

Article Supplementary Material Oleic Acid is not the Only Relevant Mono-Unsaturated Fatty Ester in Olive Oil

Archimede Rotondo ^{1,*}, Giovanna Loredana La Torre ¹, Giacomo Dugo ¹, Nicola Cicero ¹, Antonello Santini ² and Andrea Salvo ³

- ¹ Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Polo Universitario Annunziata, Viale Annunziata 98168 Messina, Italy; llatorre@unime.it (G.L.L.T.); dugog@unime.it (G.D.); ncicero@unime.it (N.C.)
- ² Department of Pharmacy, University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy; asantini@unina.it
- ³ Department of Chemistry and Drug Technology, University of Roma La Sapienza, via P.le A. Moro 5, 00185 Roma, Italy; and rea.salvo@uniroma1.it
- * Correspondence: arotondo@unime.it; Tel.: 39-090-676-6890

Received: 26 February 2020; Accepted: 19 March 2020; Published: date

Abstract: (1) Background: Extra-virgin olive oil (EVOO) is a precious and universally studied food matrix. The quantitative chemical composition was interpreted by an innovative processing method for the nuclear magnetic resonance (NMR) experiments called MARA-NMR. Nonetheless, any EVOO 13-carbon NMR (13C-NMR) profile displayed inconsistent signals. (2) Methods: This inconsistency was resolved by NMR data comparison to the official gas-chromatographic (GC-FID) experiments: these analyses concerned many EVOOs but also the "exotic" Capparis Spinosa Oil (CSO). (3) Results: NMR and GC-FID consistently evidenced the overwhelming presence of cisvaccenic esters in the CSO and, more importantly, cis-vaccenic ¹³C-NMR resonances unequivocally matched the misunderstood ¹³C-NMR signals of EVOOs. The updated assignment revealed the unexpected relevant presence of cis-vaccenic ester (around 3%) in EVOOs; it was neglected, so far, because routine and official GC-FID profiles did not resolve oleic and cis-vaccenic signals leading to the total quantification of both mono unsaturated fatty esters. (4) Conclusions: The rebuilt MARA-NMR and GC-FID interpretations consistently show a meaningful presence of cis-vaccenic in EVOOs, whose content is a potential discrimination factor featuring specific cultivar or geographical origin. The study paves the way toward new quantification panels and scientific research concerning vegetable oils.

Keywords: cis-vaccenic; mono-unsatured fatty; glycerols; NMR analysis; olive oil; Capparis Spinosa; ¹³C-NMR; MARA-NMR.

1. Introduction

Supplementary file reports extended tables available and extracted through MARA-NMR procedure; just some of the quantitative entries with good deviation and significance are used in the main text, whereas here we also present other data which potentially would boost the application of NMR for the EVOO analysis. The main future target is the quantification of the occurrence of fatty esters in specific glyceridic position (these could be present in the external 1,3- or internal 2-position) but also the determination of sterols, polyphenols and so on.

2. Results

Figure S1. Stack-plot of eight olive oils coming from Sicily. The reported assignment follows the labeling used in the main manuscript (scheme 1). The expanded regions around 22 and 32ppm show the clear presence of cis-vaccenic acid signals useful for the quantification within MARA-NMR quantification. The aromatic region is already reported in figure 2 of the main text.

2.2. Tables

S_5

 SPA_{17}

Tables are extended explanation of the sample type and provenance with also detailed quantitative results from MARA-NMR scheme.

	I I I I I I I I I I I I I I I I I I I			
Used Code	Lab. Code	Provenience	EVOO Specific Information	
S_1	TUR_5	Turkey	Adremittion monovarietal	
S_2	TUR_6	Turkey	Domat monovarietal	
S_3	TUN_7	Tunisia	blend	
S_4	TUN_8	Tunisia	Chehiall	

Spain

Hojiablanca monovarietal

Table S1. Analysed samples coming from aworded BIOOIL competition 2014. The used code is connected to the provenance and to the known cultivar.

S_6	SPA_18	Spain	Hojiablanca monovarietal
S_7	SPA_20	Spain	Hojiablanca monovarietal
S_8	SPA_22	Spain	Picual monovarietal
S_9	SPA_23	Spain	Arbequina
S_10	PGL_27	Portugal	Calega Vulgar monovarietal
S_11	PGL_28	Portugal	Cobrancosa Frantoio
S_12	PGL_29	Portugal	Verderal Madural blend
S_13	PGL_30	Portugal	blend
S_14	PGL_31	Portugal	blend
S_15	CAL_40	Calabria (Italy)	Cassanese, Corolea blend
S_16	CAL_41	Calabria (Italy)	Nocellara del Belice monovarietal
S_17	SIC_90	Sicily (Italy)	Moresca, Nocellara del Belice, Frantoio blend
S_18	SIC_92	Sicily (Italy)	Blend
S_19	SIC_93	Sicily (Italy)	Tonda Iblea monovarietal
S_20	SIC_94	Sicily (Italy)	Blend
S_21	SIC_95	Sicily (Italy)	Tonda Iblea monovarietal
S_22	SIC_96	Sicily (Italy)	Tonda Iblea monovarietal
S_23	SIC_97	Sicily (Italy)	Tonda Iblea monovarietal
S_24	SIC_98	Sicily (Italy)	Tonda Iblea monovarietal
S_25	SIC_99	Sicily (Italy)	Tonda Iblea monovarietal
S_26	GRE_113	Greece	Koroneiki monovarietal
S_27	GRE_116	Greece	Blend
S_28	GRE_118	Greece	Kolovi monovarietal
S_29	GRE_120	Greece	n.p.
S_30	GRE_124	Greece	Koroneiki monovarietal
S_31	SIC_128	Sicily (Italy)	Blend: Minuta, Nocellara
S_32	SIC_129	Sicily (Italy)	Blend from Valdemone
S_33	SIC_130	Sicily (Italy)	Blend from Messina province

