −462.63 623.33 600 80.18 −462.4 623.33
4 5 100 600 37.31 −1462.6 623.33 600 37.32 −1462.3 623.33
4 6 100 600 1 −26,070 863.33 600 1 −26,070 863.33
5 2 130 800 186.32 1313.95 823.33 823 186.33 18.5889 823.33
5 3 130 800 164.87 542.577 815.56 800 164.89 7.6758 800.22
3 4 130 800 121.98 −187.11 823.33 800 121.98 −2.6466 800.33
5 5 130 800 79.16 −1186.1 823.33 800 79.17 −16.774 800.33
5 6 130 800 36.26 −2187 823.33 800 36.27 −30.931 800.33

Node
ID

Time
Period

Capacity
Cost

RUN #3 RUN #4

Capacity Dual
Price Improvement

Sensitivity
Range
(Upper
Bound)

Capacity Dual
Price Improvement

Sensitivity
Range
(Upper
Bound)

4 2 100 615 165.9 6172.85 708.67 690 165.9 1230.35 708.67
4 3 100 600 123 1400.47 660.89 600 123 429.41 618.67
4 4 100 600 80.18 −1856.5 693.67 600 80.18 −370.04 618.67
4 5 100 600 37.33 −5870.3 693.67 600 37.33 −1170 618.67
4 6 100 600 1 −18546 787.33 600 1 −3695.7 637.33
5 2 130 823 186.33 2057.17 859.52 823 186.33 1051.68 841.67
5 3 130 800 164.89 3268.15 893.67 800 164.89 651.396 818.67
3 4 130 800 121.98 −751.23 893.67 800 121.98 −149.73 818.67
5 5 130 800 79.17 −4761.2 893.67 800 79.17 −949 818.67
5 6 130 800 36.27 −8779.7 893.67 800 36.27 −1166 812.44

It is clear that node 5 at time period 2 is the bottleneck. Twenty-three extra capacity
units are added to the bottleneck (this is less than 15% of the basic capacity), based on the
sensitivity range (823.33–800), and the model is run again. The optimal objective function
value is 225,907.56 (see Run 2 of Table 7). The total lateness for all nodes drops to 178.52, and
node 4 at time period 2 becomes the new bottleneck. In run 3, the problem is solved again
with 615 units of capacity in node 4, time period 2, because the sensitivity range indicates
that the capacity can be increased up to 615.56 units. After this run, the optimal objective
function value is 221,929.13, and the total lateness across all nodes is 171. Node 4 at time
period 2 is still the bottleneck (run 3 of Table 7). Although increasing capacity up to 708.67
is the best solution, only 75 more capacity units can be added to the bottleneck because of
the 15% ceiling rule. In the last run shown in Table 7, the optimal objective function value
decreases to 212,500.85 (decreased by 4.24% from the third run), and the total lateness for
all nodes is 133.51 (decreased by 21.92% from the third run). The bottleneck moves back
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to node 5 at time period 2. The process of bottleneck elimination can be continued in this
fashion until it is not economical to alleviate the bottleneck.

4. Modelling Congestion Effects

In this section, we extend the model developed in Section 2 to incorporate conges-
tion effects.

4.1. Clearing Functions

The throughput of a network node (output in a time period) depends on both the
nominal capacity of the node and the WIP of input product available, the former being the
upper bound on throughput. Without any congestion in the system, the clearing function is
linear (function 1 in Figure 4). Note that function 1 is implicit in the DPP model described
in Section 2 and is defined by Constraints (7) and (10). However, when there is congestion
in the system, the WIP versus throughput relationship is more like function 2 shown in
Figure 4. Karmarkar [18] and Srinivasan et al. [17] introduced the concept of the concave
nonlinear capacity function to link WIP and lead time in capacity planning for discrete
time period models by developing clearing functions based on queuing models. The
concavity assumption is appropriate for most production facilities, where production rate
increases asymptotically to a limit as the WIP level increases. Karmarkar [18] developed
clearing function formulations for a single commodity model in an M/M/1 queuing
system, and a multi-commodity model in an M/G/1 queuing system, using continuous
time periods. An analogous clearing function for a single-product discrete time period
model based on input/output control was also discussed. Conway et al. [35] found that
the shape of the capacity versus WIP curve was sharply concave for serial production
lines. Bhatnagar et al. [36] also observed the concavity of the clearing function in assembly
systems using a simulation approach.
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4.2. The Nonlinear Clearing Function Model

A new continuous variable, Zt,j,r (≥ 0), is introduced to model capacity congestion:

Zt,j,r
maximum number of production runs made using recipe r ∈ Rj at node j ∈ IP in

time period t.

