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Abstract: This study investigated the use of Raman spectroscopy (RS) and chemometrics for the
determination of eight mineral elements (i.e., Ca, Mg, K, Na, Cu, Mn, Fe, and Zn) in aqueous
infant formula (INF). The samples were prepared using infant formula powder reconstituted to
concentrations of 3%-13% w/w (powder: water) (n = 83). Raman spectral data acquisition was
carried out using a non-contact fiber optic probe on the surface of aqueous samples in 50-3398 cm™.
ICP-AES was used as a reference method for the determination of the mineral contents in aqueous
INF samples. Results showed that the best performing partial least squares regression (PLSR) models
developed for the prediction of minerals using all samples for calibration achieved R?CV values
of 0.51-0.95 with RMSECVs of 0.13-2.96 ppm. The PLSR models developed and validated using
separate calibration (1 = 42) and validation (n = 41) samples achieved R2CVs of 0.93, 0.94, 0.91, 0.90,
0.97, and 0.94, R?Ps of 0.75, 0.77, 0.31, 0.60, 0.84, and 0.80 with RMSEPs of 3.17, 0.29, 3.45, 1.51, 0.30,
and 0.25 ppm for the prediction of Ca, Mg, K, Na, Fe, and Zn respectively. This study demonstrated
that RS equipped with a non-contact fiber optic probe and combined with chemometrics has the
potential for timely quantification of the mineral content of aqueous INF during manufacturing.

Keywords: Raman spectroscopy; chemometrics; infant formula; minerals; ICP-AES analysis

1. Introduction

Infant formula (INF) is intended for infants and young children and can be a complete or
partial substitute for human milk [1]. Dairy-based INF consists of almost all macronutrients
(i.e., fats, carbohydrates, and proteins) and micronutrients (i.e., vitamins and minerals) [2]. To simulate
human milk closely, commercial infant formulas are fortified with essential micronutrients
(including trace minerals) and have the content of some macro minerals (e.g., Ca, Na, etc.) reduced
to satisfy nutritional requirements [3]. Minerals play a vital role in forming essential parts of many
enzymes and biological molecules of the human metabolic system for body tissue growth and other
physiological functions. Therefore, the quantification of INF elemental composition is critical for
quality control during manufacture.

Multi-element determinations at the ultra-trace level can be achieved using atomic absorption
spectroscopy (AAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and
ICP-mass spectroscopy (ICP-MS). These techniques have been well investigated for the quantification
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of trace elements in milk and INF [4-10]; however, they are only suitable for laboratory use as they
are expensive, time-consuming and require sophisticated instrumentation and procedures; thus,
they cannot meet the requirements for timely measurement during manufacturing.

In the dairy industry, powdered INF is usually manufactured using either a dry blending process
or a wet mixing-spray drying process [11]. The wet mixing-spray drying process currently remains
the most widely used method of powdered infant formula production [11]. From a quality control
perspective, one of the critical disadvantages of the dry blending process is that the macro- and
micro-nutrients may segregate in varied layers of milk powder during transportation and storage due
to their different densities resulting in an inhomogeneous product for consumers [12]. An advantage
of the wet mixing-spray drying method is that all the production processes, including wet mixing,
concentration by evaporation, and spray drying, can be effectively controlled to attain homogenized and
stable final products [12]. Non-destructive process analytical techniques are required to monitor nutrient
levels at critical points during manufacture to ensure that the product produced is within specification.

Previously, process analytical methods have been widely investigated to verify nutrient levels
of milk and INFE. Near-infrared spectroscopy (NIR) has been successfully applied to predict
various constituents in milk, including fat (R?CV—0.99), protein (R>CVs—0.98-0.99), albumin,
blood urea nitrogen (RZCV—0.82), lactose (R2CVs—0.86-0.92), glucose, and somatic cell count
(R?CV—0.85) [13-15]. Mid-infrared (MIR) spectroscopy has been employed for milk compositional
analysis with high accuracy in the prediction of specific fatty acids (R?CV—0.29-0.97) and poor
accuracy on the content of major minerals (R?CV—0.41-0.48) [16]. Other studies using MIR reported
moderate accuracy for the prediction of macroelements in bovine milk (R2CV—0.42-0.71) [17] and
high accuracy for the prediction of milk protein composition (R?CV—0.59-1) [18]. Raman spectroscopy
(RS) has also been reported for prediction of nutritional parameters (fat, protein, energetic values,
and carbohydprates) in INF and milk powder [19-22], milk fat or whey in liquid milk [23] and melamine
adulterants in liquid and powdered milk [24-26]. A few publications have studied the use of RS to
detect mineral contents in dairy products. A study by Smith et al. (2013) has been reported using
Fourier-transformed RS to detect and quantify calcite in milk powder [27]. Laser-induced breakdown
spectroscopy (LIBS) has also been reported to quantify selected minerals in INF powder and INF
premixes [28,29] and yielded an RZCV value of 0.90 with RMSECV of 680 mg/kg (ppm) for the prediction
of Ca; R?CVs of 0.83 with RMSECVs of 16.1 mg/kg (ppm) and 226.4 mg/kg (ppm) for the prediction of
Cu and Fe, respectively. To date, almost all the published studies using process analytical technology
for quantification of mineral elements in infant formula were carried out on dry powder samples.
To the authors’ knowledge, no information is currently available for quantifying mineral contents of
aqueous INF using RS.