Samples	7G%	1,2-DG%	1,3-DG%	SQmol%	Ln%	L%	0%	PO%	V%	P%	S%	Lni%	Li%	Oi%	POi%	Vi%	Pi%	Si%	VSTR	CYSR
S_1	96.7	1.2	2.1	1.7	0.6	10.2	63.9	1.3	2.8	19.1	2.2	n.d.	5.0	26.9	n.d.	1.4	n.d.	n.d.	4501	476
S_2	97.4	1.3	1.3	2.2	0.6	12.5	61.8	0.9	2.5	19.7	1.9	n.d.	7.6	24.7	0.7	0.1	0.1	0.1	2578	314
S_3	97.7	1.6	0.7	1.3	0.5	12.6	59.4	0.8	3.7	21.1	2.0	n.d.	8.5	21.6	n.d.	n.d.	1.3	2.0	3518	298
S_4	97.4	1.4	1.2	0.8	0.6	15.4	51.9	1.1	4.9	23.7	2.4	n.d.	8.9	21.1	n.d.	n.d.	0.9	2.4	4987	597
S_5	97.2	2.1	0.7	2.9	0.7	5.7	72.8	0.7	1.8	16.0	2.4	n.d.	2.9	29.4	0.7	0.3	n.d.	n.d.	2310	0
S_6	97.3	1.7	1.0	2.7	0.6	2.6	73.9	0.7	3.5	16.7	1.9	n.d.	0.6	31.9	0.7	n.d.	n.d.	0.1	1122	0
S_7	97.3	2.0	0.8	2.5	0.6	3.1	74.2	0.8	2.7	16.1	2.5	n.d.	2.0	29.9	0.8	n.d.	n.d.	0.7	1863	0
S_8	97.7	1.6	0.7	2.2	0.6	6.4	70.8	0.9	3.6	15.5	2.1	n.d.	3.3	29.0	n.d.	n.d.	n.d.	1.0	3477	533
S_9	96.8	1.8	1.4	1.3	0.4	10.2	6n.d.	1.1	5.0	21.7	1.6	0.4	6.0	23.7	n.d.	0.9	2.3	n.d.	2300	0
S_10	96.9	1.3	1.8	2.3	0.7	7.6	65.2	1.1	3.4	2n.d.	2.1	n.d.	5.5	26.2	n.d.	0.8	0.9	n.d.	2742	544
S_11	97.4	1.2	1.4	2.9	0.6	5.9	67.2	1.2	3.6	19.2	2.4	0.6	4.1	26.9	n.d.	n.d.	n.d.	1.7	4009	1083
S_12	97.6	1.3	1.0	3.1	0.6	7.7	65.4	2.5	4.6	17.4	1.9	n.d.	5.8	27.5	n.d.	n.d.	n.d.	n.d.	4153	1041
S_13	97.7	1.5	0.9	2.8	0.8	8.3	67.1	1.0	2.4	18.3	2.0	n.d.	3.1	29.2	1.0	n.d.	n.d.	n.d.	1923	0
S_14	97.8	1.4	0.8	3.4	0.6	4.5	71.3	1.2	2.5	17.7	2.3	n.d.	4.3	27.9	1.2	n.d.	n.d.	n.d.	2311	31
S_15	97.8	1.1	1.1	4.0	0.6	8.3	64.0	0.7	3.1	20.7	2.7	n.d.	5.3	27.3	0.7	n.d.	n.d.	n.d.	2848	533
S_16	97.8	1.5	0.7	3.1	0.6	6.2	70.2	0.6	3.0	17.5	2.0	n.d.	3.0	28.7	n.d.	0.9	0.1	0.6	1479	3
S_17	97.4	1.6	1.0	2.1	0.6	6.4	68.5	1.0	3.3	18.1	2.0	0.5	4.1	27.2	0.6	0.2	n.d.	0.8	2943	376
S_18	97.6	1.1	1.3	2.2	0.5	6.7	68.8	1.1	2.4	18.5	2.0	n.d.	2.5	29.6	0.9	0.1	0.1	0.1	3115	586
S_19	97.6	1.4	1.0	3.5	0.8	7.5	65.4	1.0	2.9	20.3	2.1	0.1	3.7	27.1	0.5	n.d.	0.8	1.0	3756	374

Table S2. Quantitative data and relative deviation for 20 main variables, as measured through MARA-NMR processing method working on mono dimensional ¹H and ¹³C-NMR experiments for 33 samples.

S_20	97.2	1.6	1.2	2.0	0.6	9.3	64.8	1.1	3.7	19.0	1.5	n.d.	6.2	24.9	n.d.	0.6	1.6	n.d.	2788	242
S_21	97.2	1.7	1.1	3.0	0.7	7.6	66.2	0.6	3.1	19.9	1.9	n.d.	2.9	29.8	0.6	n.d.	n.d.	n.d.	3313	220
S_22	97.7	1.5	0.8	3.6	0.7	7.5	64.8	1.3	3.4	20.7	1.7	n.d.	3.8	28.2	n.d.	n.d.	1.4	n.d.	3031	238
S_23	98.0	1.6	0.4	3.4	0.8	6.9	65.4	1.4	2.8	20.1	2.5	n.d.	3.8	27.3	n.d.	0.1	n.d.	2.1	2830	0
S_24	97.6	1.6	0.8	3.4	0.7	7.9	65.9	1.1	2.5	2n.d.	2.0	0.7	4.5	27.4	n.d.	n.d.	0.7	n.d.	2622	51
S_25	98.0	1.2	0.8	2.4	0.6	7.2	66.9	0.6	3.6	19.2	2.0	n.d.	4.0	27.7	n.d.	n.d.	n.d.	1.5	3967	761
S_26	97.3	1.3	1.4	2.0	0.7	4.4	73.3	1.3	3.0	15.6	1.8	n.d.	0.6	32.7	n.d.	n.d.	n.d.	n.d.	1620	36
S_27	97.4	1.5	1.1	2.5	0.6	4.4	72.2	0.9	2.6	16.9	2.3	0.6	4.3	26.6	n.d.	n.d.	1.8	n.d.	2883	542
S_28	97.8	1.3	0.9	2.5	0.6	7.1	73.9	1.3	1.5	13.7	1.8	0.6	4.5	27.3	n.d.	n.d.	0.8	n.d.	3444	371
S_29	96.9	1.4	1.6	2.7	0.7	5.2	70.5	1.4	2.6	17.1	2.4	n.d.	4.0	26.9	n.d.	0.6	n.d.	1.8	3054	555
S_30	97.9	1.2	0.9	1.9	0.6	4.8	73.1	0.9	2.9	15.4	2.3	0.6	2.1	28.8	0.9	n.d.	n.d.	0.9	2899	428
S_31	96.9	2.5	0.5	2.6	0.6	6.3	64.5	0.5	5.2	21.5	1.4	n.d.	3.6	28.7	n.d.	n.d.	1.0	n.d.	2695	247
S_32	96.0	3.0	1.0	3.1	0.7	9.4	61.8	1.0	4.4	21.1	1.8	0.7	4.7	26.1	0.6	0.6	0.1	0.6	2681	168
S_33	95.8	2.3	1.9	2.2	0.7	8.7	65.6	1.0	3.9	18.3	1.9	0.7	4.9	26.9	n.d.	n.d.	0.3	0.6	3136	323

Symbols of compounds are explained in the Table 1 in the main text. We point out the great potential of the MARA NMR also estimating the internal/external position of the fatty esters.

