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Abstract: Travel times for simple trips and cycles are analyzed for a storage/retrieval machine working
in a one-dimensional or two-dimensional zone with taxicab geometry. A semi-random trip is defined
as one-way travel from a known to a random location or vice versa. A random trip is defined as
one-way travel from a random to another random location. The probability density function (PDF)
of the travelling time for a semi-random trip in a one-dimensional zone is expressed analytically
for all possible locations of its starting point. The PDF of a random trip within the same zone is
found as a marginal probability by considering all possible durations for such travel. Then the
PDFs for the travel times of single command (SC) and dual command (DC) cycles are obtained
by scaling the PDF for the travel time of a semi-random trip (for SC) and as the maximum travel
time of two independent semi-random trips (for DC). PDFs for travel times in a two-dimensional
service zone with taxicab geometry are calculated by considering the trip as a superposition of two
one-dimensional trips. The PDFs for travel times of SC and DC cycles are calculated in the same
way. Both the one-dimensional and the two-dimensional service zones are analyzed in the time
domain without normalization. The PDFs for all travel times are expressed in an analytical form
parameterized by the maximal possible travel time within the zone. The graphs of all PDFs are
illustrated by numerical examples.

Keywords: probability density function; travel time; one dimension; taxicab geometry; Manhattan
distance; taxicab geometry; single command; dual command

The subject of this article is to study the probability density functions (PDFs) of travel times for
a storage/retrieval (S/R) machine. Knowing the mean and the variance for the travel time is usually
enough for the analysis of many warehouse processes such as order picking. Such an approach
was demonstrated in the 1970s and is still applied in recent research; thus, the PDFs are generally
overlooked. For this reason, the present study aims to obtain the analytical form of PDFs for the travel
times of basic trips and storage/retrieval cycles, to summarize and illustrate them in a few pages.
Once the PDF is presented in an analytical form, the expected mean travel time can be also expressed
analytically and checked against previously published results.

1. Introduction and Motivation

Supply chain management (SCM) heavily relies on automation at every node—production,
transportation, distribution, retail, etc. The performance of each SCM node depends on the machines
used, especially within the warehouse. Nowadays, the typical warehouse is changed by the emergence
of new digital industrial technology, known as Industry 4.0. The Internet of Things (IoT) and cloud
computing can make warehouse processes more agile [1]. However, better decision-making can occur
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if the underlying processes are known. Such a requirement has already been identified for optimizing
the processes in transportation, which motivates the analysis of the travel time distribution for these
systems [2].

Similarly, to maximize the positive impact of Industry 4.0 on the automated storage and retrieval
systems (AS/RS) typically used within SCM, a good understanding of travel times with a stochastic
nature is required. The aim of this paper is to analyze and define the analytical form of probability
density functions for the travel times of different trips and cycles in simple models of warehouse
logistics. Namely, a one-dimensional service zone and a two-dimensional service zone with taxicab
geometry will be considered.

AS/RS have been a subject of analysis since the mid-20th century, and many papers have been
published on the topic. A survey of the literature [3] is therefore a good start for any new analysis in
this field.

The first analyses of travel time models for AS/RS were published in the 1960s by [4] and [5]. In the
1970s, several authors worked on travel time models considering various rack shapes, with a special
focus on square-in-time racks. One of them, Gudehus, published a series of works on travel times [6–8]
for AS/RS. Along with the paper by Bozer and White [9], Gudehus’ works are often referenced as
fundamental travel time models, even by research published recently [10]. What is common in these
models is that they apply a normalized time domain for the service zone.

From the survey [3], one can see that over the years, studies of expected travel times (in two- and
three-dimensional spaces) have implicitly used the one-dimensional model as part of more complex
problems. Because the subject of the studies always varies, the authors only calculate the probability
characteristics of the one-dimensional movement required for their calculations. Examples of this
approach for an implicit interest in the stochastic properties of one-dimensional travel are [11] and [12].
Over the years, this research has followed the same equations developed by Gudehus, although their
form may slightly differ. Some of his own recent works demonstrate a lack of further development of
said models. For example, in [13], one can see that the approach to the probability characteristics of the
one-dimensional trips is not much different.

Vickson and Lu’s work [14] deserves attention; it is dedicated to one-dimensional storage racks.
In this work, the authors approach several problems in a one-dimensional discrete model. As the
present work applies a continuous model, it shall be noted that continuous modelling is applicable for
one-dimensional discrete models even with a relatively low number of discrete states. A study [15]
reported that applying a continuous model to a rack with nine discrete addresses (bins) leads to less
than 1% deviation in the calculated characteristics of the travel times.