The clearing function illustrations in Figure 4 involve only one product. When several
products are involved, the input item that constrains the maximum number of production
runs in time period t for a recipe represents the critical WIP for that time period. Therefore,
the following constraint set is added to the formulation:

Zt,j,r ≤
xm

t,j

RIm
j,r
∀j ∈ IP, ∀t, ∀r ∈ Rj, ∀m ∈ IPTj,r (22)

Zt,j,r ≥ 0 ∀j ∈ IP, ∀t, ∀r ∈ Rj (23)

The ratio on the right-hand side of (22) represents the number of runs of recipe r at
node (t,j) that can be made based on initial inventory of input product m. Since a recipe has
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many input products, the available (maximum) number of production runs is constrained
by the product for which this ratio is the smallest.

The clearing functions described in this paper so far are based on the single-product
queue. In order to operationalize these clearing functions, we have to ensure that only one
product is produced at a resource at a given time. We first examine the case when only
one recipe can be run at a node in a given time period. In this case, the actual number of
production runs that can be made at a production node depends on the nominal capacity
of the node Ct,j, the capacity usage Vj,r, and the clearing function, defined as gj,r(Zt,j,r), and
is modelled by Constraint (24). Constraint (7) of the formulation is now redundant (since
we will show in the next section the value of the clearing function gj,r(Zt,j,r) approaches 1
as Zt,j,r approaches infinity), ensures that the sum of the production usage of all recipes
at a node does not exceed its nominal capacity. In order to ensure that only one recipe
can be run at a time during a given time period, we introduce a new zero/one variable,
Yt,j,r, which takes a value of 1 if recipe r is run at node (t,j). In Constraint (25), M is a
large number, and therefore, the binary variable Yt,j,r is set to 1 when Nt,j,r is non-zero.
Constraint (26) enforces the one-recipe at a node-time rule. Constraint (27) simply defines
the Yt,j,r’s as binary variables.

Nt,j,r ≤
Ctj

Vj,r
gj,r(Zt,j,r) ∀j ∈ IP, ∀t, ∀r ∈ Rj (24)

Yt,j,r ≥
Nt,j,r

M
∀j ∈ IP, ∀t, ∀r ∈ Rj (25)

∑
r∈Rj

Yj,r ≤ 1 ∀j ∈ IP, ∀t (26)

Yt,j,r ∈ {0, 1} ∀j ∈ IP, ∀t, ∀r ∈ Rj (27)

The non-linear extension of DPP may now be written as:
DPPNL: Minimize (1)
Subject to: (2) to (6), (8) to (16) and (22) to (27)
It must be noted that both gj,r(Zt,j,r) and Nt,j,r are defined as continuous variables,

while in reality, they should both be integers. This may not be an unreasonable assumption
in the rolling-horizon planning context, where only the decisions in period one are imple-
mented and all the decisions in subsequent periods are re-planned. Therefore, a simple
rounding down of these variable values, while not optimal for discrete parts assembly
processes, would be feasible and practical.

As mentioned before, a big difference between the approach in the literature and this
work is that instead of working directly with products, the recipes are the virtual entities
queueing at the nodes. This is an important contribution of this paper, because we model
congestion in assembly or blending through recipes.

In order to allow several recipes to be run at a node in the same time period, we can mod-
ify Constraint (24) in a manner analogous to the capacity constraints in Asmundsson et al. [23].
The capacity for each recipe r is partitioned through Constraint (28), separable by recipes
as follows:

Nt,j,r ≤ αt,j,r
Ctj

Vj
gj( ∑

r∈Rj

Zt,j,r) ∀j ∈ IP, ∀t (28)

∑
r∈Rj

αt,j,r = 1 ∀j ∈ IP, ∀t (29)

This method uses a partitioning variable, αtjr, for each recipe r as a multiplier in the
right-hand side of Constraint (28), with the additional condition that the sum of the αtjr’s
is 1, as shown in Constraint (29). Constraints (25) to (27) may be dropped for this case.
Also, the variable Vj is used instead of variable Vj,r, because the average capacity used by
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one production run of recipe r is now defined in terms of the node and is an average across
all recipes at the node.