4. Discussion

5. Conclusions

This study definitely assesses the constant and relevant presence in olive oils of a not-oleic monounsaturated fatty ester called cis-vaccenic ester. It resolves the literature controversies concerning the assignment of some ¹³C-NMR resonances but, more importantly, it brings back the expected coherency between NMR and chromatography data. The serendipitos comparison of GC-FID and NMR profiles for the "exotic" Capparis Spinosa oil evidenced the overwhelming amount of cisvaccenic ester in this matrix but also unambiguously confirmed ¹³C-NMR assignments also validated in olive oil. By reconsidering the NMR and GC-FID of olive oils, it turned out the surprising quantitative contribution (around 3%) of cis-vaccenic ester. The official GC method does not always performs an acceptable resolution to resolve and quantify oleic and cis-vaccenic esters and thi s is leading to the undistinguished quantification of both mono-unsaturated fatty esters. It opens up a great potential for any technique able to clearly resolve cis-vaccenic moyeties (just like 13C-NMR) in the study of extra-virgin olive oils.

6. Patents

This section is not mandatory, but may be added if there are patents resulting from the work reported in this manuscript.

Appendix A

MARA-NMR

Table S3. General scheme of MARA-NMR referred just to the first sample. There are several blocks: namely ¹H-NMR integrations with assignment (100 entries), DPFGSE ¹H-NMR integrations (17 entries, **not used in this study**), ¹³C-NMR integrations (90 entries) along with some sum of integrals belonging to the same spectral block. Where possible, assignments are performed respecting the chemical position indicated also in other studies about the NMR of olive oil compounds (see Figure 1), for the fatty esters the abbreviation is followed by a number indicating the distance from the carboxyl position (generally from 1 to 18). These first rows will be used in the following equations according to the style of (1) (see main text) conveyed as square sum in the raw called RHO. The RHO value is minimized playing around with the quantitative variables so that the theoretical outcome is best-fitting the real (independent) variables.

Groups	Assignments	Integrat Ion Label	Integral Range		
	Chemical label				S_1
	Saturated linear aldehydes	I_1	9.77	9.746	0.064
	5S,4R(TY-EA- DA+HTY-EA-DA)	I_2	9.694	9.674	0.029
	Aldehyde A	I_3	9.674	9.659	0.016
	HTY-EDA-DA (Oleocanthal 3-C-H)	I_4	9.65	9.634	0.025
	TY-EDA-DA (Olacein 3-C-H)	I_5	9.634	9.622	0.000
	HTY-EA-CYA	I_6	9.534	9.519	0.025

TY-EA-CYA+1/2(2E-	I_7	9.519	9.505	0.012
hexenal)+1/2(2E-				
alkenal)				
1/2(2E-hexenal)	I_8	9.505	9.496	0.004
1/2(2E-alkenal)	I_9	9.496	9.491	0.004
5S,4S(TY-EA-	I_10	9.465	9.446	0.011
DA+HTY-EA-DA)				
Aldehyde B	I_11	9.364	9.351	0.018
Aldehyde C	I_12	9.328	9.309	0.008
Aldehyde D	I_13	9.289	9.28	0.008
ELENOLIDE see	I_14	9.28	9.264	0.005
magiatis et al 2019				
TY-EDA-DA	I_15	9.24	9.228	0.014
(Olacein 1-C-H)				
HTY-EDA-DA	I_16	9.228	9.211	0.003
(Oleocanthal 1-C-				
H)+TY-EA-DA+TY-				
	T 17	0 011	0.10	0.005
HIY-EA-DA+HIY-	I_1/	9.211	9.19	0.005
Unidentified water	I 18	8.302	8 106	0 449
exchanging protons	1_10	0.002	0.100	0.115
0 01				
	T 10	0.107	0.00	0.010
unknown singlet	I_19	8.106	8.09	0.019
unidentified	I_20	8.09	8.007	0.062
hydroxyl groups				
formaldehyde	I_21	8.007	7.996	0.027
phtalate A	I_22	7.728	7.694	0.032
Polyphenol A	I_23	7.683	7.66	0.004
ELENOLIDE-3-CH	I_24	7.65	7.64	0.000
unknown	I_25	7.594	7.58	0.008
ТҮ-ЕА-СҮН (3-СН)	I_26	7.58	7.562	0.008
НТҮ-ЕА-СҮН (3-	I_27	7.562	7.547	0.004
CH)				
phtalate B	I_28	7.538	7.502	0.038
CDCl3 sat A	I_29	7.5	7.47	0.058
half 1 TY-EA-CYA	I_30	7.413	7.404	0.003
half 1 HTY-EA-CYA	I_31	7.404	7.397	0.003
half 2 TY-EA-CYA	I_32	7.386	7.378	0.007
half 2 HTY-EA-CYA	I_33	7.378	7.371	0.008
unknown cycloene- eter A	I_34	7.354	7.347	0.017