As a non-invasive technique, RS has considerable advantages for the analysis of aqueous samples
compared to other methods because water has weak Raman scattering properties. Unlike infrared
spectroscopy, this technique is not limited by water interference. For trace element determination,
RS can provide sophisticated spectral information of chemical composition with high resolution [30].
It has also been used to determine minerals on planetary surfaces [31,32], in bones, [33] and oil
paintings [34]. Recently, RS combined with chemometrics has been reported to determine Ca content in
chicken bone and meat mixtures (RZCV of 0.775 with RMSECYV of 0.33%) [35] and to predict Ca content
in powdered infant formula accurately (R*CV of 0.954 with RMSECYV of 0.490 mg/g) [36]. Therefore,
RS has the potential to determine mineral contents in aqueous INF during wet-mixing before the
drying process for real-time quality control. The objective of this study is to investigate the potential of
RS with chemometrics for the determination of mineral contents in aqueous INF samples.
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2. Materials and Methods

2.1. Sample Preparation

Infant formula powder (INFP) samples (n = 14) were produced using a pilot-scale research facility
at Teagasc food research center (Moorepark, Cork) and stored in sealed bags at ~15 °C for three
months. Moreover, five commercial INFPs (i.e., Aptamil, SMA, Cow&Gate, Mamia, and Similac) were
purchased from local supermarkets in Ireland. Altogether, 19 INFP samples were included in this
study. The moisture content of each powder was measured using a halogen rapid moisture analyzer
(HR-83 Halogen, Mettler Toledo, Switzerland) at 105 °C until a constant weight (<1 mg) was attained
in 140 s. For aqueous sample preparation, powder samples were weighed and dissolved in 200 mL
of deionized water, considering moisture content to obtain solutions at five concentrations, i.e., 3%,
5%, 8%, 10%, and 13% w/w. During homogenization, an overhead 4-blade impeller of a high shear
mixer (Silverson L4R, Silverson Machine Ltd., Bucks, UK) was positioned at the center of the deionized
water and operated at 400 rpm; the weighed powder was added and mixed at ambient temperature
(~15 °C) for 20 min. In total, eighty-three aqueous samples were prepared for this study including
75 aqueous samples prepared from 15 powder samples (including 14 produced INFP samples and
one of the commercial INFP samples) at concentrations of 3%, 5%, 8%, 10% and 13% w/w; 7 aqueous
samples prepared from 7 powder samples (including five commercial INFP and two of the produced
14 INFP) at a concentration of 13 % w/w, and one aqueous sample prepared from one powder sample
at a concentration of 8% w/w due to the limited amount of these particular INFP samples. After sample
preparation, all aqueous samples were kept overnight at 4 °C before measurements.

2.2. Raman Spectral Data Acquisition of Aqueous INF Samples

Raman spectral data were collected using a non-contact fiber optic probe on the surface of aqueous
INF samples. A fiber optic probe and the connected coaxial cable were fixed on a probe stand to avoid
effects caused by subtle changes of instrument configuration. Each sample (10 mL) was transferred
into an aluminum cylindrical container (45 mm diameter, 50 mL volume) and placed on a variable
height platform under the probe. Samples were raised so that their surface was 2 mm away from
the quartz screen of the probe head. A DXR SmartRaman spectrometer (ThermoFisher Scientific
UK Ltd., Loughborough, UK) was used for spectral data acquisition. The system was equipped with a
diode laser operating at 780 nm and a charge-coupled device (CCD) detector. The sample surface was
exposed under the aperture (50 um slit) of the fiber optical probe accessory. For each scan, a 120 mW
laser power was used; spectra of each sample were automatically accumulated until the maximum
signal to noise ratio of the averaged spectrum was obtained. All aqueous samples were scanned in
random order at ca. 20 °C. Raman intensity counts per second (cps) were recorded in the wavelength
range of 50-3380 cm~1 at 2 cm™! increments. Automatic cosmic spikes removal, instrument control,
spectral acquisition, and file conversion were operated using OMNIC software (v 9.2.98; Thermo Fisher
Scientific Inc., Madison, WI, USA). Each sample was scanned twice at different locations of the aqueous
surface. The averaged spectrum of the duplicate was used in the subsequent chemometric analysis.

2.3. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) Analysis

2.3.1. Preparation of Reagents and Standard Solutions for ICP-AES

Deionized water (resistivity—18.2 M()-cm) was produced using a Barnstead™ Smart2Pure™
water purification system (Thermo Scientific, Waltham, MA, USA) for the preparation of reagents and
standard solutions for ICP-AES analysis. To avoid mineral contamination, all glassware sets used
in this study were washed using 2% v/v detergent (RBS 25 Concentrate, CHEMICAL PRODUCTS R.
Borghgraef S.A., Brussels, Belgium) diluted with tap water followed by rinsing, air-drying and soaking
in 10% v/v HNOj3 prepared from 65% v/o HNOj3 (code: N/2185/PB17, Fisher Scientific, Loughborough,
Leicestershire, UK). Before use, glassware was rinsed three times with deionized water and dried in a
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thermal cabinet. For ICP-AES instrumental calibration, standard solutions were prepared using the ICP
multi-element standard stock solution of 1000 ppm (Certipur®, Merck KGaA, Darmstadt, Germany)
diluted to 1.25, 2.5, 5, 12.5, 25 and 50 ppm respectively using 5% v/v HNOj prepared from 69% v/v
HNO; (code: N/2320/PB17, Fisher Scientific, Loughborough, Leicestershire, UK). Standard solutions
were stored overnight in ash-free polypropylene containers at ~4 °C before ICP-AES measurements.

