Characterization of local products for their industrial use: the case of Italian potato cultivars analyzed by untargeted and targeted methodologies

Cinzia Ingallina¹^{\xi}, Mattia Spano¹^ξ, Anatoly P. Sobolev²^{*}, Cristina Esposito³, Cristina Santarcangelo³, Alessandra Baldi⁴, Maria Daglia^{3,5*}, Luisa Mannina^{1,2}

- ¹ Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; <u>cinzia.ingallina@uniroma1.it</u> (C.I.); <u>mattia.spano@uniroma1.it</u> (M.S.); <u>luisa.mannina@uniroma1.it</u> (L.M.)
- ² Institute for Biological Systems, Magnetic Resonance Laboratory "Segre-Capitani", CNR, Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy
- ³ Department of Pharmacy, University of Naples Federico II, Naples, 80138, Italy; <u>cristina.esposito@unina.it</u>. (C.E.); <u>cristina.santarcangelo@unina.it</u> (C.S.)
- ⁴ Tefarco Innova, Parco Area delle Scienze 27/A Campus 43124 Parma, Italy; <u>alessandra.baldi.alimenti@gmail.com</u> (A.B.)
- ⁵ International Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
- * Correspondence: <u>anatoly.sobolev@cnr.it</u> (A.P.S.); <u>maria.daglia@unina.it</u> (M.D.); Tel.: +39-06-9067-2385 (A.P.S.); Tel.: +39-081-678644

^{*ξ*}These authors contributed equally to this work

Received: date; Accepted: date; Published: date

Appendix-SA. Plot design of potato cultivation.

For each cultivar, a block of 50 rows (50 tubers for row) was planted, with an 80 cm distance between tubers.

Appendix-SB. MS identification and calibration curves of caffeic, chlorogenic, ferulic, gallic and galacturonic acids.

App-B.1 MS identification of caffeic, chlorogenic, ferulic, gallic and galacturonic acids

Caffeic acid showed parent ion with m/z of 179 and principal fragment at m/z of 135, which derived by the CO₂ loss (- 44 Da) from the carboxylic acid group. Chlorogenic acid presented a molecular ion at m/z 353 and fragmentation ions 191, 179, 135. Ferulic acid showed [M-H]– m/z of 193 and a fragment ion at m/z 134 corresponding to [M-CO₂–CH₃]–. Gallic acid and galacturonic acid present as parent ions with m/z of 169 and 193, respectively. Both compounds break up to CO₂ loss (- 44 Da) with production of fragment ions at m/z of 125 and 149, respectively.

App-B.2 Calibration curves of caffeic, chlorogenic, ferulic, gallic and galacturonic acids

To quantify caffeic, chlorogenic, ferulic, gallic and galacturonic acids, a calibration curve was constructed using external standards for each compound. Stock solutions of analytical standard grade caffeic, chlorogenic, ferulic, gallic and galacturonic acids ($10 \mu g/mL$) were prepared in methanol. Caffeic and chlorogenic acids stock solutions were diluted to obtain five concentrations ranging from 10 to 1000 ng/mL (R² = 0.9998). Ferulic, gallic and galacturonic acids stock solutions were diluted to obtain five concentrations ranging from 10 to 1000 ng/mL (R² = 0.9998). Ferulic, gallic (R² = 0.9996). The analyses were performed in triplicate for each concentration.

¹ H Chemical shift (ppm)	Group	Compound
Hydroalcoholic extract		
0.96	CH ₃	Leucine
1.02	CH ₃	Isoleucine
1.05	CH ₃	Valine
1.33	CH ₃	Lactic acid
1.34	CH ₃	Threonine
1.49	CH ₃	Alanine
2.01	CH ₂	Proline
2.30	CH ₂	GABA
2.46	CH	Glutamine
2.55	CH	Citric Acid
2.81	CH ₂	Aspartate
2.97	CH ₂	Asparagine
3.21	+N(CH3)3	Choline
3.30	CH	Myo-inositol
4.12	CH	Fructose
4.31	CH	Malic Acid
4.60	CH	β-Galactose
4.66	CH	β-Glucose
5.25	CH	α-Glucose
5.28	CH	α -Galactose
5.42	CH	Sucrose
6.53	CH	Fumaric acid
6.90	CH	Tyrosine
7.43	CH	Phenylalanine
8.46	CH	Formic Acid
8.84	CH	Trigonelline
Organic extract		
0.66	CH ₃	β-Sitosterol
2.30	α -CH ₂	Total fatty acids
2.73	CH ₂	Di-unsaturated fatty acids
2.77	CH ₂	Tri-unsaturated fatty acids
3.12	CH ₂	Phosphatidylethanolamine
3.21	⁺ N(CH ₃) ₃	Phosphatidylcholine
4.87	CH	Digalactosyldiacylglycerol
5.31	CH=CH	Total unsaturated fatty acids

Table S1. Compounds and relative signals (¹H NMR chemical shift, ppm) selected for the quantitative analysis of the hydroalcoholic and organic extracts by mean NMR.

