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Abstract: The spice paprika (Capsicum annuum and frutescens) is used in a wide variety of cooking 

methods as well as seasonings and sauces. The oil, paprika oleoresin, is a valuable product; 

however, once removed from paprika, the remaining spent product can be used to adulterate 

paprika. Near-infrared (NIR) and Fourier transform infrared (FTIR) were the platforms selected for 

the development of methods to detect paprika adulteration in conjunction with chemometrics. 

Orthogonal partial least squares discriminant analysis (OPLS-DA), a supervised technique, was 

used to develop the chemometric models, and the measurement of fit (R2) and measurement of 

prediction (Q2) values were 0.853 and 0.819, respectively, for the NIR method and 0.943 and 0.898 

respectively for the FTIR method. An external validation set was tested against the model, and a 

receiver operating curve (ROC) was created. The area under the curve (AUC) for both methods was 

highly accurate at 0.951 (NIR) and 0.907 (FTIR). The levels of adulteration with 100% correct 

classification were 50–90% (NIR) and 40–90% (FTIR). Sudan I dye is a commonly used adulterant in 

paprika; however, in this study it was found that this dye had no effect on the outcome of the result 

for spent material adulteration. 

Keywords: paprika; near-infrared; Fourier transform infrared; economically motivated 

adulteration; chemometrics 

 

1. Introduction 

Paprika is a spice best known for its use in a wide variety of cooking methods for both flavour 

and colour. It can be found in a variety of foods, including seasonings and sauces [1]. The European 

Spice Association [2] lists Capsicum annuum and frutescens species of paprika, which is a member of 

the family Solanaceae. Paprika consists of dried ground peppers of the sweet and slightly pungent 

varieties, depending on its origin and grade. The characteristic reddish colour is due to the presence 

of carotenoids [1]. 

Spices such as paprika are often the target for food fraud as they are valuable commodities, and 

fraudsters aim to deceive consumers into thinking they are buying authentic and safe spices [3]. 

Paprika is also commonly found in many processed foods, and therefore, any fraud in this spice may 

pose a huge risk to consumer safety [4]. Different forms of adulteration in paprika has been found to 

include substitution adulteration with waste or inferior products, falsely declared origin [5] and 

addition adulteration with the use of illegal dyes such as the commonly found Sudan I and IV 

according to the Rapid Alert System for Food and Feed (RASFF) portal 

(https://ec.europa.eu/food/safety/rasff/portal_en). 
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Examples of substitution adulteration with waste products include the adulteration by bulking 

with white pepper, curcuma, brick powder and barium sulphate [6]. Adulteration in paprika also 

involved the addition of the nut protein from almonds in place of paprika [7]. This case indicated the 

carelessness of the criminals and the serious public health threat that can arise from adulteration, 

even when only economic gain is the motivation as anaphylaxis can occur in susceptible individuals.  

Falsely declared origin has also been an issue with paprika adulteration. In 2004, Hungarian 

paprika was found to be incorrectly marketed as ‘domestic Hungarian samples’ when the aflatoxin 

that was found was from a fungus that could not have originated in Hungary due to climate. It 

therefore became obvious that fraud was occurring. The Hungarian paprika had been mixed with 

paprika from South America following a drought in the summer previously [8]. The threat of 

adulteration means the authentication of paprika from the Murcia and La Vera region of western 

Spain is important as they have protected designation of origin (PDO) status [5,9–11]. The 

authentication of Szegedi paprika from Hungary as another product with PDO status is also essential 

[12]. Various methods have been developed to identify these protected spices and characterize the 

PDO status, including DNA typing methods [11], free zone capillary electrophoresis (FZCE) [5], 

elemental analysis along with chemometrics [10,12] and UV-Vis with chemometrics [9]. 

Characteristic fingerprints based on phenolic compounds of paprika have also been obtained from 

chromatographic approaches, with high-performance liquid chromatography ultraviolet (HPLC-UV) 

and HPLC-electrochemical detection (EC) being used alongside chemometrics to determine varieties 

and origin of paprika [13,14]. 

