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Abstract: Low-fat beef burgers with high beta-glucan content was obtained using a gel made from
an oat-hull-based ingredient as fat replacer. Two levels of fat substitution were considered: 50% (T1)
and 100% (T2). The nutritional composition, cooking yield, textural properties, color characteristics
and consumer preference were evaluated, in comparison with a burger without fat replacer (CTRL).
After cooking, T2 burger showed a significant increase in the cooking yield and a very low lipid
content (3.48 g 100 g−1) as well as a level of beta-glucans per single portion (2.96 g 100 g−1) near
the recommended daily intake. In T1 burger, the decrease of lipid content was mitigated during
the cooking process, because the beta-glucans added had a fat-retaining effect. Compared to
CTRL, replacing fat led to a softer texture of cooked burgers evaluated by Texture Profile Analysis.
The differences in color, significant in raw burgers, were smoothed with cooking. The consumer
evaluation, carried out according to the duo-trio test, highlighted significant differences between
CTRL and T2 burgers in terms of odor, taste, color and texture. The consumers expressed a higher
preference for the T2 burger, probably due to its softer texture and greater juiciness.

Keywords: beef burgers; soluble fiber; TPA; consumer evaluation; fatty acid composition

1. Introduction

Meat and meat products play an important role in human nutrition, constituting a rich source
of proteins with high biological value, vitamins (A, B1, B3 and B12), as well as iron, zinc and other
micronutrients [1]. The consumption of meat and meat products dates back to antiquity, but these
products are still part of the gastronomic tradition of many countries. Therefore, a high number
of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) European
brands—which link the quality of food products to a specific geographical area—have been awarded
to “Meat products—cooked, salted and smoked” (205 registered products, accounting for 12.95% of the
total PDO and PGI products) and “Fresh meat and offal” (180 registered products, i.e., 11.37% of the
total PDO and PGI products) [2]. However, the high fat content of meat products (including saturated
fatty acids and cholesterol) is related to increased risk of developing coronary heart diseases [3].

In this context, researchers and private companies alike are strongly engaged in trying to improve
the nutritional value of meat products by lowering the cholesterol and lipid content, as well as
decreasing saturated and increasing polyunsaturated fatty acids. Fats, however, play an important role
in meat products, ensuring optimal rheological and textural properties [4] and conferring pleasant
sensorial characteristics in terms of flavor and juiciness [5]. Therefore, the reduction of lipid content
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in meat involves the use of ingredients able to mimic the properties of fat, such as polysaccharides.
Several experimental trials have therefore been performed that included various mostly fiber-rich
polysaccharide-based fat replacers in the formulation of meat products, such as ground poppy seeds [6],
mixtures of wheat fiber and pig skin [7], legume flours [8] and other vegetable sources, as indicated
in recent reviews [9]. Dietary fiber can form a compact gel due to the ability to bind water improving
the structural characteristics of reduced-fat products [10].

Among dietary fibers, beta-glucans from cereal grains have been recently studied in relation to
the health benefits associated with their consumption such as the reduction of cholesterol level and
a chemo-preventive effect as reported by Ho et al. [11].

Moreover, beta-glucans show several technologically useful properties (gelling capacity,
emulsifying activity, fat/water binding capacity), which make them suitable ingredients
in health-promoting functional foods [12]. The major applications of beta-glucans in food formulation
are in milk-based products, such as fermented milk products and yogurt [13] and in bakery products [14].
Several beta-glucan sources have also been considered for improving the nutritional quality of meat
products, with [15–17] or without [18] fat replacement. However, the level of beta-glucan enrichment
reported in previous studies on meat products does not reach the recommended daily intake for
beta-glucans, which accounts for 3 g per day [19].

In this frame, the aim of this study was the production of low-fat burgers with a beta-glucan
content very close to the recommended daily intake and with good textural and sensorial characteristics.

2. Materials and Methods

2.1. Preparation of the Fat Replacer

An oat-hull-based ingredient (Nutraceutica S.R.L., Monterenzio, Italy) containing, as declared by
the producer, 55% beta-glucans, <10% proteins, <2% fat, was used to prepare a gel by mixing 27.27 g
of flour with 72.73 mL of distilled water for 5 min at 13,500 rpm by means of a T25 Ultraturrax (IKA,
Staufen, Germany). The gel was then cut into small pieces to be used, freshly prepared, as a fat replacer
in burgers.

The ratio flour:water was defined in preliminary tests to obtain a gel: (i) able to mimic as much as
possible the consistency and homogeneity of the beef fat conventionally used to prepare meat burgers;
(ii) having a beta-glucan concentration able to achieve, when added to burgers as total fat replacer,
a beta-glucan content as near as possible to the daily intake recommendation (3 g per day) [19].