However, an important reason to run an in-depth analysis of the one-dimensional model is that it
can be considered as an element of more sophisticated service models. When the probability density
function (PDF) of the travel time for trips in a one-dimensional model is known, it can then be applied
to other, more sophisticated spatial queueing models. A study in 2006 [16] defined a method by which
the PDF for travel times can be determined when the S/R station is located in a corner of the service
zone. Later, in [17], this method was further developed to calculate the PDFs for travel times from any
point within the zone.

Last, but not least, a dedicated analysis of the PDF of travel times is needed because it is a powerful
instrument for calculating any stochastic characteristics, such as mean and variance. By knowing the
PDF of the travel time, all its moments can be calculated. Still, studies usually focus on performance,
throughput, optimization, or another topic of improvement, while the PDFs are pushed aside. A good
example is the work [18] in which an approximation of the PDF for dual command travel time is
published and is still noted as a by-product of the research.

2. Semi-Random and Random Trips

This section analyzes basic trips for a mobile server in one-dimensional zone services. This model
may represent an elevator in a tall building or the travelling of a forklift in a single corridor between
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shelves. Let us consider any two locations A and B within the zone; we assume that the travelling time
from A to B equals the travelling time from B to A. Then, we define the following basic trips:

• Random trip—travelling between two random locations within the zone, where both locations are
independent of each other and uniformly distributed.

• Semi-random trip—travelling between an arbitrary, yet known location and a random location
uniformly distributed. As the travelling times from A to B and from B to A are the same, we can
disregard whether the start or the end location is a random one.

The objective is to find the probability density functions for the travel times of the above trips.

2.1. Model Definition

A one-dimensional horizontal service zone is considered with length L which is serviced by a
mobile device (server) with well-known characteristics (velocity, acceleration times, etc.). Let the
maximal duration for a single trip of the server within the zone be T, which applies for the maximal
possible distance L. Service requests appear within the zone at uniformly distributed random locations.
Let τ be a continuous random variable equal to the travel duration of the server to the next service
request. The question is as follows: what is the probability density function of τ?

The initial case to be considered is a semi-random trip for the server; i.e., it will start its route
from an arbitrary (known) location K to the random location where the service request appears. Let us
denote the travel time τK and its PDF f (τK) = fK(t).

As the server characteristics are known, its travelling within the service zone will only be considered
in the time domain, i.e., the travel duration is measured rather than the travel distance. A coordinate
system is defined with an origin point O at the left end of the horizontal area. The coordinates of
the server and the request in the so-defined time domain will represent the time required to travel to
them from the origin. Hence, the coordinate k of the known location K is defined as k = [0, T], and it
represents the travel duration from O to the known location K.

2.2. Model Limitations

While the analysis is focused on the travelling times of an S/R machine, there are several
simplifications made. These simplifications prevent the direct applicability of the model and shall
be addressed when calculating travel and service times in real scenarios. These limitations include
the following:

• The velocity of the S/R machine is considered to be constant. Fluctuations caused by load,
downtimes, or external factors are ignored;

• Acceleration and deceleration times of the S/R machine are ignored;
• Storage and retrieval times are ignored, and the S/R machine is considered to depart from a given

location immediately after arrival.

Such simplifications of the model are not unusual (e.g., they are also applied in [9]). The limitations
caused by them can be addressed by the principle of superposition when their impact on the travel
times is known.

Furthermore, the model assumes a random storage strategy. Storage and retrieval requests appear
for random locations uniformly distributed within the entire service zone. Whenever an ABC or
another zone-based storage strategy is applied, the model shall be adapted as the PDFs will be different.

The same limitations apply for the two-dimensional service zone considered in Section 4.

2.3. Semi-Random Trip

The duration τ of the travel from K to a random point within the zone is τ = [0, T]. Without doubt,
fK(τ) will depend on the distances from K to both ends of the service zone, as these distances limit
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the trip. If TMIN is the travel duration from K to the nearer end of the zone, i.e., TMIN = Min{k, T − k},
then the probability density of the semi-random trip duration can be written

f (τK) = fK(t) =


2/T 0 ≤ t ≤ TMIN

1/T TMIN < t ≤ T − TMIN

0 T − TMIN < t ≤ T

0 otherwise.