unknown cycloene - eter B	I_35	7.347	7.338	0.029
CDCl3	I_36	7.302	7.226	8.519
SatB CDCl3+ TY-	I_37	7.1	7	0.110
Derivates (4-CH, 2H)				
unknown	I_38	6.907	6.814	0.053
	1.20	6.81/	6 667	0.125
2H)+ HTY-derivates	1_57	0.014	0.007	0.125
(7,8-CH, 2H)				
HTY-Derivates (4-	I_40	6.667	6.507	0.722
CH, 1H)+	_			
(Z,E)peroxideA+				
ELENOLIDE-8-CH				
unknown	I_41	6.488	6.438	0.115
polyphenols				
(E,E)peroxide A	I_42	6.326	6.209	0.286
(E,E)peroxide B	I_43	6.186	6.058	0.222
(Z,E)peroxide B	I_44	6.04	5.961	0.542
unknown	I_45	5.961	5.837	0.202
(E,E)peroxide C	I_46	5.802	5.692	0.519
unknown	I_47	5.693	5.612	0.431
(Z,E)peroxide C	I_48	5.611	5.555	0.701
(Z,E)peroxide D	I_49	5.556	5.532	0.458
alkenes+(E,E)peroxid	I_50	5.532	5.44	5.650
e D				
CH=CH	I_51	5.44	5.29	857.702
CH-TG	I_52	5.29	5.223	158.600
(8CH)SQ+1,2-DG	I_53	5.223	5.051	12.305
terpeneXX	I_54	5.051	4.836	0.539
terpeneX+residual	I_55	4.759	4.723	0.162
water				
terpeneC	I_56	4.723	4.695	0.570
Group C=CH2 of	I_57	4.674	4.642	0.409
sterols:				
Gramisterol/Obtusifo				
liol/Cycloleucalenol/				
24- Mathailar a mala artar				
Metnylenecycloartan				
Geranylgeraniol and	L 58	4 605	4.564	0.487
phytol esters (GERG	1_00	1.000	1.001	0.107
and PHYT)				
satB-CH2"-TG	I_59	4.479	4.409	1.597
CH2"-TG+2(1,2-DG)	I_60	4.365	4.204	327.739
CH2'-TG+5(1,3-DG)	I_61	4.204	4.049	340.910

acetate-esters+ satellite CH2' overlap	I_62	4.049	4.003	3.032
satA-CH2'-TG partial	I_63	4.003	3.954	1.014
	I 64	3.826	3.768	0.586
1.2-DG	I 65	3.769	3.662	3.966
unknown	I 66	3.662	3.561	1.404
(⊚-sitosterol + ⊚₅-	 I_67	3.561	3.474	1.261
avenasterol + ⊚₅-				
campesterol) >CH- OH				
unknown singlet	I_68	3.474	3.464	0.112
	I_69	3.464	3.422	0.425
	I_70	3.422	3.359	0.618
Cycloartenol+ 24- Methylenecycloartan ol (3->C H -OH)	I_71	3.304	3.246	0.951
Cicloeucalenol+ gramisterol (>CH- OH)	I_72	3.162	3.069	1.138
maslinic acid+ urosolic acid	I_73	3.052	3.006	0.639
satB-divinylCH2tufa shoulder	I_74	2.968	2.92	0.918
satB-divinylCH2	I_75	2.921	2.868	1.634
divynilCH2-TUFA	I_76	2.854	2.798	8.810
divynilCH2-DUFA	I_77	2.798	2.732	104.636
foot of the divynil signal	I_78	2.732	2.689	1.501
satA-divinylCH2+X	I_79	2.67	2.555	2.868
satB-a-CH2	I_80	2.477	2.402	8.731
@-CH2	I_81	2.364	2.25	1000.000
satb-vinylCH2+satA- a-CH2	I_82	2.217	2.112	20.435
vinylCH2- pufa+20(H) vinyl CH2-SQ	I_83	2.109	1.937	1630.670
satA-vynilCH2	I_84	1.921	1.838	17.490
interspace	I_85	1.838	1.779	6.554
residual water	I_86	1.778	1.696	14.111
1-SQ-CH3-6H*(SQ)	I_87	1.696	1.665	16.372