To enhance the colour and value, dyes may also be used to adulterate paprika. In 1994, lead 

oxide was added to paprika to enhance colour, which resulted in the hospitalisation of many 

consumers [15]. Dyes found in paprika include Sudan I, Sudan IV, E160b, Orange II, Rhodamine B 

and Para Red [16], with Sudan I and IV being the most commonly found, which are possibly 

carcinogenic and potentially genotoxic [17]. 

Spectroscopy and chemometrics are increasingly becoming the chosen methods for adulteration 

detection in herbs and spices. It is a preferable form of analysis for the detection of adulteration as it 

offers a robust, rapid and inexpensive form of analysis which requires little expertise to carry out 

analysis once the test method and chemometrics are in place. Chemometrics is used to extract the 

relevant information from the spectra obtained. Used alongside spectroscopy, it is a powerful tool to 

allow for the classification of adulterated and authentic products with successful applications, 

including the detection of adulteration of garlic, ginger, oregano and onion powder [3]. In Table 1, a 

number of spectroscopic techniques used alongside chemometrics for the detection of various forms 

of adulteration of paprika have been outlined. 

Table 1. The use of spectroscopy in the detection of adulteration of paprika. 

Method Chemometrics Adulterants Ref. 

Fourier transform infrared  

(FT-IR) 

Principal component 

analysis (PCA), One class 

soft independent modelling 

class analogy (OCSIMCA) 

1% Sudan I, 1% Sudan IV, 3% 

lead chromate, 3% lead oxide, 

5% silicon dioxide, 10% 

polyvinyl chloride, 10% gum 

arabic 

[4] 

FT-Near-infrared (NIR) 

Classical least squares (CLS)-

based Advanced ID 

algorithm 

Tomato skins, brick dust, Sudan 

I 
[18] 

NIR – Portable 

Partial least squares-

discriminant analysis (PLS-

DA), Partial least squares 

regression (PLSR) 

Potato starch, acacia gum, 

annatto 
[19] 

FTIR  
Hybrid linear analysis 

(HLA)/GO 
Sudan I [20] 

Raman PLSR, PLS-DA Sudan I [21] 

Raman hyper-spectral imaging 

(HSI) 
Linear correlation Sudan I and Congo Red [22] 
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Surface-enhanced Raman 

spectroscopy (SERS) 
PCA Sudan I [23] 

Molecularly imprinted polymers-

thin layer chromatography-

surface enhanced Raman 

spectroscopy (MIP-TLC-SERS) 

PCA, Linear Correlation, 

PLSR 
Sudan I [24] 

Solution-NMR (Nuclear Magnetic 

Resonance), Solid-State NMR 
Linear Regression Sudan I [25] 

1H NMR PLS-DA Sudan I-IV [26] 

Synchronous fluorescence 

spectroscopy (SFS) 
PLS-DA Sudan I [27] 

UV-Vis PCA, PLS-DA, PLSR Sudan I and II [28] 

UV-Vis 
PCA, PLS-DA, K-nearest 

neighbours (KNN) 
Sudan I, Sudan I + IV blend [29] 

UV-Vis PLS-DA, KNN, SIMCA Sudan I, II, III and IV [30] 

UV-Vis PCA, PLS-DA Sudan I and IV [31] 

In the literature, most studies on the adulteration of paprika using spectroscopy involve the 

detection of dyes. There have been a small number of investigations into detection techniques for 

bulking agents. In a study by Horn et al. [4], results indicated >80% sensitivity and specificity when 