2.3.2. Dry Digestion

Each aqueous INF sample (10 mL) was transferred into a porcelain crucible (25 mL) and heated in
a chamber furnace (Temperature Controller type 201, Carbolite, UK) at 650 °C for three hours until
white ashes were obtained.

Ashed samples were digested using 5% v/v HNOj3. The acid digestion solution of each sample
was prepared by dissolving ash residue in 25 mL of 5% u/v HNOj3 for analysis of INFP minerals at low
concentrations (<140 ppm), e.g., Mg, Cu, Fe, Zn, Mn, etc. [37]. For analyzing minerals contained in
INFP at higher concentrations (>350 ppm), e.g., Ca, Na, K, etc., the same acid digestion solution was
diluted 1:10 v/v using 5% v/v HNOs3. All solutions were kept in the polypropylene containers at 4 °C
before ICP-AES analysis.

2.3.3. ICP-AES Apparatus and Working Conditions

A Vista RL (radially viewed plasma) CCD simultaneous ICP-AES (Varian Inc., Mulgrave, Victoria,
Australia) spectrometer powered by a 40 MHz radiofrequency generator at 1.2 kW was used for
the determination of all minerals. This equipment employed an echelle polychromator with a cross
dispersion prism to form a two-dimensional diffraction pattern across its focal plane. A charge-coupled
device detector was equipped to detect electromagnetic signals at a wavelength range of 167-784 nm.
Argon gas was used as a plasma source at a flow rate of 15 L/min, and the auxiliary gas flow rate
was 1.5 L/min. Before the operation, instrumental calibration was carried out to develop standard
curves with < 10% of maximum error and >0.995 correlation coefficient values. During the analysis,
the prepared standard solution or acid digestion solution was introduced into the system via a SeaSpray
concentric nebulizer (Glass Expansion, Pocasset, MA, USA) operated with argon aerosol gas (200 kPa)
ata 0.75 L/min flow rate. Sample aspiration was forced using an Alitea v-10R peristaltic pump at 15 rpm
with a 1.4 mL/min sample delivery rate. To avoid nebulizer contamination and clogging, a sample
uptake delay (15 s) and rinse time (10 s) with deionized water were applied between each measurement.
The signals were obtained at an observation height of 13 mm above the load coil and were corrected
using the embedded background correction method. Calibration curves were developed using a blank
solution (5% v/v HNOj3) and multi-element standards of 12.5, 25, and 50 ppm for elements present
at higher concentrations and the blank and multi-element standards of 1.25, 2.5, and 5 ppm for the
elements at lower concentrations. For sample analysis, the optimal wavelength for monitoring each
mineral element was selected from three relevant wavelengths suggested by the supplied software
of the ICP-AES system. The optimal wavelength for each specific element was decided based on the
highest linearity (R2~1) of the developed calibration curves. Each sample was measured in triplicate;
the mean value of each mineral element was acquired, and the repeatability value for each element
detection was also calculated [38]. The ICP-AES instrument operations and data acquisition were
performed using ICP-Expert version 4.1.0 software (Varian, Inc., Australia). Data were exported as
.csv files and imported into Matlab 2018a (The Mathworks, Natick, MA, USA) for both statistic and
chemometric analysis.

2.4. Accuracy Determination on ICP-AES Analysis

Accuracy of the ICP-AES analysis method was investigated by analyzing a certified reference
material (skim milk powder ERM-BD 150, European Commission, JRC, IRMM, Retieseweg,
Geel, Belgium). After dry matter analysis, the certified reference material (1 g) was transferred
into a porcelain crucible (100 mL) and heated at 400 °C for 20 min using a hot plate (MaXtir 500H,
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Daihan scientific, Gangwon-do, KOREA) until no further smoke was observed. Then the crucible was
placed into a furnace (Temperature Controller type 201, Carbolite, UK) to heat the material at 650 °C for
3.5 h until white ashes were obtained. For ICP-AES analysis, dry digestion and ICP-AES measurements
were carried out following the procedures described in Section 2.3. The analysis was carried out in
triplicate; the mean value of each mineral element was acquired and compared to the certified reference.
Accuracy of ICP-AES analysis was defined by percent recovery (%R) [9,39], which was described as:
%R = (measured value of a mineral/certified value of a mineral) *100%.