◎-CH2+18H*(SQ)	I_88	1.665	1.521	1033.270
satb-CH2-FA	I_89	1.521	1.402	71.079
CH2-FA	I_90	1.402	1.193	9574.030
sat CH2-FA	I_91	1.194	1.065	91.374
3/4satB-FA	I_92	1.041	0.995	9.523
Me-@3-FA+satB/4	I_93	0.995	0.95	10.883
Me-FA	I 94	0.95	0.825	1337.720
satA-FA	 I 95	0 774	0 727	7 404
(b-sitosterol + D5-	I 96	0.694	0.671	2 250
avenasterol + D5-	1_70	0.074	0.071	2.200
campesterol) 18-CH ₃				
Cremisterel*211-Cree	1.07	0 576	0 549	0 228
Grannisteror 3H+Cycr	1_97	0.376	0.340	0.238
Methylenecycloartan				
ol (endo 19CH ₂)				
	1.08	0.547	0.510	0.560
Contersterol	I_90	0.347	0.319	0.360
Cycloartenol+ 24-	I_99	0.354	0.314	0.514
sl (ava. 19CH				
01 (000, 190112				
TMS	I_100	0.02	-0.02	34.219
TMS	I_100	0.02	-0.02	34.219 S_1
TMS	I_100 Integrati	0.02 Integral	-0.02	34.219 S_1
TMS	I_100 Integrati on_Labe	0.02 Integral Range	-0.02	34.219 S_1
TMS Assignments	I_100 Integrati on_Labe l	0.02 Integral Range	-0.02	34.219 S_1
TMS Assignments Saturated linear	I_100 Integrati on_Labe 1 I_D_1	0.02 Integral Range 9.77	-0.02 0.000 9.746	34.219 S_1 49.622
TMS Assignments Saturated linear aldehydes	I_100 Integrati on_Labe l I_D_1	0.02 Integral Range 9.77	-0.02 0.000 9.746	34.219 S_1 49.622
TMS Assignments Saturated linear aldehydes 55,4R(TY-EA-	I_100 Integrati on_Labe l I_D_1 I_D_2	0.02 Integral Range 9.77 9.694	-0.02 0.000 9.746 9.674	34.219 S_1 49.622 10.109
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA)	I_100 Integrati on_Labe 1 I_D_1 I_D_2	0.02 Integral Range 9.77 9.694	-0.02 0.000 9.746 9.674	34.219 S_1 49.622 10.109
TMS Assignments Saturated linear aldehydes 55,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_3	0.02 Integral Range 9.77 9.694 9.674	-0.02 0.000 9.746 9.674 9.659	34.219 S_1 49.622 10.109 40.656
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4	0.02 Integral Range 9.77 9.694 9.674 9.65	-0.02 0.000 9.746 9.674 9.659 9.634	34.219 S_1 49.622 10.109 40.656 85.794
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4	0.02 Integral Range 9.77 9.694 9.674 9.65	-0.02 0.000 9.746 9.674 9.659 9.634	34.219 S_1 49.622 10.109 40.656 85.794
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4	0.02 Integral Range 9.77 9.694 9.674 9.65	-0.02 0.000 9.746 9.674 9.659 9.634 9.622	34.219 S_1 49.622 10.109 40.656 85.794 100.000
TMS Assignments Saturated linear aldehydes 55,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634	-0.02 0.000 9.746 9.674 9.659 9.634 9.622	34.219 S_1 49.622 10.109 40.656 85.794 100.000
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_6	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534	-0.02 0.000 9.746 9.674 9.659 9.634 9.622 9.519	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_6 I_D_7	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519	-0.02 0.000 9.746 9.674 9.659 9.634 9.634 9.622 9.519 9.505	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_5 I_D_6 I_D_7	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519	-0.02 0.000 9.746 9.674 9.659 9.634 9.634 9.622 9.519 9.505	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA TY-EA-CYA TY-EA-CYA+1/2(2E- hexenal)+1/2(2E- alkenal)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_6 I_D_7	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519	-0.02 0.000 9.746 9.674 9.659 9.634 9.622 9.519 9.505	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA TY-EA-CYA TY-EA-CYA+1/2(2E- hexenal)+1/2(2E- alkenal)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_6 I_D_7	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519	-0.02 0.000 9.746 9.674 9.659 9.634 9.622 9.519 9.505	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA TY-EA-CYA TY-EA-CYA+1/2(2E- hexenal)+1/2(2E- alkenal) 1/2(2E-hexenal)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519 9.505	-0.02 0.000 9.746 9.674 9.659 9.634 9.634 9.622 9.519 9.505 9.505	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111 8.377
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA TY-EA-CYA+1/2(2E- hexenal)+1/2(2E- alkenal) 1/2(2E-hexenal) 1/2(2E-alkenal)	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_3 I_D_3 I_D_4 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519 9.505 9.496	-0.02 0.000 9.746 9.674 9.659 9.634 9.634 9.622 9.519 9.505 9.505 9.496 9.491	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111 8.377 1.749
TMS Assignments Saturated linear aldehydes 5S,4R(TY-EA- DA+HTY-EA-DA) Aldehyde A HTY-EDA-DA (Oleocanthal 3-C-H) TY-EDA-DA (Olacein 3-C-H) HTY-EA-CYA TY-EA-CYA TY-EA-CYA+1/2(2E- hexenal)+1/2(2E- alkenal) 1/2(2E-hexenal) 1/2(2E-alkenal) 5S,4S(TY-EA-	I_100 Integrati on_Labe 1 I_D_1 I_D_2 I_D_2 I_D_3 I_D_4 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5 I_D_5 I_D_10	0.02 Integral Range 9.77 9.694 9.674 9.65 9.634 9.534 9.519 9.505 9.505 9.496 9.465	-0.02 0.000 9.746 9.674 9.659 9.634 9.622 9.519 9.505 9.505 9.496 9.491 9.446	34.219 S_1 49.622 10.109 40.656 85.794 100.000 18.810 23.111 8.377 1.749 -2.631

	Aldehyde B	I_D_11	9.364	9.351	3.743
	Aldehyde C	I_D_12	9.328	9.309	6.574
	Aldehyde D	I_D_13	9.289	9.28	9.610
	ELENOLIDE	I D 14	9.28	9.264	8.560
	TY-EDA-DA	ID 15	9.24	9.228	85.664
	(Olacein 1-C-H)	1_2_10	, 1	, 	001001
	HTY-EDA-DA	I D 16	9.228	9.211	73.169
	(Oleocanthal 1-C-				
	H)+TY-EA-DA+TY-				
	EA-EN				
	HTY-EA-DA+HTY-	I_D_17	9.211	9.19	10.275
	EA-EN				
	Assignments	Integrati	Integral		
	0	on_Labe	Range		
		1	, i i i i i i i i i i i i i i i i i i i		
					S_1
	Pext1+Sext1	I_13C_1	173.242	173.21	9.693
	Oext1+Lext1+POext1	I_13C_2	173.21	173.172	24.661
	+Lnext1+Vext1				
	Oin 11 (Lin 11 (Din 11 (Ci	L 10C 0	172 000	172 7(0	17 (70
	OInt1+Lint1+Pint1+Si	I_13C_3	172.808	172.768	17.673
	SQ10(q)	I_13C_4	135.084	135.015	0.500
	SQ6(q)	I_13C_5	134.896	134.793	1.090
	Ln16	I_13C_6	131.959	131.892	0.842
	SQ2(q)	I_13C_7	131.193	131.116	1.337
CH toward the	L13+Ln9	I 13C 8	130.224	130.157	13.622
tail of fatty ester	Oint10	I 13C 9	130.037	130.014	29.662
L13+Ln9+O10+PO	Oext10+POint10	I 13C 1	130.014	129 989	43.055
10+L9+V12=	Oextio I Onitio	1_10C_1 0	100.014	127.707	40.000
2Ln+2L+O+PO+V	Lext9+POext10	I 13C 1	129.989	129.97	8.554
		1			
	Lint9	I_13C_1	129.97	129.944	6.261
		2			
	V12	I_13C_1	129.935	129.91	2.848
		3			
CH toward the	V11	I_13C_1	129.839	129.818	3.050
head of fatty ester		4			
V11+O9+PO9+Ln1	Oext9	I_13C_1	129.729	129.696	40.723
2+Ln13+L10+L12=		5			
2Ln+2L+PO+O+V	Oint9+PO9	I_13C_1	129.696	129.666	28.969
		6			
	Ln12	I_13C_1	128.323	128.283	0.644
	T 10	⁷	100.075	100 017	0 7/0
	Ln13	1_13C_1	128.265	128.217	0.769
		ð			