(1)

This PDF consists of two intervals, both of which have a constant value, and the value within the
second interval is half of the value in the first one, as illustrated in Figure 1b. In the boundary cases
k = 0 and k = T/2 (shown in Figure 1a,c), the corresponding functions fK(t) are uniformly distributed
in the intervals [0 . . .T] and [0 . . .T/2], respectively. The boundary case k = 0 also represents the PDF
of travel duration to a random point when the server is located at the end of the zone. Obviously, in the

case where k = 0 the mean of the travel duration is EK(τ) =
∫ T

0 τ fK(τ)dτ = T/2, as published already
in the first work by Gudehus [6].
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Figure 1. Graphs of probability density functions (PDFs) for the travel time of semi-random trip. (a) In
the case where k = 0 or k = T. (b) In the case where k ∈ (0, T). (c) In the case where k = T/2.

However, how does the PDF fK(t) change for other values of k? As k is a continuous variable,
it is possible to calculate and visualize fK(t) for any point K within the service zone. We will visualize
all values of k in a single graphic. To do this, a third axis will be added to the graphic in Figure 1b,
which will indicate the value of k for which the PDF fK(t) is calculated. This is illustrated in Figure 2,
where the value of k is indicated on axis x and τ on axis t. The graph is generated for a service zone
with length L = 10 m and server velocity v = 1 m/s; hence, T = 10 s. Acceleration times are ignored.
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2.4. Random Trip

The graphic in Figure 2 is quite interesting. Each 2D section of it normal to axis x represents the
graph of fK(τ), which is the density of the conditional probability PK(τ) = P(τ ≤ t

∣∣∣k) for the given
value of k. In other words, the 2D section emphasized in Figure 2 is the graph of the PDF for the
duration τ of a semi-random trip of the server to a random request to be not greater than t when the
server is located at known point K. Obviously the value of k is the point of incidence of the 2D section
with the x axis.

Let us now consider the server location K to be unknown and its coordinate ξ = [0 . . .T] to denote
the duration of a semi-random trip from O to the unknown K. Let k = [0 . . .T] be a parameter denoting
a specific location, and let the probability Pr(ξ→ k) be uniformly distributed.

As fK(t) represents a PDF of conditional probability, then it could be written

Pr(ξ→ k∩ τ→ t)⇔ f (τ, ξ) = f (ξ) fK(t) (2)

where f (τ, ξ) is the joint PDF of the two dependent random variables τ and ξ. As any value of k
is equally probable, the PDF of ξ is f (ξ) = 1/T. Having this in mind, by multiplying the vertical
axis in Figure 2 by 1/T the resulting graph will represent the joint mass function f (τ, ξ) (Figure 3).
Every point on this graph gives the value of the joint PDF for the simultaneous occurrence of both
random events: (A) the travel duration to the next request is in the epsilon neighborhood of time t,
and (B) the server is located in the epsilon neighborhood of k. The graph represents all possible values
of the variables τ and ξ.
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Now let us consider a section normal to axis t on the graph of Figure 3 with point of incidence t.
The surface s(t) of this section is an integral sum on all possible values of ξ for τ→ t , and the following
could be written for it:

s(t) =

T∫
0

f (τ, ξ)dξ =

+∞∫
−∞

f (τ, ξ)dξ = f (τ). (3)

What is important in Equation (3) is that the exact location of the server is disregarded by taking
into account all its possible locations. Thus, the function f (τ) is a marginal probability density
function for the duration of travel from a random to random location in the 1D service area (i.e., for a
random trip).

By geometrical considerations of the section clarified in Figure 4, the PDF can be calculated as

f (τ) = s(t) =
2
T
−

2t
T2 . (4)
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Figure 5. Graph of the PDF of travel time for a random trip in a one-dimensional zone.

Equations (1) and (4) define the PDF for the basic semi-random and random trips. On their basis,
we can further calculate the travel times for different trips and service cycles of the mobile server in a
one-dimensional or a two-dimensional service zone with taxicab geometry.

3. One-Dimensional Zone with an S/R Station at the End

We consider a one-dimensional service zone with maximal travel time T across it, as defined in
the previous section. However, we will add to the model a storage/retrieval (S/R) station located at one
of its ends (for instance, at the left end of the zone). The probability density functions for the travel
times of single command and dual command cycles shall be defined.