Fourier transform infrared (FTIR) was used to detect lead oxide (3%), lead chromate (3%), silicon 

dioxide (5%), poly vinyl chloride (10%) and gum Arabic (10%), and, in addition, Sudan I and IV were 

detected to 1%. Galaxy Scientific used classical least-squares (CLS)-based Advanced-ID algorithm to 

detect bulking agents tomato skin (0.5%) and brick dust (5%) [18]. Oliveira et al. [19] used portable 

near-infrared (NIR) spectroscopy to detect potato starch, acacia gum and annatto, and it was found 

to be capable of detecting adulteration of paprika both qualitatively using partial least squares- 

discriminant analysis (PLS-DA) and quantitatively using partial least squares regression (PLSR). The 

PLS-DA models showed a specificity >90% and lower than 2% error. The R2 and root mean square 

error of prediction (RMSEP) values for the PLSR were 0.95 and 2.12 (potato starch), 0.97 and 1.68 

(acacia gum), and 0.87 and 1.74 (annatto). The use of portable spectroscopy in this way can be highly 

valuable at detecting adulteration at various points along the supply chains, and for this reason, it 

can also act as a major deterrent to fraudsters. 

The detection of dyes in paprika has been undertaken using a number of spectroscopic 

techniques including Fourier transform near-infrared (FT-NIR), FTIR, Raman, nuclear magnetic 

resonance (NMR), synchronous fluorescence spectroscopy (SFS) and UV-vis. These methods detected 

mainly Sudan I dye; however, methods were also developed to detect Sudan II, III, IV and Congo 

Red and annatto. The chemometrics used involved the detection of dyes by both qualitative and 

quantitative methods (Table 1). The addition of dyes improves colour and subsequently may add 

value to the product. The paler reds and brown shades of paprika are the poorest quality and are also 

the most pungent [1]. 

According to the herb and spice industry, a bulking agent used in substitution adulteration is 

spent paprika. The ESA describes a spent material as one that has ‘…any valuable constituent omitted 

or removed which misleads the customer (e.g., spent and partially spent spices and herbs, de-oiled 

material, defatted material)’ [32]. Paprika oleoresin is extracted from the fruit and is an oil-soluble 

extract. It is well known for its colouring properties and can be found in cheese, orange juice, sweets 

and sauces. Paprika oleoresin, valued in the European market at €126 million in 2015, accounts for 

25% of the overall oleoresin market globally [33]. Once this oleoresin is removed from paprika, the 

remaining ‘spent’ material is then a waste product. The current method (American spice trade 

association (ASTA) method 26.1) for the detection of defatted paprika in paprika involves the 

detection of a colour change reaction by microscopy following the addition of a sulphuric acid and 

boric acid reagent [34]. This method, however, requires highly trained personnel. There do not appear 

to be any other methods reported on in literature for the detection of spent paprika in paprika other 

than testing to determine if the overall quality standards are met in the ESA Quality Minima 

Document [35,36]. Once this spent material is used as a substitute for paprika, the colour of the 
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product is less vibrant. There is therefore a risk that a dye may be used alongside the spent material 

to ensure appearances are upheld. 

The aim of this study was to develop a rapid and robust screening technique to detect 

economically motivated adulteration in paprika with spent material using the spectroscopic 

platforms NIR and FTIR in conjunction with chemometrics. Authentic paprika and spent paprika 

samples were collected and analysed by spectroscopy to create a database of representative samples 

for the classes ‘Paprika’ and ‘Adulterant’ in the chemometric models. External validation was carried 

out to determine the correct classification rate of the models and their potential to determine 

adulteration with spent material in unknown paprika samples. Sudan I dye was also added to 

adulterated samples to determine is this affected the ability of the method to detect adulteration with 

spent paprika. 

2. Materials and Methods 

2.1. Sample Collection 

A total of 159 samples were collected for the development of a chemometric model to detect 

spent material in paprika samples. The paprika (n = 140) and spent paprika samples (n = 19) came in 

powdered form. The samples were provided by highly reliable sources from leading herb and spice 

industry suppliers. The paprika samples originated from Peru, China, Hungary and Spain with spent 

material originating from China, India and Spain. Paprika samples also included those which were 

processed with stone milling and hammer milling. The samples had a range of American spice trade 

association (ASTA) colour values (extractable colour of paprika) from 75 to 269. Mixtures of varying 

seed/pod ratios were also obtained. The extraction procedures for the spent material included the use 

of hexane and acetone/hexane extraction solvents. 