Figure S1. ¹H-¹H TOCSY spectra (28 °C) of potato hydroalcoholic extract in 400 mM phosphate buffer in D_2O (pH 7.4) 1 mM TSP (0.5 – 8.0 ppm region is here considered).

Figure S2. ¹H-¹³C HSQC spectra (28 °C) of potato hydroalcoholic extract in phosphate buffer in D_2O (pH 7.4) (0.5 – 8.0 ppm region is here considered).

Figure S3. ¹H-¹³C HMBC spectra (28 °C) of potato hydroalcoholic extract in phosphate buffer in D_2O (pH 7.4) (0.5 – 8.0 ppm region is here considered).

Figure S4. ¹H-¹H TOCSY spectra (28 °C) of potato organic extract in CDCl₃/CD₃OD 2:1 v/v mixture (0 – 6.0 ppm region is here considered).

Figure S5. ¹H-¹³C HSQC spectra (28 °C) of potato organic extract in CDCl₃/CD₃OD 2:1 ν/ν mixture (0 – 6.0 ppm region is here considered).

Figure S6. ¹H-¹³C HMBC spectra (28 °C) of potato organic extract in $CDCl_3/CD_3OD$ 2:1 v/v mixture (0 – 6.0 ppm region is here considered).

Compound	Assignment	¹ H (ppm)	Multiplicity [J(Hz)]	¹³ C (ppm)
Sugars and polyols				
α -D-Fructofuranose	CH-3	4.12		83.0
	CH-5	4.07		82.5
	0110	,		0210
β-D-Fructofuranose	CH-3	4.12		76.5
	CH-4	4.12		75.4
	CH-5	3.81		
	CH ₂ -6,6'	3.70, 3.84		
β-D-Fructopyranose	CH-3	3.80		68.6
	CH-4	4.00		77.0
	CH-5	4.04		
	CH ₂ -6,6'	3.71; 4.08		64.4
α-Galactose	CH-1	5.28	d [3.8]	92.3
	CH-2	3.87		
	CH-3	3.99		
β-Galactose	CH-1	4.60	d [8.0]	97.1
	CH-2	3.51		
	CH-3	3.67		
	CH-4	3.95		
or Chuassa		5.25	1 [2 0]	02.2
a-Glucose	CH-1	5.25 2.54	d [3.8]	93.2 72.0
	CH-2	3.34		72.0
	CH-3	3.71		73.3
	CH-4	5.42 2.84		70.7
	Сн-5	5.64 2.80, 2.75		72.3
	UT12-0,0	5.69; 5.75		01.8
β-Glucose	CH-1	4.66	d [8.0]	97.0
	CH-2	3.26		75.1
	CH-3	3.51		76.9
	CH-4	3.42		70.7

Table S2. Metabolites identified in the 600.13 MHz ¹H NMR spectra (28 °C) of potato hydroalcoholic extracts in phosphate buffer in D₂O (pH 7.4).

	CH-5	3.49		76.8
	CH ₂ -6,6'	3.90; 3.75		61.8
Mvo-Inositol	CH-1	4.07		
	CH-2.5	3.57		
	СН-3.6	3.65		
	CH-4	3.30	t [9.5]	74.2
Sucrose	CH-1 (Glucose)	5.42	d [3.8]	93.3
	CH-2	3.58		71.8
	CH-3	3.78		73.6
	CH-4	3.50		70.2
	CH-5	3.86		73.5
	CH-3' (Fructose)	4.22	d [8.7]	77.5
	CH-4'	4.07		75.1
	CH-5'	3.90		82.4
	CH ₂ -6'	3.83		61.2
Organic acids				
Citric acid	α,γ-СН	2.55	d [15.9]	46.6
	α ',γ'-CH	2.68		46.6
	β-C			76.4
	1,5-СООН			180.2
	6-COOH			183.0
Formic acid	НСООН	8.46	S	
Fumaric Acid	α,β–СН=СН	6.52	S	
Lactic acid	β –CH ₃	1.33	d [7.0]	20.6
	α-CH	4.12		69.3
	СООН			183.4
Malic acid	α-CH	4.31	dd [9.8; 3.2]	71.4
	β-CH	2.70	dd [15.6; 3.2]	43.9
	β'- CH	2.39	dd [15.6; 9.8]	43.9