It should be noted that the random trip by definition is a trip between two random locations,
and consequently, its travel time is independent of the location of the S/R station. Hence, its PDF f (τ)
is defined by Equation (4) and does not require further analysis.

3.1. Single Command Cycle

The single command (SC) cycle is a travelling cycle of the mobile server for servicing a single
request (single command). This could be a storage request or a retrieval request. In either case,
the server location is assumed to be the S/R station at the beginning of the cycle. A storage request
cycle will start with loading at the S/R station; the server travelling to a random location where the load
shall be stored; storing the request; and a return of the empty server back to the S/R station to close
the cycle. A retrieval request cycle will start with the empty server travelling to a random location;
loading at this location; travelling back to the S/R station; and unloading.
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For the 1D model defined we can define the travel time for a semi-random trip starting from or
ending at the S/R station as a random variable τK in the domain [0, T]. Then, considering Equation (1)
as its PDF, we can write

f (τK) = fK(t) =

 1/T 0 ≤ t ≤ T

0 otherwise.
(5)

Knowing the PDF of the semi-random trip duration τK, one can easily calculate the PDF for
the duration τSC of a single command cycle. The SC cycle consists of two identical semi-random
trips—from the S/R station to a random location and back from the same location to the S/R station.
Hence, it is a random variable τSC = 2τK, defined in the domain [0, 2T]. Its PDF f (τSC) has a similar
form as f (τK); however, it is stretched horizontally and compressed vertically by a factor of 2:

f (τSC) = fSC(t) =
1
2

fK
(1

2
t
)
=

 1/2T 0 ≤ t ≤ 2T

0 otherwise.
(6)

3.2. Dual Command Cycle

The dual command (DC) cycle combines serving both a storage and a retrieval request. It starts with
loading at the S/R station; the server travelling to a random location for storage; unloading; the empty
server travelling to a location for retrieval; loading; travelling to the S/R station; and unloading.

Let us consider a dual command cycle within the same 1D service zone, where the storage/retrieval
station is located at the origin O. Every dual command cycle begins and ends at the origin O. If τ1

denotes the duration of a semi-random trip from O to an unknown storage location and τ2 denotes
the duration of a semi-random trip from the retrieval location to O, then for the duration of the dual
command cycle τDC there are two cases possible, as visualized in Figure 6.
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Figure 6. Dual command scheme in a one-dimensional service zone. (a) τ1 ≤ τ2, (b) τ1 > τ2.

In the first case (Figure 6a) the storage location is closer to point O, i.e., the duration of the dual
command cycle consists of travelling τ1; then time for travelling further to the retrieval location; and,
finally, the travelling time τ2 back to the origin O. Hence, the travelling time between the random
locations for storage and retrieval equals the difference τ2 − τ1. Therefore, the total duration of the dual
command cycle amounts to τDC = 2τ2 in the domain [0, 2T]. In the second case (Figure 6b), following
the same logic, the total duration of the DC cycle will be τDC = 2τ1, as the retrieval point resides on
the way back from the storage location to point O. The two cases could be summarized as

τDC = 2max(τ1, τ2) = 2τMAX. (7)

However, τ1 and τ2 are two independent and identically distributed random variables of travel
time for a semi-random trip with PDF defined in Equation (5). Their maximum τMAX = max(τ1, τ2) is
known to have the PDF

f (τMAX) =

 2τMAX/T2 0 ≤ τMAX ≤ T

0 otherwise.
(8)
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(This PDF is also the one for travel time from a corner point to a random location in the
Single-In-Time (SIT) Tchebyshev’s metric, where the travel times on the different axes are independent
and identically distributed (see [16]).)

Hence, the PDF for the travel duration of a dual command cycle travel is a ramp function in the
interval [0 . . . 2T], and the analytical form of this PDF is

f (τDC) = fDC(t) =

 t
2T2 0 ≤ t ≤ 2T

0 otherwise.
(9)

In Figure 7 are visualized the graphs of the probability density functions for the different travel
times in a one-dimensional service zone with an S/R station at its end and maximal travel time T = 42 s.
A semi-random trip from the S/R station (cyan dashed), a random trip between two random locations
within the zone (magenta dashed), an SC cycle (green solid), and a DC cycle (blue solid) are shown.
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Figure 7. Graphs of the probability density functions of travel times for trips and cycles in a
one-dimensional zone with T = 42 s: Cyan dashed f(τK) for a semi-random trip from/to the
storage/retrieval (S/R) station; magenta dashed f(τ) for a random trip between two random locations;
black dotted f(τMAX) for the maximal value of two semi-random trips; green solid f(τSC) for a single
command (SC) cycle; blue solid f(τDC) for a dual command (DC) cycle.