2.2. Preparation of Samples 

The samples were milled prior to receipt in the laboratory. For NIR analysis, no further sample 

preparation was carried out. Prior to FTIR analysis, the samples were milled further to improve 

homogeneity of the samples for the small sample testing area of 1.8 mm on the diamond crystal of 

the attenuated total reflectance (ATR) accessory. Approximately 10 g of each sample was added to 

the grinding jars of a Planetary Ball Mill PM 100 (Retsch, Haan, Germany) and milled at 500 rpm for 

5 minutes. 

2.3. NIR Analysis 

The paprika and spent paprika samples were analysed on the Thermo Antaris II FT-NIR 

(Thermo Fisher Scientific, Dublin, Ireland). Data were collected in reflectance mode, with spectral 

data output measured in absorbance units. Approximately 10 g of each sample was placed into a 

sample cup (minimum of 0.5 cm depth) for analysis, and the samples were run on the integrating 

sphere module of the instrument. Prior to each analysis, a background scan was performed. The 

spectral data were then collected from a rotating sample with a resolution of 8 cm−1 in the range of 

4000–12000 cm−1. The samples were analysed in triplicate and remixed prior to each spectral data 

collection. A total of 64 scans were acquired for each of the spectra. 

2.4. FTIR Analysis 

Mid-infrared spectral data were collected on the Thermo Nicolet iS5 FTIR (Thermo Fisher 

Scientific, Dublin, Ireland) with diamond crystal on the ATR accessory, ZnSe lens and DTGS KBr 

detector. Following milling, the samples were placed onto the diamond crystal sampling area of the 

ATR accessory, and the slip clutch pressure tower was lowered into position. This improves 

reproducibility between samples as it ensures equal pressure is applied to the samples prior to 

analysis. A total of 32 scans were acquired for each of the spectra, and the spectral data ranged from 

550 to 4000 cm−1 at 4 cm−1 resolution. All samples were analysed in triplicate and averaged prior to 
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chemometric model development. Further sample collection parameters included: 47 seconds 

collection length, 0 levels of zero filling, N-B strong apodization, mertz phase correction, 11,742.96 

cm−1 laser frequency, 12,415 scan points and a background gain of 4.00. 

2.5. Chemometrics 

The development of chemometric models was undertaken using SIMCA 15 (Sartorius, Sweden). 

The qualitative models created in SIMCA involved firstly pre-processing the raw data from the FTIR 

and NIR. This involved the use of Standard Normal Variate (SNV), 1st/2nd Derivative, Savitzky 

Golay (SG) with 15 points and a quadratic polynomial order along with Pareto scaling. Pre-

processing prior to model development allowed focus on the important data points [37]. PCA, an 

unsupervised technique, was performed initially, to determine if separate classes could be observed 

based on the spectral data from both NIR and FTIR for paprika and spent paprika. Following this, a 

supervised orthogonal partial least squares discriminant analysis (OPLS-DA) model was created to 

further improve the qualitative models for both NIR and FTIR spectral data. The OPLS-DA algorithm 

uses both predictive (correlated) and orthogonal (uncorrelated) components to create the 

classification model to offer a greater understanding of all the aspects of the data. Chemometric 

analysis was carried out in the range of 550–1800 cm−1 and 2800–4000 cm−1 for FTIR analysis and 4000–

9000 cm−1 for NIR analysis. The classes for the binary chemometric models were made up of ‘Paprika’ 

(n = 104) and ‘Adulterant’ (n = 17). 

2.6. Validation Procedure 

The validation procedure for the NIR and FTIR paprika adulteration models was based on 

recommendations from the ‘Guidance on Validating Non-Targeted Methods for Adulteration 

Detection’ [38], Riedl et al. [39] and McGrath et al. [40]. 