Amino acids

Alanine	α-CH	3.80		51.5
	β-CH ₃	1.49	d [7.3]	17.3
	СООН			176.8
Arginine	α-CH	3.77		55.3
	β -CH ₂	1.91	m	28.6
	ү-СН	1.67	m	25.1
	γ '- CH	1.74	m	25.1
	δ- CH ₃	3.24		41.6
Asparagine	α-CH	4.02		52.3
	β,β'- CH ₂	2.89; 2.97	dd [7.4; 16.9]	35.8
Aspartate	α-CH	3.91		
	β , β '-CH ₂	2.70; 2.81	dd [3.9; 17.4]	37.7
γ-Aminobutyrate	α -CH ₂	2.30	t [7.4]	35.4
	β -CH ₂	1.91		24.3
	γ -CH ₂	3.01	t [7.6]	39.8
Glutamine	α-CH	3.79		54.5
	β,β'-CH ₂	2.15	m	26.8
	ү-СН	2.46	m	32.2
Glutamate	α-CH	3.75		
	β,β'-CH ₂	2.07	m	28.0
	γ-CH ₂	2.35	m	34.6
Isoleucine	α-CH	3.69		
	β-CH	1.98		36.7
	γ-CH ₃	1.27		25.1
	γ -CH ₃	1.02	d [7.0]	15.7
	δ- CH ₃	0.94		
Leucine	β-CH ₂	1.74		
	ү-СН	1.71		
	δ-CH ₃	0.97	d [6.3]	23.1
	δ'- CH ₃	0.96	d [6.3]	22.1

Lysine	α-CH	3.74		
	β -CH ₂	1.91	m	31.0
	γ-CH	1.45	m	22.6
	ү'-СН	1.52	m	22.6
	δ -CH ₂	1.73	m	27.3
	ε-CH ₂	3.02		
Phenylalanine	CH-2,6	7.34	m	
	CH-4	7.38	m	
	СН-3,5	7.43	m	130.2
Proline	β-CH	2.35		
	γ -CH ₂	2.01	m	24.8
Threonine	α-CH	3.60		61.1
	β-CH	4.31		66.7
	γ- CH ₃	1.34	d [6.6]	20.6
Tyrosine	CH-3,5	7.20	d [8.5]	131.9
	CH-2,6	6.90	d [8.5]	116.9
Valine	α-CH	3.62		60.6
	β–СН	2.28		29.7
	γ-CH ₃	1.00	d [7.0]	17.9
	γ -CH ₃	1.05	d [7.0]	19.1
Phenolics				
Chlorogenic acid	α-CH=	6.42	d [16.0]	115.8
	β–СН=	7.68	d [16.0]	
	CH ₂ -2	2.20	m	
	CH-3	5.33	m	72.2
	CH-4	3.88		
	CH-5	4.26		71.6
	CH ₂ -6	2.04	m	
Caffeic acid	α-CH=	6.35	d [16.0]	
	βСН=	7.29	d [16.0]	

Miscellaneous metabolites				
Choline	⁺ N(CH ₃) ₃	3.21	S	55.1
	α-CH ₂	3.81		68.5
Trigonelline	CH-1	9.12	S	
	CH-3,5	8.84		
	CH-4	8.08		

 Table S3. Metabolites identified in the 600.13 MHz ¹H NMR spectra (28 °C) of potato organic extracts in CDCl₃/CD₃OD 2:1 v/v

 mixture.

Compound	Assignment	¹ H (ppm)	Multiplicity: J [Hz]	¹³ C (ppm)
Mono-unsaturated fatty				
chain	COO			174.4
(Cn:1 Δ ⁹)	CH2-2	2.30		34.6
	CH ₂ -3	1.57	m	25.4
	CH2-4,7	1.30	m	29.5
	CH ₂ -8	2.01	m	27.6
	CH=CH 9,10	5.30	m	130.4
	CH2-11	2.01	m	27.6
	CH ₂	1.33-1.28	m	29.6-31.7
	CH ₂ -n-1	1.26	m	22.9
	CH ₃ -n	0.84	t	14.2
Di-unsaturated fatty chain	COO			174.4
(Cn:2 Δ ^{9,12})	CH2-2	2.30		34.6
	CH ₂ -3	1.57	m	25.4
	CH2-4,7	1.32-1.28	m	29.5
	CH ₂ -8	2.02	m	27.6
	CH= 9	5.32	m	130.4
	CH= 10	5.30	m	128.6
	CH2-11	2.73	t [6.8]	26.0
	CH= 12	5.30	m	128.6
	CH= 13	5.32	m	130.4
	CH2-14	2.02	m	27.6
	CH ₂	1.26-1.27	m	29.4-31.7
	CH ₂ -n-1	1.23	m	22.9