2.2. Preparation of the Beef Burgers

Beef meat, purchased at a local butcher’s shop, was manually sectioned with a sharp knife
to separate the lean meat from the visible adipose and connective tissues. Then, the lean meat
(3.5 g 100 g−1 fat content) and the adipose tissue (71.5 g 100 g−1 fat content, still containing residual
proteins and moisture) were separately ground using a grinder equipped with a 4 mm plate (Kenwood
MG510, Delonghi Appliances, Treviso, Italy). Adipose tissue and lean meat, both ground, were then
mixed manually. During the mixing step, three batches were prepared, according to three different
formulations at increasing levels of fat: control (CTRL), with 15% of beef adipose tissue added; T1,
with a partial (50%) substitution of beef adipose tissue (i.e., with 7.5% beef adipose tissue and 7.5%
oat-hull-based gel added); and T2, with a total substitution of beef adipose tissue (i.e., with 15%
oat-hull-based gel added). With the exception of salt, no other spices or ingredients were added.
The formulations of the three burgers are reported in Table 1. The burgers, weighing approximately
50 g, were finally shaped (70 mm diameter, 10 mm thickness) using a burger maker mold. The whole
experiment was repeated twice.
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2.3. Cooking Procedure

The burgers were cooked according to the American Meat Science Association methodology [20],
i.e., were roasted in an electric oven (Delonghi EO 3275, Delonghi Appliances, Treviso, Italy) preheated
at 163 ◦C, until their internal temperature, measured by a digital thermometer (LT−101, TFA Dostmann,
Reicholzheim, Germany), reached 71 ◦C. Approximatively 10 min was sufficient to cook all the
samples perfectly.

Cooked burgers were then submitted to the chemical and textural determinations, as well as
consumer test. The colorimetric determinations, instead, were carried out on burgers both before (raw)
and after cooking.

Table 1. Formulation (g kg−1) of three different beef burgers without fat substitution (CTRL) and at
50% (T1) and 100% (T2) fat substitution.

Ingredient/Formulation Samples

CTRL T1 T2

Beef lean meat 835.25 835.25 835.25
Beef adipose tissue 150.00 75.00 0
Oat hull based gel * 0 75.00 150.00

Salt 14.75 14.75 14.75

* Gel as fat replacer formulated with 27.27 g of oat hull ingredient at 55% of beta-glucan concentration emulsified
with 72.73 mL of distilled water.

2.4. Chemical Composition of Beef Burgers

Protein content (total nitrogen × 6.25), ash, and moisture content were determined, according to
the AOAC International methods, to be 928.08, 920.153 and 950.46, respectively [21]. The lipid content
was determined by Folch method [22] using chloroform and methanol (Sigma Aldrich, Milan, Italy)
as extracting solvent. The carbohydrate content was determined as difference. The total beta-glucan
concentration was determined by the AOAC International method 995.16 [23] by using the Megazyme
mixed-linkage beta-glucan assay kit (Megazyme International, Bray, Ireland). The total energy value
for each product was calculated by using the Atwater coefficients as reported in Summo et al. [24].
All determinations were carried out in triplicate.

2.5. Fatty Acid Composition of Beef Burgers

The fatty acid composition was determined by gas-chromatographic (GC) analysis of fatty acid
methyl esters. The lipid fraction was cold-extracted with methanol/chloroform (1:2 v/v) following
the method proposed by Folch et al. [22]. The methylation was carried out according to the AOCS
(American Oil Chemists Society) method Ch 1–91 [25]. The GC system and conditions were the same
as those reported in a previous paper [26]. The identification of each fatty acid was carried out by
comparing the retention time with that of the corresponding methyl ester standard (Sigma Aldrich,
Milan, Italy). All determinations were carried out in triplicate.

Atherogenic (AI) and Thrombogenic (TI) indices were calculated according to the following
equations [27]:

AI = [C12:0 + (4 × C14:0) + C16:0]/(n-6 PUFA + n-3 PUFA + MUFA) (1)

TI = (C14:0 + C16:0 + C18:0)/[0.5 ×MUFA + 0.5 × n-6 PUFA + 3 × n-3 PUFA + (n-3
PUFA/n-6 PUFA)]

(2)

where PUFA are polyunsaturated and MUFA monounsaturated fatty acids. C12:0, C14:0, C16:0 andC18:0

are lauric, myristic, palmitic and stearic acids, respectively.
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2.6. Cooking Yield

The cooking yield of beef burgers was determined by measuring the weight (w) of the burgers
before and after cooking according to the following equation:

Cooking yield = (w cooked burger/w raw burger) × 100. (3)

The calculation has been performed on ten burgers.