4. Two-Dimensional Zone with Taxicab Geometry

We consider a rectangular service zone with size L ×H, in which service requests may appear
uniformly distributed anywhere within the zone. Let us assume that the zone is served by a mobile
server travelling only in directions parallel to the rectangle sides—it can travel in a direction either
parallel to the long side or parallel to the short side. It cannot travel simultaneously in both directions.
Such a model may represent the travelling of a forklift within a warehouse or a cab through a city with
orthogonal streets. The distance measurement in this setup is known as the Manhattan metric, and it
equals the sum of the distance travelled in each direction.

Let the server travel with velocity vx along the side with length L and with velocity vy along
the side with length H. Then the maximal times for travelling in the corresponding directions are
Tx = L/vx (direction X) and Ty = H/vy (direction Y). The maximal total travel time for a single trip
within the zone is then T = Tx + Ty. The model setup in the time domain is presented in Figure 8,
where the service zone has size Tx on Ty.
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Figure 8. Random trip in a two-dimensional taxicab geometry (Manhattan distance) represented in the
time domain.

These maximal travel times Tx and Ty will be used as parameters for the definition of the PDFs
for the different random travel times, i.e., all equations will be made in the time domain without
normalization by using a “shape factor” as suggested in [9]. Without loss of generality, it will be
assumed that Tx ≥ Ty.

The travel time for a random trip from Point 1 to Point 2 shown in Figure 8 will be equal to the
sum of the travelling duration in both directions, τx + τy, as the server will first travel τy seconds in one
direction and then τx seconds in the other direction (Equation (10)). This equation defines the property
of the server to move only in one direction at any given time, and hereafter it will be referred to as
the “taxicab property”. The travel time domains are defined by the maximal travel times: τx ∈ [0, Tx],
τy ∈

[
0, Ty

]
, and τ1→2 ∈ [0, T].

τ1→2 = τx + τy (10)

Let the storage/retrieval (S/R) station be located in one of the four corners of this service zone (for
instance, in the lower left corner). A single command cycle will then be defined as a semi-random trip
from the S/R station to a random point within the zone, followed by a return to the S/R station (i.e.,
the SC is a doubled semi-random trip). A dual command cycle will be defined as a semi-random trip
from the S/R station to a random Location 1; followed by a random trip to Location 2; followed by a
semi-random trip from Location 2 back to the S/R station.

The objective is to find the PDF of the travel time for the basic semi-random and random trips, as
well as for the two cycles. To achieve this objective, the taxicab property will be used.

4.1. Semi-Random Trip and Single Command Cycle

In this section, we will find the density function of the travel time τK for a semi-random trip,
as well as the travel time τSC for an SC cycle in the 2D zone.

Due to the taxicab property, the travelling times in both directions can be considered as independent
random variables and the total travel time as a sum of independent (one-dimensional) random variables.
This sum is well known from probability theory, and its PDF is defined as a convolution of the PDFs of
the two independent random variables. Let τKx and τKy denote the travel times for a semi-random trip
from the S/R station to a random location in direction X and direction Y correspondingly.

The PDFs for the travel times τKx and τKy are PDFs of one-dimensional semi-random trips,
and considering the PDF in Equation (5), one can write Equations (11) and (12).

f (τKx) = fKx(t) =

 1/Tx 0 ≤ t ≤ Tx

0 otherwise
(11)

f
(
τKy

)
= fKy(t) =

 1/Ty 0 ≤ t ≤ Ty

0 otherwise
(12)
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The PDF of τK is then defined as the convolution of the travel times in directions X and Y (with
T = Tx + Ty and assuming Tx ≥ Ty):

f (τK) = fK(t) = fKx(t) ∗ fKy(t) =



t
TxTy

0 ≤ t ≤ Ty

1
Tx

Ty < t ≤ Tx
T−t

TxTy
Tx < t ≤ T

0 otherwise.