2.6.1. Internal Cross-Validation 

The software SIMCA 15 carried out internal cross-validation of the chemometric models. The 

averaged data were divided into 7 parts, and each 1/7th was removed in turn. Each time, a new model 

was created using the 6/7th of the data. The 1/7th that had been removed was then predicted using 

the new model and compared to the original data. From this, the Predicted Residual Sum of Squares 

(PRESS) was calculated. PRESS was converted into Q2 by dividing by the sum of squares and 

subtracting from one. This was used as an indicator of the predictability of the model. The explained 

variation of the real data from the model is represented by the R2 value, measurement of fit. The closer 

both R2 and Q2 are to 1, the better the model. These values determined which models would be used 

for external validation. 

2.6.2. External Validation 

All samples chosen for external validation were removed from the chemometric model set. The 

external validation set was made up of authentic (typical) paprika samples (n = 30) and spiked 

samples (atypical) (n = 90). To carry out the spiking, two spent paprika were used. Each spent paprika 

was used to spike five authentic paprika samples at 10–90% levels, therefore resulting in 90 spiked 

samples in total. The five authentic paprika samples chosen for spiking were selected out of a range 

of six samples. The samples used for external validation included a range of ASTA levels, milling 

techniques and countries of origin. As suggested in the guidance from US Pharmacopoeia [38], the 

external test samples were chosen from the model centroid; otherwise, the external validation 

samples may portray the method inaccurately. 

A binary model was created for both the NIR and FTIR data as the aim of this work was to focus 

on the detection of spent paprika in paprika. The external test set of authentic 100% paprika samples 

(typical) and 90 spiked paprika samples (atypical) were run against the chosen OPLS-DA model. 

Following this, a receiver operating curve (ROC) curve was developed to plot the true positive rate 

(TPR) against the false positive rate (FPR) to determine the performance of the method. 
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2.7. Sudan Dye Detection in Spent Material 

Sudan I was added to 100% spent and 50% spent samples at levels of 0.1, 0.5, 1, 2.5 and 5%. These 

samples were then analysed on the FTIR and NIR instruments according to the aforementioned 

procedures. They were then tested as unknowns against the chosen chemometric models to 

determine if the addition of Sudan dye affected the model’s ability to detect spent material. 

3. Results and Discussion 

3.1. Raw Spectral Data 

The spectral data for paprika and spent paprika can be seen in Figure 1. The visual differences 

between the spectra are circled in the images below. 

(A) 

(B) 

Figure 1. Near-infrared (NIR) (A) and Fourier transform infrared (FTIR) (B) raw spectral data of 

paprika and spent paprika. 

The NIR spectra of 100% paprika and spent material show that there is a clear distinction 

between the bands that correspond to oil, C-H bonds, (4100–4400 cm−1, 5350–6000 cm−1) and the water 

band O-H (5000–5200 cm−1). The contrast in oil is expected as the spent material will have oils 

extracted from it in the form of oleoresin. As NIR contains overtones and combinations of 
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fundamental vibrations, the specific bands are weaker in intensity and visually more difficult to 

distinguish, hence the value of chemometrics in extracting information. 

The differences in the functional group region of the FTIR spectra occur at the C-H region (2700–

3000 cm−1) and the O-H region (3000–3600 cm−1). There are many variations in the bands of the 

fingerprint region between the spent material and paprika. The most obvious band differences 

between paprika and spent material occur at 1743 cm−1 (C=O) [4] where bands in the paprika samples 

can be seen, but not in the spent paprika. These bands can be considered diagnostic tools and enhance 

the possibility to distinguish authentic from adulterated paprika. Although the spectra visually show 

differences at 100% levels when paprika and spent paprika spectra are compared, the level of 

adulteration can vary in adulterated samples, and may not be so clear without the use of chemometric 

software to extract further information from the raw spectral data. From both the NIR and FTIR 

spectra, differences between the spent material and paprika bands can be observed here, indicating 

the potential of the methods using spectroscopy in conjunction with chemometrics. 