2.7. Texture Profile Analysis

Texture profile analysis (TPA) of beef burgers was performed according to Afshari et al. [17] with
some modifications, using a texture analyzer model Z1.0 TN (Zwick Roell, Ulm, Germany) equipped
with a 3.6 cm cylindrical probe and a 1 kN load cell. The samples were heated in an oven at 60 ◦C
in order to simulate the serving conditions. Then, a portion of 2 cm of diameter was cut from the
center of the burger. A two-compression cycle was carried out at the speed of 5 mm s−1, with 5 s of
pause between the two compressions, up to 70% of recorded deformation. The following parameters
were assessed: hardness (N), indicating the maximum force recorded during the first compression;
cohesiveness, measured as the area of work during the second compression divided by the area of
work during the first compression; gumminess (N), calculated as hardness × cohesiveness; springiness,
measured by the distance of the detected height during the second compression divided by the original
compression distance; chewiness (N), calculated as gumminess × springiness. Ten different burgers
per formulation were considered, and each burger was subjected to one measurement by TPA.

2.8. Color Determination of Burgers

Instrumental determination of the surface color of both raw and cooked burgers was carried out
by using the CM-600d colorimeter (Konica Minolta, Tokyo, Japan) supported by SpectraMagic NX
software (Konica Minolta, Tokyo, Japan). The CIE (International Commition on Illumination) L*, a*,
and b* parameters were recorded: lightness (L*), red index (a*) and yellow index (b*), together with
∆E [28].

∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (4)

Three samples per formulation were analyzed, and four readings were recorded in different areas of
each sample.

2.9. Duo-Trio Consumer Test

CTRL and T2 burgers were submitted to consumer test according to the duo-trio test
methodology [29] to determine if the differences between them could be recognized. Sixty people,
regular consumers of meat and neither food-allergic nor intolerant, were recruited among the researchers
and students of the Agricultural Faculty of the University of Bari Aldo Moro (Bari, Italy). The study
protocol followed the ethical guidelines of the laboratory. Each participant was given information about
study aims and individual written informed consent was obtained from each participant. The consumer
test was performed at a local restaurant sited in Bari (Italy). Each participant received three samples
on the same dish: one as reference (CTRL or T2 randomly, and codified with an alphanumeric code),
and the other two were both CTRL and T2 randomly distributed, codified with an alphanumeric code.
Each consumer was asked to indicate the sample that was different respect to the reference in terms of
color, odor, taste and texture. Moreover, each panelist expressed a judgment indicating which burger
preferred. The results were expressed as number of correct answers.

2.10. Statistical Analysis

Data were subjected to one-way ANOVA followed by the Tukey’s HSD test. Significant differences
were determined at p < 0.05 by the XLStat software (Addinsoft SARL, New York, NY, USA).
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The results of duo–trio test were expressed as number of correct answers considering thirty-nine,
forty-one and forty-four as minimum correct answers to identify statistically significant differences at
p < 0.05, p < 0.01 and p < 0.001, respectively [30].

3. Results and Discussion

3.1. Chemical Composition

The addition of the fat replacer significantly influenced the chemical composition of cooked
burgers (Table 2). An increase of moisture was observed at increasing content of fat replacer. This is
principally due to the high moisture content of the fat replacer. These findings agreed with those of
a previous study involving the use of oat beta-glucan as fat replacer [16]. However, in another study,
the use of gelled emulsion (based on olive oil, gelatin and 9% inulin) caused an increase of moisture
content only in raw patties, whereas a significantly lower moisture of cooked product was observed
due to lower cooking yield and water holding capacity of the gel [31]. Therefore, our results could
be due also to better moisture retention of fat-substituted burgers during cooking due to the high
hydrophilicity of beta-glucans [32], able to increase the water-holding capacity of the product. The total
substitution of fat (T2), indeed, caused a significantly higher moisture content than in CTRL and T1.

Table 2. Chemical composition, cooking yield and energy value of the cooked beef burger without fat
substitution (CTRL) and at 50% (T1) and 100% (T2) fat substitution with an oat-hull-based gel.