In what follows, three different clearing functions are adapted from the literature to
our model. We will show that they are concave and continuously differentiable, making
them computationally tractable (Asmundsson et al. [23] assume that the clearing function
for the partitioned capacity case in Constraint (28) is concave). The assumption behind the
clearing functions above, which are all separable by recipe r, is that during a period t, one
recipe is run repeatedly for steady-state queues to form. In other words, it is assumed that
different recipe runs are not mixed together because the queuing behaviour of a multi-class
node is different from the queuing behaviour of a single-class node.

4.2.1. Input/Output Clearing Function

Karmarkar [18] employs the following function based on the M/M/1 queue:

Xt = Min
[

P
Wt−1 + Rt

Wt−1 + Rt + k
, Wt−1 + Rt

]
where Wt-1 is the initial WIP in time period t, Rt the constant release rate in time period t,
Xt the actual production rate in time period t, and P the maximum production possible in
time period t. The constant k (>0) is used to generate a family of clearing functions. The
second argument of the above function is that production cannot also exceed the total of
WIP in the previous period and the current release. In our model, Constraint (22) ensures

this. Also,
Ct,j
Vj,r

is the maximum production rate per time period at node (j,t), using recipe
r, with Zt,j,r representing the available (maximum) number of runs, and Nt,j,r being the
actual number of runs. Hence, the analogous form of the constraint corresponding to the
input/output clearing function of Karmarkar [18] is as follows:

Nt,j,r ≤
Ct,j

Vj,r

Zt,j,r

Zt,j,r + k
∀j ∈ IP, ∀t, ∀r ∈ Rj (30)

Clearly, lim
Zt,j,r→∞

Zt,j,r

Zt,j,r + k
= 1

Strictly speaking, this constraint models the clearing function for a single server station.
However, since DPPNL is a supply chain network model, constraint may be appropriate
where a bottleneck M/M/1 workstation is identified. Alternatively, individual M/M/1
workstations could be modelled in the supply chain network (the model size will then
be large).

4.2.2. M/D/1 Clearing Function

This function is adapted from Karmarkar et al. [15], who use an M/G/1 model to
study lead time and WIP as a function of batching policy for multiple products. Consider
the set IP as an open queuing network where each node is a workstation. Also, assume that
there is only one recipe per production node. Since each run represents the processing of a
group of components (from the input components set), and assuming that the assembly
will not proceed until there is at least one group of components available,

ρj,r = I sever utilization per time period at node j using recipe r.
Tq = average time spent in queue.
Note that batch sizes are considered to be one, and variations in processing time are

ignored (since the M/D/1 assumes constant service time).

ρj,r=
Nt,j,r

Ct,j
Vj,r

=
Nt,j,r

κ

(
Where, κ =

Ct,j

Vj,r

)
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Using the Pollaczek–Khintchine formula for the M/D/1 queue:

Tq =
ρj,r

2

2(1− ρj,r)

1
λj,r

=
(

Nt,j,r
κ )

2

2(1− Nt,j,r
κ )

1
Nt,j,r

=
Nt,j,r

2κ(κ − Nt,j,r)

Applying Little’s law (Hopp and Spearman [37]):

Zt,j,r = Nt,j,r

(
Tq +

1
κ

)
= Nt,j,r(

Nt,j,r

2κ(κ − Nt,j,r)
+

1
κ
) =

2κNt,j,r − N2
t,j,r

2κ(κ − Nt,j,r)

Solving for Nt,j,r gives:

Nt,j,r = κ
(

Zt,j,r + 1−
√

Z2
t,j,r + 1

)
=

Ct,j

Vj,r

(
Zt,j,r + 1−

√
Z2

t,j,r + 1
)

To use the same functional form as in Constraint (24), the above equation is rewritten as:

Nt,j,r ≤
Ct,j

Vj,r
(Zt,j,r + 1−

√
Zt,j,r

2 + 1) ∀j ∈ IP, ∀t, ∀r ∈ R (31)

Again,

lim
Zt,j,r→∞

(Zt,j,r + 1−
√

Zt,j,r
2 + 1) = 1

This clearing function representation is applicable for an M/D/1 bottleneck station
at an aggregate node in the supply chain network. Alternatively, the workstations in the
queuing network can be represented as individual nodes in the network.

4.2.3. General Clearing Function

This function is adapted from Srinivasan et al. [17], and is modelled as follows:

gj,r(Zt,j,r) = 1− e−µZt,j,r ,

where µ can be assigned any value to generate a family of clearing functions. Setting µ=
Vj,r
Ct,j

results in the value of the function being always below the 45-degree line. To use the same
functional form as in Constraint (24), the congestion constraint is written as:

Nt,j,r ≤
Ct,j

Vj,r
(1− e−µZt,j,r ) (32)

As before,
lim

Zt,j,r→∞
(1− e−µZt,j,r ) = 1

This clearing function is generic and useful when the queuing behaviour at a node
is complex and the underlying process is not understood. However, there may empirical
data to fit the clearing function using regression to choose the value of the parameter µ.