3.2. Chemometric Models 

Following the collection of raw data, chemometric models were created using the software 

SIMCA 15 for both NIR and FTIR. The R2 and Q2 values for the models were calculated in the software 

and used to determine which models performed the best. These models can be seen in Figure 2.  

  

(A) (B) 

Figure 2. NIR (A) principal component analysis (PCA) (Unsupervised) and (B) OPLS-DA 

(Supervised) classification models for paprika and spent material. 

In Figure 2, the NIR classification models for paprika and spent paprika were developed using 

the unsupervised technique PCA and the supervised technique OPLS-DA. These algorithms were 

carried out following the pre-processing, SNV, 1st derivative (PCA) 2nd derivative (OPLS-DA), SG 

and Pareto scaling. In the PCA model, the first four principal components showed 93.6% variation. 

Separation could be seen between the spent paprika and the paprika in the unsupervised model 

indicating model reliability as the principal components indicate the maximum variance between the 

spent material and paprika. This showed that the separation in the model was reliable. The 

supervised classification model OPLS-DA was then created and proved to have a good R2 (0.853) and 

Q2 (0.819) value. The OPLS-DA supervised technique improves the separation of classes with the use 

of predictive (correlated) and orthogonal (uncorrelated) components. 

In Figure 3, the classification models of spent material and paprika shown were developed using 

PCA and OPLS-DA algorithms with the spectral data from FTIR. The principal components showed 

80.6% variation in the first four components. The pre-processing of these models involved SNV, 1st 
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derivative, SG and Pareto scaling. The OPLS-DA model produced an R2 value of 0.943 and a Q2 value 

of 0.898. 

 
 

(A) (B) 

Figure 3. FTIR (A) PCA (Unsupervised) and (B) orthogonal partial least squares discriminant analysis 

(OPLS-DA) (Supervised) classification models for paprika and spent material. 

3.3. External Validation Results  

Following the raw data collection of the spent and paprika samples, the authentic paprika 

samples were randomized so as to prevent a group of similar products from similar suppliers being 

grouped together. They were then split into a training set for use in the model development (n = 104) 

and test set for use in the validation set (n = 30). This allowed a separate set of authentic samples to 

be used for external validation of the methods, similarly to the procedure explained by Riedl et al. 

[39]. A further set of spiked samples were also used for the external validation set (n = 90) as outlined 

in the External Validation section. The training set was used to develop and optimise the best model 

based on the R2 and Q2 performance results as explained in the Internal Validation section. As advised 

by the US Pharmacopoeia, ROC curves were created for the NIR and FTIR data sets following the 

external test set prediction to determine the performance of the chosen models and can be seen in 

Figure 4. 

  

(A) (B) 

Figure 4. Receiver operating curves (ROC) and Youden index for NIR (A) and FTIR (B) test methods. 
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The TPR and the FPR were plotted against each other to create the ROC curve to determine 

model performance for both NIR and FTIR data. The TPR and FPR, referred to by SIMCA, are the 

sensitivity rate of the test (TPR), and 1-specificity (FPR) (Figure 4). In this study, the sensitivity refers 

to the rate of correctly identified unadulterated paprika samples and the specificity refers to the rate 

of correctly identified adulterated samples. 

The area under the curve (AUC) of the ROC curve indicates method performance following the 

testing of external samples. The diagonal line indicates an AUC of 0.5, and this portrays the result of 

a random decision. The closer the AUC is to 1, the better the model performance [38]. The AUC for 

the NIR dataset and the FTIR dataset was 0.951, and 0.907 respectively. According to the guidelines, 

an AUC greater than 0.9 is considered highly accurate [41] based on recommendations by Swets et 

al. [42]. 