CTRL T1 T2 p-Value

Moisture (% f.w.) 57.24 ± 0.22C 58.79 ± 0.46B 63.39 ± 0.26A p < 0.001
Protein (% f.w.) 28.41 ± 0.29A 26.98 ± 0.15B 25.83 ± 0.10C p < 0.001

Fat (% f.w.) 8.42 ± 0.04A 7.25 ± 0.12B 3.48 ± 0.03C p < 0.001
Ash (% f.w.) 2.42 ± 0.31AB 2.29 ± 0.25B 2.93 ± 0.16A p = 0.045

Total Carbohydrates (% f.w.) 3.51 ± 0.43B 4.70 ± 0.43A 4.38 ± 0.49AB p = 0.044
Beta-glucan (% f.w.) 0.01 ± 0.01C 1.35 ± 0.13B 2.96 ± 0.07A p < 0.001
Cooking Yield (%) 71.82 ± 1.39B 75.14 ± 2.13B 80.30 ± 2.50A p = 0.007

Energy Value (kcal/100 g) 203.44 ± 0.13A 186.47 ± 3.49B 146.24 ± 1.88C p < 0.001

Data on the chemical composition were expressed as % on fresh (f.w.) weight. Different letters in the same row
indicate significant differences at p < 0.05.

On the contrary, the protein content of beef burgers (on fresh matter), showed a progressive
and significant decrease when the fat replacement increased. Piñero et al. [15] and Afshari et al. [17]
reported that the addition of a beta-glucan-based fat replacer had no significant influence on the protein
content. Our findings could be related to a higher level of gel incorporation and a consequently higher
moisture content. Moreover, the beef adipose tissue used in CTRL and T2 formulations contained
muscular residues, which also contributed to the protein content, in accordance with other authors [33]

Compared to CTRL, the addition of the fat replacer resulted in a slight but significant fat decrease
in T1 formulation, whereas the T2 burger showed a more marked decrease. Considering the lipid
content of the beef adipose tissue (accounting for 71.5%) used in CTRL and T1 formulations, and the
contribution of the residual intramuscular fat of the lean fraction (3.5%), the lipid content of the CTRL
raw burger could be estimated at 13.6 g 100 g−1. After cooking, the CTRL burger showed a lipid content
of 8.42% (6.04 g of fat in 71.82 g of cooked burgers); therefore, an estimated fat loss of 56% occurred.
The lipid content of the raw T1 burger could be estimated at 8.17 g 100 g−1, whereas the cooked burger
had a 7.25% fat content (5.45 g of fat in 75.14 g of cooked burger), with a fat loss of 34%. Therefore,
even if considering estimated values, cooking induced a more limited fat loss when fat was replaced by
the beta-glucan based gel than in the CTRL burger. This phenomenon could be imputable to the ability
of the beta-glucans to form a tri-dimensional network which entraps fat and water within the meat
protein system [15]. Therefore, it has to be considered that partial fat replacement with beta-glucans
lowers fat content in the raw product, but this nutritionally positive effect is mitigated by higher fat
retention during the cooking process. As a consequence, a total fat replacement has to be made to
achieve a significant nutritional effect on the cooked product.
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The use of the fat replacer caused, as expected, a slight but significant increase in the carbohydrate
content of T1, even if no significant differences were observed comparing T1 and T2. This was imputable
to the presence of carbohydrates in the oat-hull-based ingredient. The addition of vegetable fat replacer
in burgers is reported to be influential on the chemical composition of the product [34]. The content of
beta-glucans reached a level that made the health claim “beta-glucans contribute to the maintenance
of normal blood cholesterol levels” applicable to both T1 and T2 burgers since the concentration
of these compounds was always higher than 1 g per recommended portion (in meat products, this
quantity corresponds to 100 g). However, the claim regulation specifies that “the beneficial effect
is obtained with a daily intake of 3 g of beta-glucans” [19]. In this regard, T2 burger contained
2.96% of beta-glucans. Therefore, the recommended daily intake of beta-glucans, according to the
above-mentioned regulation, could be reached by consuming a single portion (100 g) of T2 burger.
This result is particularly important because it is possible to achieve a significant improvement in the
nutritional characteristics of burgers. Indeed, by combining the total substitution of animal fat with the
inclusion of functional macromolecules, a positive effect on cholesterol reduction could be expected.
Indeed, it is known that beta-glucan has an active role on the reduction of LDL-cholesterol [11] by
modulating the cholesterol metabolism and the gut microbiota [35].

The fat substitution resulted in a significant decrease in energy value, from 203.44 kcal 100 g−1

(CTRL) to 146.24 kcal 100 g−1 (T2). In particular, the T2 formulation allowed the research to obtain
a product with lower fat content and, consequently, lower energy value compared to the products
proposed by other studies [17–19]. An effective improvement of the nutritional value of meat products
was therefore achieved, due to reduced fat content, relatively low energy value and high concentration
of beta-glucans.