2.5. Control Experiments on Chloride Salts Using RS

1M chloride salt solutions were prepared using CaCl,, MgCl,, KCI, NaCl, MnCl,, iron(III)chloride
hexahydrate (FeCl; + 6 H,O), CuCl,, and ZnCl, crystals (purity > 98.0%; Sigma-Aldrich, 3050 Spruce St.,
St. Louis, MO, USA) dissolved in deionized water. These chloride salt solutions were separately kept
in polypropylene containers. Before Raman measurements, each solution was well shaken using a
vortex mixer (VWR International Ltd., Blanchardstown, Dublin, Ireland) for 1 min to ensure complete
dissolution. During the experiment, 10 mL of each solution was transferred into a 50 mL quartz
beaker with aluminum foil smoothly covering the outer surface and then placed on an elevating
frame under the fiber optic probe stand of the Raman spectrometer (ThermoFisher Scientific UK Ltd.,
Loughborough, UK). The sample was raised to ensure that its surface was 2 mm away from the quartz
screen of the probe head. Detailed measurement procedures and instrumental settings are described
in Section 2.2. Each sample was scanned twice at two different surface locations; the mean of these
duplicate spectra was used for chemometric analysis.

2.6. Chemometric Analysis

Raw Raman spectra of all the measurements were imported into Matlab 2015a (The Mathworks,
Natick, MA, USA). The mean spectrum of each sample was calculated. Baseline correction on
raw data was carried out using asymmetric least squares correction (AsLs), adaptive iteratively
reweighted penalized least squares (airPLS) [40], Savitzky—Golay (S.G.) first derivatives calculated
using a 2nd-degree polynomial with 7 smoothing points, and baseline offset correction (BOC). For the
exploration of the potential of Raman spectroscopy for mineral prediction, PLSR models were developed
using the nonlinear iterative partial least squares (NIPALS) algorithm. Models were developed using
pre-processed Raman spectral data (X variables) of 50-3398 cm~! and 50-1800 cm~! frequency ranges
based on observed spectral signal intensities. The ICP-AES measured values of each mineral element
for all INF aqueous samples (1 = 83) were used as individual Y variable. For further investigations,
PLSR models were also developed using calibration samples (1 = 42) and validated using the rest
samples (n = 41); quasi-random selection was used to split the whole sample group into calibration and
validation sample sets. Venetian blind cross-validation was performed to evaluate the performance of
PLSR models. Parameters such as root mean square error of calibration (RMSEC) and cross-validation
(RMSECV), the coefficient of determination on calibration (R?C), cross-validation (R*CV) and prediction
(R%P) were calculated. The bias of cross-validation and prediction was also determined. The satisfactory
prediction results from a PLSR model were expected to have R? values close to 1, RMSE values, and
bias close to 0. Robust PLSR models were developed using a small number of latent variables
(PLS loadings) [41]. Improvements in the performance of PLSR models were attempted using a
reduced number of Raman spectral variables which were selected by variable importance on projection
(VIP) [42], significance multivariate correlation (sMC), and Martens’ uncertainty test [43].

Chemometrics was also employed for the specification of mineral-related Raman spectral variables.
Based on PLSR modeling, the Raman spectral frequencies of significant regression coefficient intensities
for each mineral element prediction were used to compare with the pre-processed Raman spectral
signals of the chloride salt solution (contained with the mineral ions) in order to verify their common
locations of Raman spectral signals.
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3. Results and Discussion

3.1. Raman Spectra of Aqueous INF Samples

Raw Raman spectra (50-3398 cm™!) of aqueous INF samples (1 = 83) are shown in Figure 1a.
Fluorescence and multiplicative effects were removed using AsLs baseline correction (Figure 1b).
The mean spectrum for all samples in 50-3398 cm™~! region is shown in Figure 1c. Raman spectral bands
at 351-357, 445, 850, 877, 950, and 1064-1082 cm™! are assigned to the vibrational mode of the glycosidic
bond of « or B lactose [44,45]. Raman bands at 445 and 598 cm™! may also be related to § (C-C-C)
and T (C-O) bonds [46]. 645, 763 and 877 cm™! are also relevant to & (C-C-O) or & (C-C-H) bonds of
tryptophan [21,46]; 950 cm™~! has been assigned to & (C-O-C), § (C-O-H) and v (C-O) bonds; 1065-1082
and 1121cm™! has also been assigned to 4 (C-O-H), v (C-O) and v (C-C) of aspartic and glutamic
acid [47]. Raman bands at 1003-1005 cm™~! have been strongly related to the ring-breathing structure
of phenylalanine reported in many previous studies [21,41,47,48]. Peaks at 1262, 1303, 1442 and
1745-1748 cm™! are assigned to y (CHj), T (CH»), 8 (CH,) and v (C=0) bonds of aliphatic chains in
lipids and amino acid residues, respectively [21,48]. Raman bands at 1555 and 1654—1665 cm™ are
related to & (N-H) and v (C=N) of Amide II, and v (C=0) of Amide I, respectively [21,47]. The regions
of 2853-2855 cm ™!, 2900-2927 cm~!, and around 3005 cm™? may be attributed to symmetric v (CHy),
asymmetric v (CHj3), and the symmetric y (CH») vibrational mode of aliphatic chain and aromatic
structures of lipids [23]. The Raman band at 3060 cm~! has been assigned to v (N-H) of amino
groups [20].
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Figure 1. (a) Raw Raman spectra in 50-3398 cm™! of all aqueous INF samples (1 = 83); (b) Raman spectra
in 50-3398 cm™! pre-treated by AsLs baseline correction; (c) Averaged Raman spectrum in 50-3398 cm™!
pre-treated by AsLs baseline correction.