	L10	I_13C_1 9	128.129	128.075	12.563
	L12	I_13C_2 0	127.956	127.898	10.504
	Ln10	I_13C_2	127.815	127.761	0.771
	Ln15	I_13C_2 2	127.17	127.116	0.147
	SQ3	I_13C_2	124.472	124.441	1.084
	SQ11	I_13C_2 4	124.369	124.332	0.805
	SQ7	I_13C_2	124.332	124.301	1.097
	СНОН	I_13C_2	68.974	68.894	32.623
	CH2OH	6 I_13C_2 7	62.188	62.034	68.405
	SQ9	I_13C_2 8	39.795	39.775	1.211
	SQ5	I_13C_2 9	39.775	39.753	0.927
(P+S+O+E+PO+L+ Ln)2	(Pint+Sint+Oint+Vint +POint+Lint+Lnint)2	I_13C_3 0	34.233	34.185	33.333
	Pext2+Sext2+Vext2	I_13C_3	34.082	34.053	21.121
	Oext2+Lext2+Lnext2	I_13C_3 2	34.053	34.025	46.016
E18+(S+O+E+L)16 +(PO+P)14+(UNK	P14+S16	I_13C_3 3	31.982	31.959	21.649
)= E+PO+P+S+O+E+	O16	I_13C_3 4	31.959	31.928	67.470
L	V16	I_13C_3 5	31.839	31.817	3.034
	PO14	I_13C_3	31.817	31.8	1.395
	L16	I_13C_3 7	31.574	31.55	11.106
PO13+O12+V14+S 14+S13+S12+S11+	PO13	I_13C_3 8	29.947	29.919	0.758
O7+S10+P12+P11+ P10+PO12	O12	I_13C_3 9	29.827	29.784	78.794
=2O+V+5S+3P	V14+V13	I_13C_4 0	29.784	29.762	9.320
	S14+S13+S12+S11+O7 +S10+P12+P11+P10+P O12=5S+3P+O+PO	I_13C_4 1	29.762	29.712	151.653
P7+L7+Ln7+P8+P 9+S7+S5+P5+V7+V	Pint7+PO7+P8+P9+S7 +S8+S9	I_13C_4 2	29.712	29.686	44.125

15+O14+S8+S9=4P	Pext7+Lint7	I_13C_4	29.677	29.649	29.668
+4S+L+O+2V		3			
	Lext7+V7ext	I_13C_4 4	29.649	29.634	9.178
	not assigned	I_13C_4	29.634	29.618	4.189
	O14+Sint5	I_13C_4	29.591	29.547	75.118
	Sext5+Pint5	I_13C_4	29.547	29.53	4.409
	Pext5	I_13C_4	29.53	29.5	21.200
	Ve7	I_13C_4 9	29.5	29.486	3.326
	Vi7	I_13C_5 0	29.486	29.463	3.793
S15+P13+L15+O15 +O13+Si6+Vi5+P6	S15	I_13C_5 1	29.436	29.416	3.857
+Se6+Ve5 = 2S+2P+2O+V+L	P13	I_13C_5 2	29.416	29.393	22.638
	L15	I_13C_5	29.393	29.379	15.313
	O13+O15+V15+Sint6	I_13C_5 4	29.379	29.339	149.649
	P6+V5+Sext6	I_13C_5	29.335	29.279	30.687
O5+O6+O4+V6+L 5+I 4+I 6+I p4+I p5	Oint5	I_13C_5	29.249	29.219	38.575
+Ln6+P4+S4+V4+ PO6+PO5+PO4= 3O+3L+3Ln+2V+3	Oext5+Lint5+Lnint5+ Lext5+Lext5+POint5= Oext+L+Ln+Point	I_13C_5 7	29.22	29.182	53.523
PO+P+S	(Oext6+Vext6+Lint6+ Lnint6)+(Pext4+Sext4 +POext5+Oint6+Vint	I_13C_5 8	29.182	29.13	115.641
	0)- O+(L+Ln+E)int+(S+P+ PO)ext				
	Oext4+Pint4+Sint4+L ext6+Lnext6+POint6	I_13C_5 9	29.13	29.098	52.729
	Oint4+Lext4+Lnext4+ P4+ Oext6+POext4	I_13C_6 0	29.098	29.06	36.298
	POint4+Lint4+Lnint4 +V4	I_13C_6 1	29.04	29.005	5.447
	SQ12	I_13C_6 2	28.313	28.292	1.198
O8+PO8+L8+L14+ Ln8+V9+PO11+O1	O11+V13	I_13C_6 3	27.275	27.242	77.957
1+V13=2O+2V+P O+2L+Ln	L14+V9+Ln8+PO11	I_13C_6 4	27.242	27.226	20.192

	L8	I_13C_6 5	27.226	27.214	14.576
	O8	I_13C_6 6	27.214	27.176	75.479
	SQ4	I_13C_6 7	26.819	26.794	1.161
	SQ8	I_13C_6 8	26.7	26.672	1.502
	SQ1	I_13C_6 9	25.708	25.688	1.055
	L11	I_13C_7 0	25.672	25.651	12.208
	Ln11	I_13C_7 1	25.651	25.637	1.655
	Ln14	I_13C_7 2	25.567	25.548	0.594
(O+L+P+S+E+PO+ Ln)3	O3i+P3i+S3i	I_13C_7 3	24.938	24.907	28.433
,	Li3+Lni3+Pe3+Se3+Vi 3	I_13C_7 4	24.907	24.889	29.767
	Oe3+Le3+Ve3+Lne3+ PO3	I_13C_7 5	24.889	24.855	50.392
O17+E19+L17+P1 5+S17+Ln17	P15+S17	I_13C_7 6	22.737	22.722	21.361
	O17	I_13C_7 7	22.722	22.699	60.480
	V17	I_13C_7 8	22.699	22.685	5.293
	L17	I_13C_7 9	22.625	22.595	10.927
	PO15	I_13C_8 0	22.58	22.558	1.295
	Ln17	I_13C_8 1	20.601	20.545	0.987
	SQ13	I_13C_8 2	17.701	17.644	1.382
	SQ14	I_13C_8 3	16.063	16.024	0.973
	SQ15	I_13C_8 4	16.024	15.984	1.238
O18+P16+S18+E20 +L18+PO16	Ln18	I_13C_8 5	14.306	14.274	1.277
	unk	I_13C_8 6	14.274	14.24	0.741
	O18+V18+P16+S18	I_13C_8 7	14.162	14.102	84.676
	L18+PO16	I_13C_8 8	14.102	14.072	12.078
	UNK	I_13C_8 9	13.997	13.964	0.426