3.2. Cooking Yield

The fat replacement caused an increase in cooking yield. The difference, compared with the control
burger, became significant in the T2 formulation. These findings agreed with previous studies [17,36]
in which higher cooking yield and moisture retention with the increase of beta-glucan content was
observed. This behavior can be explained with the already mentioned ability of beta-glucans to form
three-dimensional structures with meat proteins, which can easily entrap water and fat, increasing the
cooking yield [15].

3.3. Fatty Acid Composition

Fatty acid composition of burgers is reported in Table 3, as mg 100 g−1 of burger and g 100 g−1

of fatty acids. The nutritional value of beef burgers is also related to the composition of the lipid
fraction, which usually is dominated by saturated fatty acids, palmitic and stearic acids in particular,
whereas oleic acid was the most abundant unsaturated acid. The fatty acid composition of cooked
burgers agreed with other studies carried out on the same category of products [17,37]. Owing to the
fat substitution, a significant reduction was observed of the quantity (mg 100 g−1 of burger) of all fatty
acids due to the general decrease of lipid content. Moreover, a different level of reduction was observed
as a function of the unsaturation rate. In particular, T2 showed a content of palmitic acid 60% lower than
the CTRL. The reduction was slightly lower for oleic acid (−57%), whereas linolenic, the most abundant
polyunsaturated fatty acid, decreased by 45% comparing T2 with CTRL. This aspect could be better
explained considering the composition of fatty acids expressed as percentage. In particular, comparing
the T2 with the other formulations, we observed a significantly (p < 0.05) lower percentage of saturated
fatty acids and a higher percentage of the polyunsaturated fatty acids, whereas the monounsaturated
fatty acids remained constant across the formulations. Previous studies report significant differences
in the fatty acid composition of subcutaneous and muscular beef fat, with the latter characterized by
higher polyunsaturated and lower saturated fatty acids [38,39]. This could explain the differences
observed in our samples, because in CTRL and T1 burgers, the fatty fraction added was mainly
subcutaneous fat, while in T2 the residual fat was constituted principally by muscular fat.
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Table 3. Fatty acid composition (g 100 g−1 of burger and g 100 g−1 of fatty acids) and the nutritional
index of the beef burger without fat substitution (CTRL) and at 50% (T1) and 100% (T2) of fat substitution
with an oat-hull-based gel.

mg 100 g−1 of Burger g 100 g−1 of Total Fatty Acids

CTRL T1 T2 CTRL T1 T2

Myristic C14:0 395.29 ± 12.98A 300.95 ± 20.07B 111.52 ± 4.78C 4.69± 0.15A 4.15 ± 0.28B 3.20 ± 0.14C

Myristoleic C14:1 115.74 ± 7.41A 75.77 ± 0.59B 37.93 ± 5.14C 1.37 ± 0.09A 1.05 ± 0.01B 1.09 ± 0.15B

Pentadecanoic C15:0 45.57 ± 0.37A 38.12 ± 0.94B 17.44 ± 0.85C 0.54 ± 0.00A 0.53 ± 0.01A 0.50 ± 0.02A

Pentadecenoic C15:1 14.58 ± 0.82A 12.06 ± 2.50A 8.23 ± 0.03B 0.17 ± 0.01B 0.17 ± 0.03B 0.24 ± 0.00A

Palmitic C16:0 2300.53 ± 31.67A 1985.39 ± 53.88B 934.19 ± 14.64C 27.32 ± 0.38A 27.38 ± 0.74A 26.84 ± 0.42A

Palmitoleic C16:1 460.47 ± 15.01A 370.8 ± 14.13B 173.9 ± 1.34C 5.47 ± 0.18A 5.11 ± 0.19AB 5.00 ± 0.04B

Heptadecanoic C17:0 72.67 ± 1.48A 71.02 ± 2.33A 28.22 ± 0.99B 0.86 ± 0.02B 0.98 ± 0.03A 0.81 ± 0.03B

Heptadecenoic C17:1 56.71 ± 0.17A 57.06 ± 2.17A 32.72 ± 0.92B 0.67 ± 0.00C 0.79 ± 0.03B 0.94 ± 0.03A

Stearic C18:0 1146.61 ± 29.63A 1067.91 ± 18.60B 485.95 ± 5.80C 13.62 ± 0.35B 14.73 ± 0.26A 13.96 ± 0.17B

Oleic C18:1 n-9 3252.74 ± 56.21A 2939.81 ± 113.70B 1361.05 ± 45.98C 38.63 ± 0.67A 40.45 ± 1.57A 39.11 ± 1.32A

Linoleic C18:2 n-6 409.06 ± 19.51A 266.87 ± 34.27B 236.6 ± 22.44B 4.86 ± 0.23B 3.68 ± 0.47B 6.80 ± 0.64A