3.2. Results of ICP-AES Analysis

Statistics of the ICP-AES results on the eight selected mineral elements determined from
all the aqueous INF samples (n = 83) are summarized in Table 1. For the determination of
each element, the associated optimal wavelengths for monitoring individual elements are also

listed in Table 1. The determination limits for each element over all samples are described
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as Min + repeatability and Max + repeatability. The determined concentration ranges of Ca
(3.002-25.295 ppm), Na (0.144-9.133 ppm) and K (0.129-17.319 ppm) are within designed ICP-AES
multi-elements standard higher concentration calibration range (0- 50 ppm) of the mineral contents.
The concentration ranges of Mg (0.281-2.537 ppm), Fe (0.016-3.13 ppm), Zn (0.045-2.575 ppm),
and Cu (0.009-0.563 ppm) are within the designed lower concentration ICP-AES calibration range
(0-5 ppm). Mn could not be determined due to the detection limit of the ICP-AES method used in this
work. Therefore, except Mn, the reference values of the other seven elements were used in further
PLSR modeling.

Table 1. Mineral elements expressed as ppm in aqueous INF samples (1 = 83) determined using ICP-AES.

Elements ICP-AES Wavelength (nm)  Min (ppm) Max (ppm)  Mean (ppm)  Median (ppm) Repeatability (ppm)

Cu 324.754 0.009 0.563 0.117 0.088 0.003
Fe 238.204 0.016 3.13 0.512 0.142 0.013
Mn 257.61 -0.109 0.487 0 -0.01 0.001
Zn 213.657 0.045 2.575 0.573 0.426 0.009
Mg 279.553 0.281 2.537 1.275 1.28 0.034
Ca 422.673 3.002 25.295 13.413 13.522 0.032
Na 588.995 0.144 9.133 4.055 3.571 0.034

K 766.491 0.129 17.319 4.227 2919 0.017

Min—minimum; Max—maximum.

3.3. Accuracy of ICP-AES Analysis

The accuracy of ICP-AES analysis in the current work was evaluated by comparing the element
determination of a certified material (skim milk powder, ERM-BD 150, European Commission, JRC,
IRMM, Retieseweg, Gee 1, Belgium) based on the preparation and analysis procedures mentioned in
the current work with the reference values of the certified product (Table 2). For the determination of
Fe, Zn, Mg, Ca, and K, their R% values were 87.86, 112.09, 106.19, 96.44, and 86.25, respectively; these
values are close to 100%. The measured value of Cu was much higher than the certified value; it may
have been caused by contamination during sample preparation and handling. The low R% value of
Na was possibly due to the volatile loss during the high heat treatment of ICP-AES analysis.

Table 2. Comparison of ICP-AES measured values and certified skim milk powder (ERM-BD 150).

Element Certified Value! = Measured Value 2 Mean Recovery (%)
Cu (mg/kg) 1.08 + 0.06 194 +0.29 181.69
Fe (mg/kg) 4.6 £0.5 391 +£0.76 87.86
Mn(mg/kg) 0.289 + 0.018 —0.56 + 0.04 —206.64
Zn (mg/kg) 448 £2.0 49.90 +4.82 112.09

Mg (g/kg) 126 +0.1 132+0.12 106.19

Ca (g/kg) 139+ 0.8 1332 +0.71 96.44

Na (g/kg) 418 £0.19 1.87 +0.49 45.37

K (g/kg) 17+ 0.7 14.62 + 0.40 86.25

1 Mean + S.D., S.D., standard deviation; 2 Mean + S.D., S.D., standard deviation.

3.4. Prediction of Mineral Elements Using PLSR Models

VIP informative variable selection was demonstrated to be the most effective method to select
the most relevant Raman spectral variables to enhance the robustness of PLSR models developed for
each mineral element prediction. Therefore, results from other informative spectral variable selection
algorithms (i.e., sMC and Martens’ uncertainty test) are not discussed in this paper.

3.4.1. PLSR Models Based on All Aqueous INF Samples—Results and Discussion

Summary results of PLSR models developed with raw Raman spectral data (50-3398 cm™~!) and
data pre-treated respectively using AsLs, air-PLS, BOC, and S.G. first derivatives baseline correction
methods are shown in Table 3. Models developed with Raman data pre-treated using AsLs baseline
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correction performed best for each mineral element prediction. Calibration and cross-validation of
PLSR modeling were carried out using all aqueous INF samples (1 = 83) for the prediction of Ca, Mg,
Na, Cu, Fe, Zn. One sample with an unusual ICP-AES measured value of K was eliminated from
the PLSR modeling for K prediction. Generally, four or six latent variables were required to attain:
R2CV values of 0.95 for Ca, Mg and Fe prediction with RMSECV values of 1.44, 0.13 and 0.16 ppm,
respectively; an R?CV value of 0.94 with an RMSECV value of 0.12 ppm for Zn prediction; R?CV values
of 0.82, 0.88 and 0.92 with RMSECYV values of 0.04, 1.28 and 0.66 ppm for Cu, K, and Na prediction
(Figure 2b,d,fh,j,Ln).
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Figure 2. Mean spectrum pre-treated by AsLs baseline correction with spectral variable selection
using variable importance on projection (VIP) for the prediction of (a) Ca, (d) Mg, (e) K, (g) Na, (i) Cu,
(k) Fe, and (m) Zn; PLS regression plots of aqueous INF samples on measured reference values in ppm
(X-axis) vs. predicted values in ppm (Y-axis) of (b) Ca, (c¢) Mg, (f) K, (h) Na, (j) Cu, (1) Fe, and (n) Zn.
(Note: the spectral variables selected by VIP are shown in black).
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Table 3. Summary of venetian blinds cross-validation PLSR performances (Raman frequency: 50-3398 cm™~!) for mineral elements prediction. (most accurate models