The function gj,r(Zt,j,r) is concave in all three cases. A question that arises is which of
these functions should be used. The assumptions behind the first two clearing functions
(Sections 4.2.1 and 4.2.2) should be looked at carefully before applying either. In the
case of the general clearing function (Section 4.2.3), it can be used almost universally.
In any case, the parameters chosen should reflect the throughput characteristics of the
production system.

DPPNL has a linear objective function with linear constraints and a non-linear con-
straint, either Constraint (30), Constraint (31) or Constraint (32). Therefore, DPPNL can be
solved numerically using a nonlinear programming package such as MINOS, which uses
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the projected augmented Lagrangian method of Robinson [38]. The next section shows
how two linear programming-based algorithms can be used to solve the model.

4.3. Algorithms for DPPNL

Two different algorithms are proposed for DPPNL: inner approximation using piece-
wise linear programming and outer approximation using the Kelley’s cutting plane method.

4.3.1. Inner Approximation

The clearing function gj,r(Zt,j,r) can be represented as a summation of continuous
single-variable piecewise linear functions to give an inner approximation. One of the most
important issues in piecewise linear programming is whether the adjacency criterion will
hold. Fortunately, the adjacency criterion is automatically satisfied by the optimal solution
in a convex separable program under which our problem is a subset (Simmons [39]). Thus,
no binary variables are necessary to explicitly model adjacencies.

To implement the piecewise linear approximation, I pieces (I + 1 points) are used
for each Zt,j,r. Herein, νi

j,r is defined as the coordinate of each piece variable, and λi
t,j,r as

the new decision variable in the piecewise linearized function. The concave function is
evaluated at each point gj,r(νi

j,r).

Since gj,r(Zt,j,r) =
I

∑
i=0

gj,r(ν
i
j,r)λ

i
t,j,r∀j ∈ IP, ∀t, ∀r ∈ Rj, gj,r(Zt,j,r) is replaced with the

piecewise linearized summation
I

∑
i=0

gj,r(ν
i
j,r)λ

i
t,j,r and Constraints (33), (34), and (35) are

introduced, as shown below:

I

∑
i=0

λi
t,j,r = 1 ∀j ∈ IP, ∀t, ∀r ∈ Rj (33)

Zt,j,r =
I

∑
i=0

νi
j,rλi

t,j,r ∀j ∈ IP, ∀t, ∀r ∈ Rj (34)

0 ≤ λi
t,j,r ≤ 1 ∀j ∈ IP, ∀t, ∀r ∈ Rj (35)

The optimal solution to DPPNL can be obtained to any degree of accuracy by in-
creasing the number of pieces. However, the formulation is entirely linear and can be
solved efficiently.

4.3.2. Outer Approximation

Unlike the inner approximation method that solves one large DPPNL problem, the
Kelley’s cutting plane algorithm (KCP) may be used as an outer approximation technique.
Outer approximation requires several iterations, as the problem size grows slowly with
each iteration. A concave polyhedron is formed, iteration by iteration, to cover the original
smooth concave function. The problem is first solved with the nonlinear constraint replaced
by linear constraints, which are above the corresponding concave constraints and thus
provide a feasible region larger than what is allowable. Constraints are generated by
adding additional tangential lines to the concave function, based on the previous solution,
at the point where the solution is infeasible for the original problem. The problem is
solved again until the stopping condition is met; the solution should be feasible or the
decrease in optimal objective function value must be less than the scalar ε. The cutting
plane method thus develops an outer approximation. An optimal or near optimal solution
can be reached by choosing an appropriate scalar, and the number of iterations can increase
if more accuracy is desired.

The outer approximation (Kelley’s cutting plane) algorithm for DPPNL is as follows:
Step 1: Initialization

(1) Set iteration counter i = 0, L = ∅.



Logistics 2021, 5, 3 19 of 24

(2) Drop Constraint (24) and define the following linear constraint:

Nt,j,r ≤
Ctj

Vj,r
(a0

t,j,r + b0
t,j,rZt,j,r) ∀j ∈ {IP}, ∀t, ∀r ∈ Rj(L0)

where:
b0

t,j,r = ∇gj,r(0), a0
t,j,r = 0

Choose a scalar ε.
Step 2: Main step

(1) Set L← L ∪ Li .