Linolenic C18:3 n-6 39.67 ± 4.77A 30.33 ± 1.23B 11.26 ± 0.42C 0.47 ± 0.06A 0.42 ± 0.02A 0.32 ± 0.01B

dihomo-γ-linolenic C20:3 n-6 58.61 ± 7.50A 17.20 ± 5.95B 23.55 ± 2.43B 0.70 ± 0.09A 0.24 ± 0.08B 0.68 ± 0.07A

Arachidonic C20:4 n-6 29.96 ± 11.23A 9.61 ± 3.47B 9.41 ± 0.95B 0.36 ± 0.13A 0.13 ± 0.05B 0.27 ± 0.03AB

Eicosapentaenoic C20:5 n-3 9.77 ± 2.08A 3.29 ± 1.75B 3.40 ± 2.95B 0.12 ± 0.02A 0.08 ± 0.02A 0.10 ± 0.03A

Docosapentaenoic C22:5 n-3 12.03 ± 0.88A 3.82 ± 0.49C 5.48 ± 0.41B 0.14 ± 0.03A 0.12 ± 0.02A 0.16 ± 0.03A

ΣSFA 3960.67 ± 16.87A 3463.39 ± 53.96B 1577.32 ± 13.74C 47.04 ± 0.20A 47.77 ± 0.74A 45.33 ± 0.39B

ΣMUFA 559.09 ± 45.97A 331.13 ± 44.70B 289.70 ± 27.59B 46.32 ± 0.75A 47.56 ± 1.36A 46.37 ± 1.19A

ΣPUFA 3900.24 ± 62.84A 3455.48 ± 98.65B 1613.83 ± 41.29C 6.64 ± 0.55B 4.67 ± 0.62C 8.32 ± 0.79A

MUFA/SFA ratio 0.98 ± 0.02A 1.00 ± 0.04A 1.02 ± 0.04A

PUFA/SFA ratio 0.14 ± 0.01B 0.10 ± 0.01C 0.18 ± 0.02A

AI 0.87 ± 0.02A 0.88 ± 0.05A 0.73 ± 0.02B

TI 1.68 ± 0.01A 1.71 ± 0.05A 1.57 ± 0.02B

n-6/n-3 PUFA 24.78 ± 1.41A 22.35 ± 9.47A 33.35 ± 8.89AB

SFA = Saturated fatty acids; MUFA = Monounsaturated fatty acids; PUFA = Polyunsaturated fatty acids;
AI = Atherogenic Index; TI = Thrombogenic Index. Different letters in the same row indicate significant differences
at p < 0.05.

Albeit in low amounts, we detected also some polyunsaturated fatty acids important from
a nutritional point of view, such as the arachidonic (C20:4 n-6) eicosapentaenoic (C20:5 n-3) and
docosapentaenoic acids (C22:5 n-3), without significant differences among the formulations. The amount
of these important fatty acids was lower than that reported in other studies carried out on the raw beef
lipid fraction [40]. This difference could be related to the cooking procedure, which causes the loss of
these fatty acids [37]. In studies carried out on cooked beef burgers, these fatty acids were indeed not
determined [17,41].

As a consequence of the different lipid composition, the nutritional indices linked to the fatty acid
composition were also influenced by the fat replacement. In particular, the PUFA/SFA ratio significantly
increased in T2 compared to CTRL. Moreover, the atherogenic and thrombogenic indices related to
fatty acid composition significantly decreased in T2 burger with 100% fat substitution, although the
values were higher than those recommended [42]. The n-6/n-3 ratio was higher in T2 compared to
CTRL and T1. It is reported that lowering the n-6/n-3 ratio to less than 4 is desirable to improve the
healthiness of the product [43,44]. However, the achievement of this target in meat product is not
possible solely with a fat reduction, because fat composition needs to be reformulated by the addition
of oils rich in n-3 PUFA [44,45].

Similar improvements were observed by Pintado et al. [45] in fresh sausages obtained using
an olive oil in water emulsion containing chia and oat as fat replacer. The authors explained the
results with the high level of polyunsaturated fatty acids of chia. The oat-hull-based ingredient used
in our study was characterized by a very low lipid content; therefore, its contribution to the fatty acid
composition was of relevance. Several studies report that the unsaturated fatty fractions are combined
with structural compounds of meat so that their loss during cooking is less influenced than saturated
fatty acids [44]. The saturated fatty acids could easily be lost during cooking, and this could explain
the observed results.