	CH ₃ -n	0.85	t	14.2
Linolenic fatty chain	COO			174.4
(C18:3 ∆ ^{9,12,15})	CH ₂ -2	2.30		34.6
· · · · · ·	CH ₂ -3	1.57	m	25.4
	CH2-4,7	1.30	m	29.5
	CH2-8	2.03	m	27.6
	CH= 9	5.32	m	130.4
	CH= 10	5.30	m	128.6
	CH2 11	2.77	t [6.2]	26.0
	CH=CH 12,13	5.30	m	128.6
	CH2-14	2.77	t [6.2]	26.0
	CH= 15	5.27	m	127.5
	CH= 16	5.34	m	132.2
	CH2-17	2.03	m	20.9
	CH3-18	0.94	t [7.6]	14.4
Saturated fatty acids	COO			174.4
	CH ₂ -2	2.28		34.6
	CH ₂ -3	1.57	m	25.4
	CH ₂	1.28-1.22	m	29.6-32.0
	CH2 n-1	1.25		23.0
	CH₃ n	0.84	t	14.2
β-Sitosterol	CH2-1	1 83.1 04		37 3
F	CH-3	3.51		71.6
	CH-6	5.33		122.3
	CH ₂ -7	1.96; 1.47		32.3
	CH-8	1.44		32.4
	CH-9	0.90		50.6
	CH ₂ -11	1.47		21.4
	CH ₂ -12	1.99; 1.14		40.2
	CH-14	0.97		57.2
	C-13			42.9
	CH ₂ -15	1.55; 1.05		24.7
	CH ₂ -16	1.83; 1.25		28.6
	CH-17	1.09		56.4
	CH ₃ -18	0.66	S	12.1
	CH ₃ -19	0.97		19.5

	CH-20	1.36		36.5
	CH ₃ -21	0.90		19.1
	CH ₂ -22	1.27; 1.00		34.5
	CH ₂ -23	1.14		26.5
	CH-24	0.90		46.1
	CH ₃ -26	0.80		20.0
	CH ₃ -27	0.79		19.2
	CH ₂ -28	1.26		22.9
	CH ₃ -29	0.81		12.2
1,2-Diacyl- <i>sn</i> -glycero-3-	CUN	0.10		
phosphatidylethanolamine	CH ₂ N	3.13	t [5.0]	40.6
	CH2OP	4.08		62.5
	$CH_2 sn1$	4.35; 4.13		62.6
	CH sn2	5.20		70.4
	CH ₂ sn ₃	4.04		64.7
1,2-Diacyl- <i>sn</i> -glycero-3-				
phosphatidylcholine	*N(CH3)3	3.21	S	54.5
	CH ₂ N ⁺	3.64		66.5
	CH ₂ OP	4.31		60.1
	CH ₂ sn1	4.35; 4.13		62.6
	CH sn2	5.20		70.4
	CH ₂ sn3	4.04		64.7
Digalactosyldiacylglycerol	CH ₂ sn1	4.34; 4.19		63.2
	CH sn2	5.22		70.6
	CH ₂ sn3	3.91; 3.67		68.1
	CH-1"	4.87	d [3.8]	99.7
	CH-2"	3.76		69.4
	CH-3''; CH-5''	3.70		70.6
	CH-4"	3.91		70.2
	CH2-6''	3.81; 3.73		62.1
	CH-1′	4.19		104.3
	CH-2′	3.49		71.6
	CH-3′	3.47		73.7
	CH-4′	3.88		68.6

Compound	Retention time (min)	۸ Max (nm)	m/z [M- H] ⁻	Fragment
Caffeic acid	0.56	295, 325	179	135 (100)
Chlorogenic	1.10	262, 321	353	191 (100), 179 (80), 135
acid				(20)
Gallic acid	2.63	221, 269	169	125 (100)
Ferulic acid	2.93	236, 322	193	134 (100)
Galacturonic	4.03	208	193	149 (100)
acid				

Table S4. Compounds identified with RP-HPLC-PDA-ESI-MSn analysis. The respective retention time, Λ Max, m/z and fragment are reported.