(2) Solve DPPNL.

Let Ni
t,j,r, Zi

t,j,r denote the solution to iteration i.

Let Oi be the optimal objective function value to iteration i.
Is gj,r(Zi

t,j,r)− (ai
t,j,r + bi

t,j,rZi
t,j,r) < 0 and Oi−1 −Oi > ε ?

If no: stop; the optimal solution has been found.
If yes: I = i + 1
Write new constraint:

Nt,j,r ≤
Ctj

Vj,r
(ai

t,j,r + bi
t,j,rZt,j,r)∀j ∈ IP, ∀t, ∀r ∈ Rj(Li)

where:
bi

t,j,r = ∇gj,r(Zi−1
t,j,r ), ai

t,j,r = gj,r(Zi−1
t,j,r )− bi

t,j,rZi−1
t,j,r

Go to step 2
If no: stop.
Convergence is guaranteed when a feasible solution exists and the nonlinear con-

straints are convex and continuously differentiable (Zangwill [40], Luenberger and Ye [41],
pp. 463–465).

Proposition 1. The I/O clearing function in Section 4.2.1 is concave and continuously differentiable.

gj,r(Zt,j,r) =
Ct,j

Vj,r

Zt,j,r

Zt,j,r + κ

Taking the first derivative, gj,r
′(Zt,j,r) =

Ct,j
Vj,r

κ

(Zt,j,r+κ)2 , it can be seen that gj,r(Zt,j,r) is

continuously differentiable in the domain Zt,j,r ≥ 0 (since k > 0).

The second derivative, gj,r
′′ (Zt,j,r) =

−2Ct,jκ

Vj,r
/(Zt,j,r + κ)3, is always negative. There-

fore, gj,r(Zt,j,r) is concave.

Proposition 2. The M/D/1 clearing function in Section 4.2.2 is concave and continuously differentiable.

gj,r(Zt,j,r) =
Ct,j

Vj,r
(Zt,j,r + 1−

√
Zt,j,r

2 + 1)

Taking the first derivative, gj,r
′(Zt,j,r) =

Ct,j
Vj,r

(1− 1/
√

Zt,j,r
2 + 1), it can be seen that

gj,r(Zt,j,r) is continuously differentiable in the domain Zt,j,r ≥ 0.

The second derivative, gj,r
′′ (Zt,j,r) =

−Ct,j
Vj,r

/(
√

Zt,j,r
2 + 1)

3/2
, is always negative. There-

fore, gj,r(Zt,j,r) is concave.

Proposition 3. The general clearing function in Section 4.2.3 is concave and continuously differentiable.
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gj,r(Zt,j,r) = 1− e−µZt,j,r

Taking the first derivative, gj,r
′(Zt,j,r) = µe−µZt,j,r , it can be seen that gj,r(Zt,j,r) is

continuously differentiable in the domain Zt,j,r ≥ 0. The second derivative, gj,r
′′ (Zt,j,r) =

−µ2e−µZt,j,r , is always negative. Therefore, gj,r(Zt,j,r) is concave.

Proposition 4. DPPNL converges to a limit solution using the Kelley’s cutting plane method when
any of the clearing functions in Sections 4.2.1–4.2.3 is used in Constraint (16).

Note that (24) may be rewritten as follows:

Nt,j,r −
Ctj

Vj,r
gj,r(Zt,j,r) ≤ 0 ∀j ∈ IP, ∀t, ∀r ∈ Rj

From Propositions 1, 2, and 3, gj,r(Zt,j,r) is concave and continuously differentiable in
each of the three cases for the clearing function. Hence, the −gj,r(Zt,j,r)’s are differentiable
convex functions, and the entire constraint set in DPPNL is convex. Luenberger and Ye [41]
(pp. 463–465) show that the Kelley’s cutting plane method converges to a limit solution for
such a problem.

4.3.3. Computational Performance

In this section, results obtained by implementing the solution algorithms for DPPNL
are discussed. All problems were run on a Pentium III Personal Computer with a Celeron
CPU running at 850 MHZ.

Comparing Inner and Outer Approximation

For the sample case discussed in the paper, the RFQs in Table 8 are used to solve the
problem using inner approximation. The optimal solution converges to 48,323 when the
number of pieces is 55. Figure 5 shows the results.

Table 8. Demand data for DPPNL computations.