3.4. Texture Profile Analysis

Significant differences in the textural properties were observed among burgers with different
formulation (Table 4). The incorporation of a fat replacer led to a significant decrease of hardness,
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cohesiveness, gumminess and chewiness in T1 and T2 burgers compared to CTRL, indicating that these
burgers had a softer texture and then required less energy to be compressed. No significant differences,
however, were found between T1 and T2, highlighting the fact that the level of fat substitution did not
influence the textural properties of beef burgers.

Table 4. Texture profile analysis (TPA) of the beef burger without fat substitution (CTRL) and at 50%
(T1) and 100% (T2) of fat substitution with an oat-hull-based gel.

Hardness (N) Springiness Gumminess Chewiness (N) Cohesivity (N)

CTRL 159.1 ± 10.4A 0.71 ± 0.02A 56.2 ± 7.7A 40.2 ± 6.4A 0.35 ± 0.04A

T1 116.0 ± 7.5B 0.68 ± 0.02B 33.9 ± 2.7B 23.0 ± 2.3B 0.29 ± 0.01B

T2 113.7 ± 9.8B 0.62 ± 0.03C 29.8 ± 3.8B 18.5 ± 2.7B 0.26 ± 0.02B

p-Value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Different letters in the same column indicate significant differences at p < 0.05.

The trend of moisture and fat as an influence on texture [17] could be explained by a compensation
between the differences in moisture and fat contents of T1 and T2 (Table 2), leading to similar textural
properties. The effect of the fat substitution level was significant only for springiness, which showed
the lowest value in T2 formulation.

Owing to the important structural functions of fat, the influence on the textural properties
should be considered when the target of a new food formulation is fat substitution. The use of
beta-glucans as fat replacement in beef burger or beef patties was previously studied by other authors
with contrasting results, depending on whether beta-glucans were added as powder, gel or emulsion.
In particular, Szpicer et al. [16] reported an increase in hardness of meat burgers after the addition of
30% beta-glucan concentrate powder. When the beta-glucans were added as gel [15] or emulsion [36],
a significant reduction of hardness and other textural parameters were observed. With the increase of
beta-glucans concentration, the amount of water available for proteins decreases and meat products
lose springiness [46]. This behavior could be explained by a higher moisture retention of burgers and
a consequently lower compactness of protein matrix [36]. Furthermore, beta-glucans have the ability
to bind not only water but also fat, allowing the formation of a softer [47] and juicier product [17].

3.5. Color Indices

Color evaluations on the raw burger were made because the color characteristics of the meat
products can influence the consumers’ willingness to purchase, with increasing appreciation for bright
red products. In raw burgers, a progressive and significant increase of lightness (L*) and yellowness
(b*) was observed with fat replacement, while redness (a*) was not significantly influenced (Table 5).
The increase of the lightness and yellowness could be related to the presence of yellow pigments such
as lutein in oat (the source of beta-glucan enriched gel), as previously reported in [48]. In contrast,
a* remained constant, indicating that the fat substitution was not significant on this index. Moreover,
in a previous study, the fat substitution with a chia oil emulsion gel caused no significant variations of
a* but significant changes of L* and b* [49]. In the same study, L* and b* were slightly higher than ours,
probably because of the presence of the oil in the fat replacer.

The differences observed among raw burgers were smoothed by cooking, after which no significant
differences were found for all the color indices, as reported also by Gök et al. [6]. The color of burgers
reformulated with fat replacers is influenced by the type of ingredients used for this purpose.
In particular, Lucas-González et al. [49] reported a decrease of L* and an increase of a* during cooking
of burgers formulated with chestnut flour and chia oil emulsion gels. By contrast, Heck et al. [43]
reported an increase of L* and a decrease of a* in cooked burgers produced by the inclusion of linseed
or chia oil microparticles. During the cooking process, meat color changes due to the heat-induced
denaturation of myoglobin. Our results, assessed on the cooked burgers, were not influenced by fat
substitution; however, it is reasonable to say that the primary contribution to color is given by meat.
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The role of fat in influencing the color of cooked meat is not fully understood [50], but it should have
a lower influence on color than other critical parameters, such as pH and storage conditions [50].

Table 5. Instrumental color determination of the beef burger without fat substitution (CTRL) and
at 50% (T1) and 100% (T2) of fat substitution with an oat-hull-based gel before (Raw) and after
(Cooked) cooking.