	TMS	I_13C_9	0.032	-0.03	1.695
		0			
0	Summ Block C-1				52.027
0	Summ aromatic				104.844
	C10=2Ln+2L+O+PO+				
	V				
0	Summ aromatic				97.222
	C9=2Ln+2L+O+PO+V				
0	Summ a-CH2				100.470
0	Summ CH2-omega3				106.309
	CH2- block I				240.526
	CH2- block II				190.818
	CH2- block III				222.144
	CH2- block IV				302.214
	Vynil-CH2 tot				188.204
0	Summ b-CH ₂				108.592
0	Summ omega2-CH2				100.343
0	Summ of terminal				98.031
	Me groups				
	0 1				
	DPFGSE_equations				
					S_1
	5S,4R(TY-EA-				10.109
	DA+HTY-EA-DA)				
	HTY-EDA-DA				35.780
	(Olacein 3-C-H)				
	TY-EDA-DA				31.317
	(Oleocanthal 3-C-H)				
	5S,4S(TY-EA-				-2.631
	DA+HTY-EA-DA)				
	TY-EDA-DA				16.981
	(Oleocanthal 1-C-H)				
	HTV_FD4_D4				14 695
	(Olacein 1-C-H)+TY-				14.075
	EA-DA+TY-EA-EN				
					10 000
	HIY-EA-DA+HIY-				10.275
	EA-EIN				
	DPFGSE summ				2979.906
	tot_rho				

15 of 20

		S_1
	sat_lin_ald_ppm_mo l	297.734
Ligstroside aglycone	TY-EA-CYA	77.906
Oleuropein	HTY-EA-CYA	112.859
	2E-hexenal	50.265
	other 2E-alkenals	10.496
	optimized	
	HTY-EDA-DA	300.080
	(Olacein)	
	TY-EDA-DA	412.101
	(Oleocanthal)	
	5S,4R-TY-EA-DA	0.000
	5S,4S-TY-EA-DA	0.000
	TY-EA-EN	50.765
	5S,4R-HTY-EA-DA	0.000
	5S,4S-HTY-EA-DA	0.000
	HTY-EA-EN	0.000
	TY-EA	729.843
	HTY-EA	112.859
		TUR 5
	Sampla	S 1
	Jampie	<u> </u>
	^{⊚-} SIT+avenaster+camp	4500.740
	oster	
	Cyclo-sterols	476.116
		0.000
	Sample	0.000
	Average FW	870.621
	TG%	96.687
	1, 2-D G%	1.189
	1,3-DG%	2.124
	Sqmol%	1.675
	Ln%	0.587
	L%	10.178
	 0%	63 073
	PO%	2 00.075
	V%	2.073
	P0/	10 000
	<u> </u>	2 256
	0.70	2.200

				0.000
				0.000
				0.000
	In(int)%			0.000
	Litt(Iitt) /o			E 192
	L(Int)%			5.183 26 F7F
	O(int)%			26.575
	PO(int)%			0.000
	V (int)%			1.574
	P(int)%			0.000
	S(int)%			0.000
				0.000
				0.000
				pp
				TUR_5
eq_H_1	aliphatic-CH2			-0.388
eq_H_2	SQ_terminal			0.741
eq_H_3	SQ+⊚CH2			-0.880
eq_H_4	Ln - omega3-uns			0.083
eq_H_5	vynilCH2tot			-0.057
eq_H_6	divynilCH2-dufa			-0.162
eq_H_7	divynilCH2-tufa			-0.005
eq_H_8	CH=CH			0.709
eq_H_9	1,2-DG%			0.011
eq_H_10	TG+5(1,3-DG)			0.184
eq_H_11	2*TG+2(1,2-DG)			0.297
				S_1
satqExt	S1+P1qExt	I_13C_1	eq_13C_ 1	-0.075
SQ(Cq)	SQ(Cq)	I_13C_4/	eq_13C_ 2	0.011
Oint/Oext	Oint/Oext	I_13C_9/	eq_13C_ 3	-0.023
Ln16		10	eq_13C_ 4	0.029
(Ln16)+L13+Ln9+	L13+Ln9	I_13C 8	eq_13C	0.193
Oint10+Oext10+P	-		5	
Oint10+Lext9+PO	Oint10	I_13C_9	eq_13C_	-0.140
$e_{X_1U} + Linty = -$ $I_{13+I} = 0 + P_{010+01}$	Oovt10+DOim+10	L 12C 1	6 07.12C	0.020
()+I.n9 =	Oext10+POInt10	1_13C_1 0	eq_13C_ 7	0.029
2Ln+2L+O+PO	Lext9+POext10	I_13C_1	eq_13C_	0.024
-		1	8	
	Lint9	I_13C_1 2	eq_13C_ 9	0.036

V12	V	I_13C_1	eq_13C_	-0.255
		3	10	
CH toward the	V11	I_13C_1	eq_13C_	-0.003
head of fatty ester		4	11	
O9+PO9+Ln12+Ln	Oext9	I_13C_1	eq_13C_	0.222
13+L10+L12+V11=		5	12	
O+PO+2Ln+2L+V	Oint9+PO9	I 13C 1	ea 13C	-0.223
		6	13	
	Ln%(12.13-CH)	L 13C 1	eg 13C	0.028
			14	
	I%(CH)	I 13C 1	eg 13C	0 394
		1_10C_1 8	15 15 15 15 15 15 15	0.071
	$I_{p0}/(10.15 CU)$	1 12C 1	10	_0.004
	LII/0(10,13-CI1)	1_15C_1	eq_15C_	-0.004
		9 I 100 1	10	0.101
SQ(CH)	SQ(CH)	I_13C_1	eq_13C_	-0.101
		5	17	
SQ(9-5-CH2)	SQ(9-5-CH2)	I_13C_1	eq_13C_	-0.006
		6	18	
Pext2+Sext2+Vext	Pext2+Sext2+Vext2/O	I_13C_3	eq_13C_	-0.251
2	e2+Le2+Lne2	1/32	19	
P14+S16+O16+V1	P14+S16	I_13C_2	eq_13C_	-0.446
6+L16		0	20	
	O16	I_13C_2	eq_13C_	0.314
		1	21	
	V16	I_13C_2	eq_13C_	0.024
		2	22	
	PO14	I_13C_2	eq_13C_	-0.468
		3	23	
	L16	I 13C 2	eg 13C	0.162
		4	24	
PO13+O12+E14+S	PO13%	L 13C 3	eg 13C	-0.426
14+S13+S12+S11+		8	25	
O7+S10+P12+P11+	012	L 13C 3	og 13C	0.938
P10+PO12 =	012	1_15C_5	eq_15C_ 26	0.750
110+1012 = 20+V+2P0+5S+3P	V14 V12	2	20	0.112
20101210100101	V 14+V 15		eq_15C_	0.112
	C14,C10,C10,C11,OT	T 10C 4	2/	0.10(
	514+513+512+511+0/	I_13C_4	eq_13C_	-0.126
	+S10+P12+P11+P10+P	1	28	
	012=5S+3P+O+PO			
Pint7+PO7+P8+P9	Pint7+P07+P8+P9+S7	L 13C 4	eg 13C	-0.419
+S7+S8+S9+Pext7+	+S8+S9=2P+Pi+3S	1_10C_1 2	29	0.117
I int7+I ext7+O14+		-	2)	
Sint5+Sovt5+Pint5	Pext7+Lint7	I 13C 4	eq 13C	0.159
		3	30	
$+\Gamma ext3 =$	Lext7	I 13C 4	ea 13C	0.352
$\Gamma / + \Gamma \delta + \Gamma 9 + \delta / + \delta \delta +$		- <u>-</u>	31	0.00-
57+55+1°5+L/+U14	O14+Sint5	I 13C 4	eg 13C	0.088
+PO/=		1_10C_7 6	27 27	0.000
4(5+1²)+O+L+1²O	SovtErDinte	L 12C 4	og 12C	0.020
	JEXIJTI IIIIJ	1_13C_4 7	22 22	0.020
		1	33	