in bold).
Data Type Raman Frequency (cm~1)  Calibration Samples  Spectral Variables # PLS Loadings R?2C RMSEC R2?CV RMSECV Bias
Ca AsLs 50-3398 83 618 6 0.99 0.59 0.95 1.44 0
air-PLS 50-3398 83 605 4 0.92 1.77 0.86 2.36 0.074
BOC 50-3398 83 782 4 0.86 2.37 0.84 2.53 0.041
S.G. 1st der. 7sm 50-3398 83 708 5 0.96 12 0.87 2.29 0.033
Raw 50-3398 83 1856 5 0.91 1.93 0.86 2.39 0.031
Mg AsLs 50-3398 83 683 6 0.99 0.05 0.95 0.13 —0.002
air-PLS 50-3398 83 725 5 0.93 0.15 0.88 0.21 0.002
BOC 50-3398 83 2611 4 0.86 0.23 0.83 0.25 —-0.002
S.G. Ist der. 7sm 50-3398 83 707 3 0.86 0.23 0.82 0.26 0.007
Raw 50-3398 83 736 4 0.89 0.2 0.87 0.22 0.005
K AsLs 50-3398 82 195 6 0.99 0.42 0.88 1.28 —-0.029
air-PLS 50-3398 82 1329 3 0.56 2.44 0.44 2.78 0.027
BOC 50-3398 82 3473 4 0.55 2.46 0.41 2.86 0.021
S.G. Ist der. 7sm 50-3398 82 525 2 0.54 2.48 0.47 2.7 0.001
Raw 50-3398 82 311 4 0.47 2.67 0.36 2.96 0.027
Na AsLs 50-3398 83 463 6 0.99 0.27 0.92 0.66 —0.038
air-PLS 50-3398 83 302 3 0.71 1.26 0.66 1.36 0.012
BOC 50-3398 83 2611 4 0.87 0.22 0.85 0.24 0
S.G. Ist der. 7sm 50-3398 83 622 2 0.74 1.18 0.71 1.27 0.012
Raw 50-3398 83 794 4 0.76 1.14 0.67 1.36 0.003
Cu AsLs 50-3398 83 262 6 0.98 0.013 0.82 0.04 —0.001
air-PLS 50-3398 83 1433 5 0.75 0.05 0.31 0.08 0
BOC 50-3398 83 2681 2 0.38 0.07 0.34 0.08 0
S.G. 1st der. 7sm 50-3398 83 778 3 0.61 0.06 0.29 0.08 0.002
Raw 50-3398 83 3356 2 0.38 0.07 0.33 0.08 0
Fe AsLs 50-3398 83 643 5 0.99 0.07 0.95 0.16 0.003
air-PLS 50-3398 83 410 3 0.91 0.22 0.89 0.24 -0.001
BOC 50-3398 83 3473 4 0.9 0.22 0.87 0.26 0.001
S.G. Ist der. 7sm 50-3398 83 372 4 0.95 0.16 091 0.22 0.006
Raw 50-3398 83 3356 4 0.9 0.22 0.87 0.26 0.003
Zn AsLs 50-3398 83 683 4 0.97 0.1 0.94 0.12 —0.001
air-PLS 50-3398 83 569 3 0.83 0.21 0.78 0.24 0.003
BOC 50-3398 83 715 5 0.99 0.05 0.94 0.12 -0.009
S.G. Ist der. 7sm 50-3398 83 686 5 0.92 0.14 0.87 0.18 0.003
Raw 50-3398 83 192 2 0.76 0.25 0.7 0.28 -0.005