(12)

Further, as the SC cycle is a doubled semi-random trip, its PDF can be obtained as the PDF defined
in Equation (13) stretched horizontally and compressed vertically by a factor of 2:

f (τSC) = fSC(t) =
1
2

fK
(1

2
t
)
=



t
4TxTy

0 ≤ t ≤ 2Ty

1
2Tx

2Ty < t ≤ 2Tx
T− t

2
2TxTy

2Tx < t ≤ 2T

0 otherwise.

(13)

To illustrate the nature of the PDFs fK(t) and fSC(t), their graphs are shown in Figure 9 for two
sample cases: Tx = Ty = 21 seconds (square-in-time zone) and Tx = 2Ty = 42 seconds.
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Here a reference could be made to [16], where the PDF for the travel time from a corner to a
random location in a service zone with the Manhattan metric was calculated on the basis of isochrones.
It was demonstrated that the PDF has the form of an isosceles trapezoid (or triangle for a square-in-time
zone). However, in that article the equations were made for a normalized time domain by using
a shape factor for normalization. The approach described in the present work has the advantage
of defining the PDFs of the travel times without normalization; hence, the moments of the random
variables can be calculated directly without the need for denormalization.
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4.2. Random Trip

In this section, we will find the density function of the travel time τ for a random trip. Using the
taxicab property of the model again, τ can be considered as a sum of two independent one-dimensional
random variables τx and τy, being the travel times for the random trip in direction X and direction Y.

The PDFs for the travel times τx and τy are PDFs of one-dimensional random trips, and considering
the PDF in Equation (4), one can write Equations (15) and (16).

f (τx) = fx(t) =

 2
Tx
−

2t
Tx2 0 ≤ t ≤ Tx

0 otherwise
(14)

f
(
τy

)
= fy(t) =


2

Ty
−

2t
Ty2 0 ≤ t ≤ Ty

0 otherwise
(15)

The PDF of τ is then defined as the convolution of the travel times in directions X and Y (with
T = Tx + Ty and assuming Tx ≥ Ty):

f (τ) = f (t) = fx(t) ∗ fy(t) =



4t
TxTy

(
1− Tt

2TxTy
+ t2

6TxTy

)
0 ≤ t ≤ Ty

2
Tx2

(
Tx − t +

Ty
3

)
Ty < t ≤ Tx

2
3Tx2Ty2 (T − t)3 Tx < t ≤ T

0 otherwise.

(16)

To illustrate the nature of the above PDFs fx(t), fy(t), and f (t), their graphs are shown in Figure 10
for two sample cases: Tx = Ty = 21 seconds (square-in-time zone) and Tx = 2Ty = 42 seconds.
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4.3. Dual Command Cycle

Further, for the DC cycle we apply the same approach. Using the taxicab property we can define
the total travel time τDC for a DC cycle as a sum of two independent DC cycles in direction X and
direction Y. Applying Equation (9) for each direction, we can write:

f (τDCx) = fDCx(t) =

 t
2Tx2 0 ≤ t ≤ Tx

0 otherwise
(17)

f
(
τDCy

)
= fDCy(t) =


t

2Ty2 0 ≤ t ≤ Ty

0 otherwise.
(18)

The PDF of τDC is then defined as the convolution of the travel times in directions X and Y (with
T = Tx + Ty and assuming Tx ≥ Ty):

f (τDC) = fDC(t) = fDCx(t) ∗ fDCy(t)

=



t3

24Tx2Ty2 0 ≤ t ≤ 2Ty
3t−4Ty

6Tx2 2Ty < t ≤ 2Tx
2T−t

24TxTy

(
t2 + 2Tt− 8

(
Tx

2 + Ty
2
− TxTy

))
2Tx < t ≤ 2T

0 otherwise.

(19)

An illustration of the above PDFs fDCx(t), fDCy(t), and fDC(t) is shown in Figure 11 for the two
sample cases: Tx = Ty = 21 seconds (square-in-time zone) and Tx = 2Ty = 42 seconds.
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Side note: It could be interesting to make a quick reference here to the approximation suggested by 
Foley and Frazelle in their work [18] for the PDF of DC travel time (although they analyzed a discrete 
model, they turned to continuous modelling for calculating this PDF). They analyzed an AS/RS 
working in Tchebyshev’s metric, and the present model analyzes an S/R machine working in taxicab 
geometry. For this reason the PDF for the DC travel time suggested by them cannot be directly 
compared with the PDF suggested here. What is, however, remarkable is that there are similarities in 
the form of the PDF graph they illustrated (Figure 3 in their work) and the graph illustrated in Figure 
11 (a) here. Comparing Equation 17 in the present work with their Equation (5) explains these 
similarities—when integrated (to obtain a cumulative distribution function), Equation 17 above will 
become a term of the fourth power of the random variable in its first subdomain and a polynomial of 
degree four in its third subdomain. End of side note. 