Node/Time Period/Demand 6 7 8 9 10 RFQ in Periods 11–18

Node 7 80 75 120 135 170 175
Node 8 30 45 50 45 55 44
Node 9 50 150 20 100 20 87

Total Demand 160 270 190 280 255 306
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The same problem is solved using the outer approximation method. An objective func-
tion value of 48,323 is reached from the ninth iteration (cut) onwards, with no significant
change. The results are shown in Figure 6.
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As seen above, both methods converge to an objective function value of approximately
48,323. Outer approximation provides a more accurate result, but the gap between the
starting value and the final value is quite large. On the other hand, inner approximation
gives a less precise result, but the difference between the starting value and the final value
is much smaller.

It is interesting to notice that outer approximation solves the fully relaxed problem
at first and then tightens the constraint set as close to the nonlinear constraint as possible,
iteration by iteration. In other words, the method always underestimates the real optimal
objective function value. Inner approximation does exactly the opposite, i.e., it always
overestimates the real optimal objective function value. Thus, the inner approximation
result is the upper bound and the outer approximation result the lower bound on the
optimal solution.

Model Solution Time for Different Problem Sizes

Different sizes of problems in the linear and nonlinear DPP without lateness models
were tested to calibrate the model convergence and running time. A separate two-level bill
of material with four items in the problems was added to get 12 commodities and two final
items in the network. The production horizon for each problem class was 10 time periods.
The general clearing function was used for the problem. Table 9 summarizes the run time
results obtained using inner and outer approximation.

Outer approximation provides better performance than inner approximation in terms
of CPU time as problem size increases, as can be seen in Table 9.

The augmented Lagrangian method implemented in MINOS 5.5 was used to evaluate
the quality of the inner and outer approximation solutions. It may be seen in Table 10
that the solutions obtained by the approximations were reasonably close to the optimal
objective function value obtained by the augmented Lagrangian method.
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Table 9. DPPNL computation time.

Nodes Time
Periods

Total Number
of Nodes

CPU Time (Seconds)
for Outer

Approximation **

CPU Time
(Seconds) for Inner

Approximation *

Percentage Increase (Inner
Approximation Over Outer

Approximation)

9 10 90 10.77 7.94 −26.40%

9 15 135 29.52 41.89 41.93%

12 10 120 23.51 27.69 17.76%

12 15 180 63.88 118.31 85.20%

15 10 150 32.68 38.34 17.33%

15 15 225 107.93 246.01 127.94%

18 10 180 71.96 132.3 83.86%

18 15 270 250.57 608.85 142.99%

* Based on 10pieces. ** Based on four Kelley’s cutting plane (KCP) cuts.

Table 10. Objective function values obtained from augmented Lagrangian, inner approximation, and outer approximation.

Nodes Time Periods
Augmented

Lagrangian Optimal
Obj. Fun. Value

Inner Approximation Outer Approximation

Optimal Obj.
Fun. Value * Gap (%) Optimal Obj.

Fun. Value ** Gap (%)

9 10 15,979.45 16,276.77 1.86 15,974.56 −0.031

9 15 13,861.32 13,903.68 0.31 13,855.34 −0.043

12 10 22,575.77 23,098.55 2.32 22,119.49 −2.02

12 15 18,867.84 18,918.27 0.27 18,843 −0.13

15 10 27,174.84 27,855.08 2.5 26,982.46 −0.71

15 15 23,914.94 23,925.25 0.04 23,833.54 −0.34

* Based on 10 pieces. ** Based on four KCP cuts. Time units in seconds.

5. Conclusions

In this paper, we formulated a congestion model for of demand planning in supply
chains that is general enough for the discrete-product or process industry. We illustrated
the usefulness of the basic model in demand management via a series of scenarios in
which the firm responds to RFQs, changes in demand, engineering changes, and due-date
changes. The model’s use in capacity management was illustrated with an example. We
extended the model to incorporate congestion effects using clearing functions that work
at the recipe level, which is very general. The resulting model was nonlinear, and we
developed and tested two linear programming-based algorithms to solve the nonlinear
model. The performance of the two algorithms, one based on inner approximation and the
other on outer approximation, was very good. This would allow for large-scale practical
application of the model.

This research can be enhanced in many ways. One limitation of the model is that
the number of recipes is a continuous variable, which is somewhat limiting for assembly
systems. The queuing models considered are basic and assume that one recipe is run
for a fairly long period of time for the queue to be stable. The concept of dual prices in
Srinivasan et al. [17] and Kefeli and Uzsoy [27] can be applied in identifying not only ca-
pacity but also material bottlenecks. These limitations can be addressed in future research.
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