	Pext5	I_13C_4 8	eq_13C_ 34	-0.145
S15+P13+L15 = S+P+L	S15	I_C_51	eq_13C_ 35	0.411
-	P13	I_C_52	eq_13C_ 36	-0.066
	L15	I_C_53	eq_13C_ 37	0.825
O13+O15+Sint6+E 15+P6+E5+E6+Sex	O13+O15+Si5	I_13C_5 4	eq_13C_ 38	-0.187
t6 = 2O+V+P+S	P6+V15+Se5	I_13C_5 5	eq_13C_ 39	0.162
Oint5+Oext5+L5+ Ln5+POint5+O+(L	Oint5+Li+Lni	I_13C_5 6	eq_13C_ 40	0.147
+Ln+E)int5+(S+P+ PO)ext5+Oext4+Pi	Oext5+L5+Ln5+POint 5	I_13C_5 7	eq_13C_ 41	0.042
nt4+Sint4+Eint4+L ext6+Lnext6+POin	O+(L+Ln+E)int+(S+P+ PO)ext	I_13C_5 8	eq_13C_ 42	0.021
t6+Oint4+Lext4+P Oext4+I next4+PO	Oe4+Pi4+Si4+Ei4+Le6	I_13C_5	eq_13C_	0.623
ext6POint4+Lint4 +Lnint4 =	(O+L+Ln)ext+(P+S+E +PO)int	9	43	
3Ln+3L+3O+3PO+ E+P+S	Oint4+Lext4+POext4 +Lnext4+POext6	I_13C_6 0	eq_13C_ 44	-0.287
	POint4+Lint4+Lnint4 +Vint4	I_13C_4 2	eq_13C_ 45	-0.170
O8+V13+L14+V10 +Ln8+PO11+L8+P	O11+V13	I_13C_6 3	eq_13C_ 46	-0.114
O8+O11=2O+2E+2 PO+2L+Ln	L14+V10+Ln8+Po11	I_13C_6 4	eq_13C_ 47	0.148
	L8	I_13C_6 5	eq_13C_ 48	1.258
	O8	I_13C_6 6	eq_13C_ 49	-0.009
SQ(4-8-12-CH2)	SQ(4-8-12-CH2)	I_13C_4 8	eq_13C_ 50	0.020
L11%	L11%	I_13C_7 0	eq_13C_ 51	0.319
Ln11%	Ln11%	I_13C_7 1	eq_13C_ 52	0.187
Ln%	Ln14%	I_13C_7 2	eq_13C_ 53	-0.008
(O+P+S+E)int3+[(L+Ln)int+(P+S)ext	O3i+P3i+S3i =(O+P+S)int3	I_13C_5 1	eq_13C_ 54	-0.196
]3+(O+L+E+Ln)ext 3+PO3 =	Li3+Lni3+Pe3+Se3+Vi 3=[(L+Ln)int+(P+S)ex	I_13C_5 2	eq_13C_ 55	-0.301
(Ln+L+O+PO+E+P +S) second	t]3 Oe3+Le3+Ve3+Lne3+	I_13C_5	eq_13C_	0.497
methylene C atom	PO3=(O+L+E+Ln)e+P O	3	56	

(Ln+O+P+S+V+L+	P15+S17	I 13C 5	eq 13C	0.064
PO) last		4	57	
methylene carbon	O17	I_13C_5	eq_13C_	-0.840
atom		5	58	
	V17	I_13C_5	eq_13C_	0.985
		6	59	
	L17%	I_13C_5	eq_13C_	0.569
		7	60	
	PO15	I_13C_5	eq_13C_	-0.401
		8	61	
	Ln17	I_13C_5	eq_13C_	0.032
$CO(M_{\odot} 1.12.14.15)$	$CO(M_{\odot} 1.12.14.15)$	9 I 12C (62	0.021
SQ(Me-1,13,14,15)	SQ(Me-1,13,14,15)	1_13C_6	eq_13C_	0.021
$(I_{p+} \cap P_{+} P_{+} S_{+} E_{+} I_{+})$	I n190/	U I 12C 6	03	0.715
PO) last carbon	L1110 /0	1_13C_0	eq_13C_ 64	0.715
atom	Me(O+P+S+V)	I 13C 6	eg 13C	-0.765
utom		1_10C_0 2	65	0.700
	Me(L+PO)	I 13C 6	ea 13C	0.050
	()	3	66	
				TUP 5
				<u> </u>
	.(1)00 1			<u> </u>
	©(dev)^2=rno			11.419
	Type ctrl+V to run			11.419
	minimization on the			
	raw 387			
	Constrain DG+TG			100.000
	Constrain total fatty			100.000
	acids			100.000
	Costrain internal			33.333
	position			
	r			

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).