Raw Cooked

CTRL T1 T2 CTRL T1 T2

L* 39.04 ± 0.77C 41.07 ± 0.30B 42.97 ± 1.28A 48.00 ± 2.21A 48.22 ± 2.00A 47.69 ± 1.41A

a* 13.63 ± 0.40A 13.40 ± 0.63A 14.15 ± 1.76A 6.09 ± 0.91A 6.22 ± 0.73A 6.23 ± 0.41A

b* 14.73 ± 0.32C 17.84 ± 0.18B 20.35 ± 2.17A 13.26 ± 1.30A 11.60 ± 0.86AB 12.18 ± 0.67B

∆E vs. CTRL 3.89 ± 0.36 7.16 ± 2.61 3.38 ± 1.55 2.58 ± 1.62

Different letters in the same row indicate significant differences at p < 0.05.

The ∆E of T1 and T2 formulations, calculated by comparing them to the CTRL, was determined
in order to improve evaluation of the color differences between samples. The ∆E was higher in raw
than in cooked burgers, reaching the maximum of 7.16 in T2 formulation, whereas T1 showed a value
of 3.89. ∆E values were between 3.5 and 5.0, meaning that the observer can clearly perceive the
difference between samples; thus, T1 raw burgers could be easily distinguished from CTRL. ∆E values
higher than 5 indicate the presence of two distinct colors [51]. When considering the cooked burgers,
a decrease of ∆E of both T1 and T2 was observed. The changes occurring in T2 burger were particularly
interesting due to the drop of ∆E at 2.58. When 2.0 < ∆E < 3.5, even an unexperienced observer can
notice the difference in color between products [51].

3.6. Consumer Test

CTRL and T2 were submitted to a consumer test, according to the duo–trio test methodology [28],
which was chosen to determine if the differences between burgers in terms of color, odor, taste and
texture were recognizable by consumers. T1 burger was not considered for two main reasons.
Firstly, after preliminary sensory analysis, a small group of trained panelists agreed that T1 burger
was similar to CTRL. Moreover, considering the nutritional characteristics of T2 burgers, they were
noticeably more interesting than T1, therefore we selected only T2 burger, which had no fat added and
had a high content of beta-glucans.

As shown in Figure 1, the consumers recognized the difference between CTRL and T2 burgers for
all the descriptors. In particular, forty-one people recognized CTRL and T2 for their different color
(p < 0.01), whereas the number of correct answers increased when considering odor, texture and taste,
with highly significant results (p < 0.001). The consumer test confirmed the results of textural and
colorimetric evaluations (see for example the ∆E parameter). Szpicer et al. [16] also reported that
consumers could distinguish products containing fat replacers, based on differences in color, texture,
aroma and taste. Moreover, Afshari et al. [17] highlighted that fat substitution was perceived as
significantly different by sensory analysis. On the whole, the substitution of fat with the beta-glucan gel
changed the textural and sensorial quality of burgers, but the modification did not cause a deterioration
of the general appreciation of products. In actual fact, 59.32% of panelists expressed a preference
for T2 burger, and 40.68% preferred the CTRL burger. This difference was devoid of statistical
significance (p > 0.05); therefore, the addition of beta-glucan gel did not cause a significant decrease
in the sensorial acceptability of the burgers. Both texture and taste, in fact, are known to influence the
acceptability of meat products, especially the juiciness and the tenderness [52]. Moreover, as reported
by Desmond et al. [53], a low water binding capacity implicates a negative effect on palatability, due to
the lack of juiciness and brittle texture which are both generally unacceptable to the consumers.
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Figure 1. Number of people recognizing the difference between burger without fat substitution (CTRL)
and at 100% fat substitution (T2) in a duo–trio consumer test. **: significance p < 0.01; ***: significance
p < 0.001.

4. Conclusions

The use of an oat-hull-based gel as fat replacer allowed us to obtain a beef burger with a very low
lipid content (3.48 g 100 g−1 in the formulation with a total fat substitution) and with a 2.96 g 100 g−1

content of beta-glucans, almost reaching the recommended daily intake per single portion of burger.
With a partial substitution, the decrease of lipid content in the raw product was mitigated during
the cooking process (34% and 56% of estimated fat loss in T1 and CTRL respectively). This could
be related to the fat-retaining effect of beta-glucans added. Compared to CTRL, replacing fat by the
oat-hull-based gel caused a significant decrease in hardness and other textural parameters of cooked
burgers. Conversely, the differences in color, significant in raw burgers, were smoothed with cooking.
The consumer evaluation, carried out according to the duo–trio test, highlighted significant differences
between CTRL and T2 burgers in terms of odor, taste, color and texture. The consumers expressed
a higher preference for the T2 burger, probably due to its softer texture and greater juiciness.

These results are a step forward for the improvement of the nutritional characteristics of meat
products and indicate that the use of the oat-hull-based ingredient, rich in beta-glucans, as gel is
an effective strategy for a complete fat substitution.
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