The AUC gives an indication of model performance; however, there is still a requirement to 

calculate the test method’s cut-off point. This cut-off point is a predictive score value that indicates 

the optimal cut-off point for correct classification. It is required as each sample tested produces a 

predicted score value, and the cut-off point determines whether a sample is adulterated or not by a 

comparison of its predictive score value. This optimal cut-off point is determined by the calculation 

of the Youden index (Youden, 1950). 

The Youden index (J) is calculated to choose the optimal threshold for the test method using the 

calculation J = Sensitivity + Specificity − 1. The Youden index not only provides an optimal cut-off 

point for a diagnostic test, but it also facilitates a comparison between tests [41,43]. As SIMCA plotted 

the TPR and FPR for the ROC plot, the Youden index was calculated through these values as J = TPR-

FPR. 

The Youden index ranges from 0 to 1 with 1 being the best possible outcome (Youden, 1950). 

The Youden index for NIR was calculated as 0.788, and for FTIR it was 0.733. Once the Youden index 

was calculated, the corresponding cut-off value for the test was identified from the predicted score 

value on the classification list from SIMCA 15. This cut-off value was 0.737 for NIR and 0.922 for 

FTIR. Therefore, any unknown sample being predicted using this model has its predicted score value 

compared to the cut-off for the test. A sample ≥ the cut-off is considered paprika, but a sample with 

a value < the cut-off value is determined as adulterated. The results of the validation test according 

to the test cut-off calculations set can be seen in Table 2. 

Table 2. Correct classification rate of external validation set for NIR and FTIR paprika adulteration 

test methods. 

 NIR Correct Classification % FTIR Correct Classification % 

100% Paprika 100% 83.3% 

10% Spent 20% 50% 

20% Spent 30% 70% 

30% Spent 70% 90% 

40% Spent 90% 100% 

50% Spent 100% 100% 

60% Spent 100% 100% 

70% Spent 100% 100% 

80% Spent 100% 100% 

90% Spent 100% 100% 

According to the ASTA analytical method 26.1 for the detection of defatted material in paprika, 

it is expected that adulteration of spent paprika would be at high concentrations, above 20% [34]. As 

observed in Table 2, at the cut-off point determined by the Youden index, the external validation 

results for the detection of spent paprika in paprika indicate that even at 40% (NIR) and 30% (FTIR) 

adulteration levels, this method did not detect all ten samples with adulteration at these levels. The 

NIR was more accurate at detecting 100% paprika samples; however, it also had a reduced ability to 

detect the adulterated samples. Conversely, the FTIR method was slightly more accurate with the 
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adulteration detection (100% at 40% adulteration level) and less accurate with the correct 

classification of the 100% paprika samples (83.3%). The results indicated in Table 2 are calculated 

based in the cut-off calculated by the Youden index, assuming that false positives and false negatives 

are weighted equally. 

The difficulties with this method may be as a result of the fact that both the spent material and 

paprika are from the same part of the same plant. The level of oleoresin removed from the spent 

material is also unknown, and this could affect the outcome of the result. It has also been reported 

that Bate’s method cannot detect all forms of spent material, and therefore, investigation into other 

techniques was required [44]. Although some difficulties can be seen with spectroscopy, it does have 

some prospects as a first port of call for adulteration as a screening technique. The separation seen in 

the chemometric models indicates that clear differences are observed, but the external validation 

results indicate that those difference are just not so clear-cut at the lower percentage levels. This 

method does have benefits above some others such as DNA techniques, which could not be used due 

to the fact the spent material is part of the same plant. 

Spent material has been detected in black pepper using non targeted methods at 10–30% [45] 

and ≥20% by Lafeuille et al. [44]. Spent black pepper can be derived from light berries as they are 

used for oil extraction [44]. Light berries are berries without a seed/kernel [46] and are therefore 

different in nature from a typical black peppercorn. Even prior to oil extraction, they are likely to 

produce different spectroscopic results to black peppercorns. In contrast, according to the 

Commission Regulation (EU) No 231/2012 for food additives, spent paprika is produced from ground 

fruit pods [47], a similar part of the plant as paprika spice. Therefore, the spent material from light 

berries may be more easily detected than spent material from paprika. 