PLSR, partial least square regression; AsLs, asymmetric least squares correction; airPLS, adaptive iteratively reweighted penalized least squares; BOC, baseline off correction; S.G.,
Savitzky—Golay; der., derivatives; sm, smoothing points; #, number of PLS loading; R2C, coefficient determination of calibrations; RMSEC, root mean square error of calibration; R2CV,
correlation coefficient of determination in venetian blinds cross-validation; RMSECV, root mean square error of venetian blinds cross-validation.
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Minerals and trace elements exist in cows’ milk as ions, salts, or bind with proteins, peptides,
carbohydrates, fats, and small molecules to form complexes [49]. In the current study, it was assumed
that the mineral binding phenomena in infant formula based on cows’ milk could be observed from
the informative variable selection for each mineral prediction. VIP selected Raman spectral variables
for the best performing PLSR model of each mineral prediction are shown in Figure 2a,c,e,g,ikm.
The selected spectral variables for Ca, Mg, K, and Na prediction mainly accumulated around the
Raman frequency range of 760-1665 cm™~!, which are strongly related to the chemical bonds of amino
acid structures in proteins and peptides [21,47]. Minerals such as Ca, Mg, K, and Na naturally bind to
caseins, lactoferrin, and whey proteins [49]. Raman spectral variables selected for Fe and Zn prediction
were mainly observed in the frequency range of 50-600 cm~!, which may be related to the broken
down O-H bonded structure of water that can be detected near 170 cm~! and possibly hydrolyzed Fe
and Zn [50]. Other selected spectral variables around 1654-1665 cm™~are related to amide I group of
proteins [45]. Fe and Zn also bind to milk proteins in cows’ milk [49]. For the prediction of all eight
minerals, the selected spectral variables can be found around 2700-3100 cm™!, which is associated
with v (C-H) modes of lipids and >3300 cm™!, which is consistent with v (N-H) and v (O-H) modes of
protein and lactose [20].

3.4.2. PLSR Models Developed and Validated Using Calibration and Validation Data Sets—Results
and Discussion

To further exploit the potential of RS for mineral content prediction, PLSR models were

L and

also developed using two separate calibration and validation sample sets over 50-3398 cm™
50-1800 cm™! spectral regions. Models developed based on AsLs baseline-corrected Raman spectra
performed best for mineral element prediction. Models developed using VIP selected spectral variables
in the Raman frequency range (50-1800 cm~!) had similar prediction performance to those developed
using spectral variables selected in 50-3398 cm™!. A summary of model performances is shown in
Table 4. Results reveal R*Cs of 0.98, 0.98, 0.99 and 1; R*CVs of 0.93, 0.94, 0.97 and 0.94; R*Ps of 0.76,
0.77,0.84 and 0.80 with RMSEPs of 3.05 ppm, 0.29 ppm, 0.30 ppm and 0.25 ppm for Ca, Mg, Fe and Zn
prediction, respectively. While for K and Na prediction, R?CV values of 0.91 and 0.93 were achieved
with RMSECVs of 1.15 ppm and 0.74 ppm and R?P values of 0.31 and 0.57 with RMSEPs of 3.45 ppm
and 1.51 ppm, respectively. The R?P of Cu prediction is 0.08, confirming that the PLSR models failed to
predict Cu content in the validation samples. As PLSR models were developed on collinearity of both
Raman spectral data (X-variables) and ICP-AES results of each element for each sample (Y- variables),
the prediction performances could also reflect the accuracy (R%) of ICP-AES measured values shown
in Table 2. R% values of Ca, Mg, Fe, and Zn were closer to 100% (the ideal R% value) than those of
Na, K, and Cu. Therefore, the PLSR prediction results of Ca, Mg, Fe, and Zn were also more accurate
than those of Na, K, and Cu. Results of ICP-AES analysis may have errors related to volatile elements
(e.g., Na and K) loss and ash loss during sample preparation of the dry digestion method. In the
current study, both RS and ICP-AES were investigated to determine the trace amount of minerals
in aqueous INF samples at low concentrations (<13% w/w). RS with chemometrics did demonstrate
high sensitivity for the determination of mineral elements. Theoretically, PLSR model prediction
performances could be improved using even more accurate chemical reference values (Y- variable) in
future studies.
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Table 4. Summary of venetian blinds cross-validation PLSR performances (Raman frequency: 50-3398 cm™~! and 50-1800 cm~!) based on AsLs baseline corrected

Raman spectra for mineral elements prediction (most accurate models in bold).

Raman Frequency

Spectral

Calibration

#PLS

(cm-1) Variables Samples Loadings R2C RMSEC Bias R2CV RMSECV  Bias Validation Samples ~R?2P RMSEP Bias
Ca 50-3398 910 42 5 099 062 0000 093 1.75 -0.186 41 0.76 3.05 -0.456
50-1800 322 42 4 098 096  0.000 0.93 1.68 —-0.017 41 0.75 3.17 —0.205
Mg 50-3398 450 42 3 098 0.0 0.000 095 0.15 0.006 41 0.75 0.29 -0.027
50-1800 476 42 4 098  0.08 0.000 0.94 0.15 —0.007 a1 0.77 0.29 —0.035
K 50-3398 87 41 5 095 087 0.000 0.75 1.95 0.025 41 0.22 3.80 0.800
50-1800 125 41 7 099 030 0.000 091 1.15 —0.099 41 0.31 3.45 1.120
Na 50-3398 317 42 4 099 024 0000 093 0.63 0.005 41 0.57 1.54 0.241
50-1800 211 42 6 099 020 0.000 0.90 0.74 0.014 41 0.6 1.51 0.235
Cu 50-3398 620 42 5 098 001 0.000 0.75 0.04 —-0.029 41 0.08 0.11 -0.029
50-1800 181 42 6 099  0.01 0.000 0.85 0.03 —0.001 M 0.04 0.11 —-0.025
Fe 50-3398 466 42 4 099  0.07 0.000 0.97 0.12 0.004 a1 0.84 0.30 0.008
50-1800 211 42 6 099 020 0.000 0.90 0.74 0.014 41 0.6 1.51 0.235
Zn 50-3398 1465 42 5 099  0.03 0.000 0.94 0.12 0.000 a1 0.8 0.25 0.019
50-1800 869 42 6 1.00 003 0000 0.93 0.12 -0.006 41 0.76 0.26 0.014