The probability density functions defined in this section for the travel times of basic trips and 
SC and DC cycles were illustrated in different domains. For a better overview on how they scale to 
each other, their graphs are illustrated again in Figure 12 within the same domain. 

Figure 11. PDFs for travel times of a dual command cycle (blue solid) in taxicab geometry and its
parts—the DC cycle in direction X (black dot) and direction Y (red dot): (a) in a square-in-time zone
with Tx = Ty = 21 s; (b) in a zone with Tx = 2Ty = 42 s.

Side note: It could be interesting to make a quick reference here to the approximation suggested
by Foley and Frazelle in their work [18] for the PDF of DC travel time (although they analyzed a
discrete model, they turned to continuous modelling for calculating this PDF). They analyzed an
AS/RS working in Tchebyshev’s metric, and the present model analyzes an S/R machine working in
taxicab geometry. For this reason the PDF for the DC travel time suggested by them cannot be directly
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compared with the PDF suggested here. What is, however, remarkable is that there are similarities
in the form of the PDF graph they illustrated (Figure 3 in their work) and the graph illustrated in
Figure 11a here. Comparing Equation (17) in the present work with their Equation (5) explains these
similarities—when integrated (to obtain a cumulative distribution function), Equation (17) above will
become a term of the fourth power of the random variable in its first subdomain and a polynomial of
degree four in its third subdomain. End of side note.

The probability density functions defined in this section for the travel times of basic trips and SC
and DC cycles were illustrated in different domains. For a better overview on how they scale to each
other, their graphs are illustrated again in Figure 12 within the same domain.
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Tx = Ty = 21 s; (b) in a zone with Tx = 2Ty = 42 s.

As the probability density functions of the travel times are now defined in analytical form, their
moments can be used for the calculation of different random variables—the expected average travel
time, expected variance, or standard deviation, etc., from each corresponding PDF.

5. Conclusions

This study demonstrated how the probability density functions for travel durations can be
developed for a service zone with a known geometry and the properties of the S/R machine serving it.
Starting with the PDFs for simple trips, the PDFs for more sophisticated travels were obtained through
well-known mathematical dependencies as functional transformations or convolution. The PDFs
developed in this paper can be used to further express travel times for other cycles in one-dimensional
or two-dimensional service zones. The illustration of their graphs summarized in Figures 7 and 12
may help students and newcomers to AS/RS analysis to better understand the processes.

The suggested approach does not require normalization of the service zone, and all PDFs are
defined in the time domain. Hence, random variables calculated on their basis will not require
denormalization. For instance, the mean value E(τ) will be obtained in seconds. In contrast,
the classical approach by Bozer and White [9] uses normalization via a shape factor of the service zone
geometry, and it requires denormalization of the results. Another advantage of the approach without
normalization is that the PDFs of the travel times can be parameterized by the maximal travel times in
the service zone. This can facilitate the development of Information Technology applications in the
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field of warehouse logistics and SCM. For instance, the travel times in two warehouses with the same
geometry, but serviced by S/R machines with different velocities, will have identical analytical forms.
Their numerical values will, however, differ due to the different travel times of the S/R machines.

The simplifications pointed out in Section 2.2. could serve as a starting point for further studies.
A few examples are demonstrating the impact of acceleration and deceleration times on the PDFs of
the travel times; or analyzing the proportion of the time for travelling and the time for storage/retrieval
out of the total service time; or how the PDFs for travel times will look when a zone-based storage
strategy is applied in a warehouse.

Future research can also develop the PDFs for travel times in Tchebyshev’s metric, which is of
special interest for warehouse processes. The side note in Section 4.3 above could be a starting point
for such analysis, where the objective would be to develop the analytical form of the PDF for DC travel
time and compare it with the approximation suggested in [18].

Last, but not least, knowing the PDFs for travel and service times in a given model immediately
defines the distribution G of service times for requests if the model is considered as an M/G/1 queue.
This opens the door to analysis of more sophisticated models. For instance, a warehouse with
well-defined geometry and properties of its S/R machines could be represented as a queueing network,
where each S/R machine will be a queue with a known service time distribution G.
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