A combination of detection methods is required to verify results in a two-platform approach. 

Both microscopy techniques and gas chromatography mass spectrometry (GC-MS) were used to 

detect adulteration in fennel seeds [48]. Garber et al. [49] illustrated the need for a range of analytical 

techniques when mass spectrometry, DNA based methods, antibody-based technologies and 

microscopy were all employed to clarify the results for the presence of nut allergens in cumin. A two-

tier test system was previously reported by Black et al. [50] for the detection of adulteration in 

oregano. This successful process involved the use of FTIR spectroscopy followed by liquid 

chromatography high-resolution mass spectrometry (LC-HRMS). A similar two-tier approach such 

as this could perhaps be used by determining the difference in the biomarkers present in paprika and 

spent paprika, therefore creating a confirmatory method following screening on spectroscopy. 

3.4. Sudan Dye 

Sudan I dye was added to 100% spent and 50% spent samples. These samples were spiked at 0.1, 

0.5, 1, 2.5, and 5% Sudan I dye. These samples were then predicted as unknown against the validated 

OPLS-DA models presented (Figure 5). 
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Figure 5. OPLS-DA models (left) and predicted 100% and 50% spent paprika spiked with Sudan I dye 

ranging from 0–5% (right) on NIR (A) and FTIR (B). 

In Figure 5, it can be observed that the 50% and 100% spent paprika that had been spiked with 

Sudan I dye were mostly found between the Paprika and Adulterant classes (50% spent) or in a 

similar position of the Adulterant class (100% spent), although the separation was clearer with the 

NIR results. Although this method is focused on detecting the economic adulteration of paprika with 

spent paprika and is not focused on the detection of Sudan I dye, it is worth noting that the higher 

the spiking level of Sudan I dye, the further the samples moved from the Paprika class in both the 

NIR and FTIR models. This is important as this reduces the chance of Sudan I dye being added to 

cheat the method by moving the samples closer to the Paprika class. 

The predicted score values on the classification list from SIMCA (Table 3) were low in 

comparison to the cut-off values of 0.737 (NIR) and 0.922 (FTIR), indicating adulteration with spent 

material. Therefore, the Sudan I dye has no effect on the outcome of the results from this test. 
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Table 3. The averaged predicted score values of 50% and 100% spent samples following spiking with 

Sudan I dye. 

% Spent % Sudan 1 NIR FTIR % Spent % Sudan 1 NIR FTIR 

Cut-off  0.737 0.922 Cut-off  0.737 0.922 

50% 0.10% 0.587 0.769 100% 0.10% 0.152 0.112 

50% 0.50% 0.577 0.769 100% 0.50% 0.140 0.115 

50% 1% 0.578 0.715 100% 1% 0.129 0.075 

50% 2.50% 0.538 0.602 100% 2.50% 0.094 −0.047 

50% 5% 0.480 0.574 100% 5% 0.043 −0.109 

4. Conclusions 

NIR and FTIR were used in conjunction with chemometrics to develop methods for the detection 

of spent paprika in paprika as a fraudulent bulking agent. External validation was carried out on 

both methods, and the NIR detected 100% of the authentic paprika samples as paprika, whereas the 

FTIR detected 83.33%. The NIR method detected all spiked samples in the external test set from the 

50% adulteration level, whereas the FTIR detected all from the 40% adulteration level. As there is 

little evidence of a similar rapid screening technique for the detection of spent paprika in paprika, 

this method indicates potential in this area as separation was detected in the chemometric models, 

although low-level adulteration was not always detected. To assist with the shortfall, this method 

could possibly be used as part of a two-tiered system by following up questionable results with a 

confirmatory method. Sudan dye, a possible addition to spent material to enhance colour, was added 

to 100% spent paprika and 50% spent paprika to determine if it could have an effect on the test 

method for the detection of spent material; however, this had no effect on the result outcome. 
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