PLSR, partial least square regression; AsLs, asymmetric least squares correction; #, number of PLS loading; R2C, coefficient determination of calibrations; RMSEC, root mean square error of
calibration; R2CV, correlation coefficient of determination in venetian blinds cross-validation; RMSECV, root mean square error of venetian blinds cross-validation; R2P, correlation coefficient

of determination in prediction; RMSEP, root mean square error of prediction.
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3.4.3. Discussion on Regression Coefficients of PLSR Models for Prediction Mineral Elements

The regression coefficient intensity of each wavelength was derived from statistics on the regression
results of PLSR modeling. Information on regression coefficients from PLSR modeling is useful for
the specification of Raman shifts that related to mineral content. Higher absolute regression coefficient
intensities of the wavelengths indicate that these Raman wavelengths are more related to the anions or
organic functional groups, which have been bonded with certain mineral ions in studied INF. The intensities
of regression coefficients in the spectral range 50-3398 cm~! from PLSR modeling for each mineral element
are shown in Figure 3. Generally, all regression coefficient plots show consistently increased intensities
from ca. 660 cm™ to ca. 1800~1900 cm™!. Patterns of the significant regression coefficient intensities for
the prediction of each element are different. However, some significant regression intensities exist at the
same Raman shift for different elements’ prediction, e.g., 1003 cm~! assigned to phenylalanine for the
prediction of K, Na, Mn, Cu, and Zn. It is assumed that these mineral elements bind to phenylalanine in
infant formula samples. Nevertheless, previous publications have rarely mentioned the specific Raman
shifts assigned to neutral or ionized minerals. Some previously published studies reported Raman spectral
peaks of calcite (CaCO3) shown around 709, 1085, 1434, and 1758 cm™~! [27,31]; while in the current work,
significant regression coefficient intensities also appear at these Raman shifts (Figure 3a).
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Figure 3. Regression coefficients plots of all aqueous INF samples (1 = 83) for the prediction of (a) Ca,

(b) Mg, (0) K, (d) Na, (e) Cu,

(f) Fe, and (g) Zn.



Foods 2020, 9, 968 150f18

Raman spectra of chloride salt solutions (1 M of NaCl, CaCl,, CuCl,, FeClz, KCI, MgCl,, MnCl,,
and ZnCl,) were also collected to observe Raman spectral variations caused by mineral element
content. The AsLs baseline-corrected Raman spectra of these chloride salt solutions are illustrated in
Figure 4. Differences in these spectra can be observed in the Raman frequency range of 50-3398 cm~!,
especially in the range of 50465 cm™~!. However, the Raman signal noise level was found to increase
gradually in the range of 1800-3398 cm™!, and the spectral variance of different chloride salt solutions
cannot be clearly observed in 1800-3398 cm~!. Thus, the Raman signal in this frequency range cannot
be used to compare with the corresponding Raman shifts of high regression coefficient intensity in the
same frequency range. Correspondingly, significant regression coefficient intensities of the minerals
determined (Figure 3b—g) can also be observed at specific Raman shifts around 170220 cm™ for
minerals’ prediction (Figure 4). Therefore, it is aware that 170-220 cm~! of Raman shifts are related to
the chelated backbones of Mg, K, Na, Cu, Fe, and Zn ions. These control experiments on chloride salts
using RS demonstrated that Raman spectra can be directly used to specify the chelated backbones of
multi-minerals. On the other hand, these results also agreed to the method using regression coefficient
intensities from PLSR modeling for the identification of the chelated backbones in a chemical complex.
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Figure 4. Raman spectra of chloride salt solutions pre-treated by AsLs baseline correction.
4. Conclusions

In this study, the potential of RS with chemometrics was exploited to predict trace amounts of
mineral contents in aqueous INF samples. PLSR models developed based on AsLs baseline-corrected
Raman spectra in the Raman frequency ranges of 50-1800 cm~! and 50-3398 cm~! have strong potential
for mineral content prediction. The reliability of ICP-AES analysis for selected minerals can also
be determined by the performance of PLSR modeling based on Raman spectral data and reference
values from ICP-AES analysis. Mineral binding effects in dairy-based INF can be identified using
VIP informative spectral variable selection algorithm during PLSR modeling. The Raman shifts with
significant regression coefficient intensities from PLS regression were demonstrated to be related to the
mineral contents determined.

This study demonstrated the potential of a Raman spectrometer equipped with a fiber optical
probe and combined with chemometrics for the determination of multiple minerals in aqueous INF.
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Consequently, this hypothesis could be implemented to develop a process analytical tool for rapid and
real-time determination of mineral content (together with organic components) during the wet mixing
process of the INF manufacture. With more engineering innovations the fiber optic probe setting of
the Raman spectrometer could allow online monitoring. However, to develop an established process
analytical tool for online application, more studies are needed. Future research should investigate
a more sophisticated experimental design and modeling using RS and chemometrics for accurate
quantification of multiple mineral elements in INF.
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