Supplementary Material

Monitoring virgin olive oil shelf-life by fluorescence spectroscopy and sensory characteristics. A multidimensional study carried out under simulated market conditions.

Ana Lobo-Prieto^a, Noelia Tena^b, Ramon Aparicio-Ruiz^b, Diego L. García-González^a*, Ewa Sikorska^c.

^aInstituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide – Edificio 46, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain.

^bDepartment of Analytical Chemistry, Universidad de Sevilla, Prof. García González 2, 41012 Sevilla, Spain.

^cInstitute of Quality Science, The Poznan University of Economics and Business, al. Niepodleglosci 10, 61-875 Poznań, Poland.

Months of	Median of the fruity attribute (M_f)				Median of defect (M _d)			
storage	V001	VOO2	V003	VOO4	V001	VOO2	VOO3	VOO4
0	4.7	3.5	3.8	3.0	0.0	0.0	0.0	2.0
1	4.7	3.5	3.8	3.0	0.0	0.0	0.0	2.0
2	4.7	3.0	3.8	3.0	0.0	0.0	0.0	2.0
3	4.5	2.5	3.8	3.0	0.0	0.0	0.0	2.0
4	4.0	2.0	3.8	3.0	0.0	0.0	0.0	2.0
5	4.0	2.0	3.8	3.0	0.0	1.0	0.0	2.0
6	4.0	1.9	3.8	3.0	0.0	1.0	0.0	2.0
7	3.8	1.9	2.0	3.0	0.0	1.9	0.0	2.0
8	3.8	1.9	2.0	3.0	0.0	1.9	0.0	2.0
9	3.8	1.8	2.0	2.8	0.0	1.9	2.6	2.0
10	3.6	1.5	2.0	2.8	0.0	2.0	2.5	2.0
11	3.6	1.5	2.0	2.8	0.0	2.0	2.5	2.0
12	3.1	1.5	2.0	2.8	0.0	2.0	2.5	2.0
13	3.1	1.5	2.0	2.8	0.0	2.0	2.5	2.0
14	3.0	1.5	1.8	2.8	0.0	2.0	2.0	2.0
15	2.0	1.5	1.8	2.8	2.5	2.0	2.0	2.0
16	2.0	1.5	1.8	2.5	2.5	2.0	2.0	2.0
17	1.8	1.5	1.8	2.5	2.5	2.0	2.0	2.0
18	1.6	1.5	1.8	2.0	2.9	2.0	2.0	3.5
19	1.6	1.5	1.8	0.0	3.0	2.0	2.0	3.5
20	1.6	1.5	1.8	0.0	3.0	2.0	2.0	3.5
21	1.5	1.5	1.8	0.0	3.0	2.0	2.0	4.0

Table S1. Sensory assessment results (medians of the fruity attribute and defect) during the storage

 experiment for each VOO.

Note: According to European commission regulation (see [15] in the main publication): Extra virgin olive oil, $M_f > 0$ and $M_d = 0$; Virgin olive oil, $M_f > 0$ and $M_d \le 3.5$; Lampante olive oil, $M_d > 3.5$.

Compound	Code					
Identified at λ_{ex} = 280 nm						
Hydroxytyrosol	1					
Tyrosol	2					
<i>p</i> -hydroxyphenylacetic acid (internal standard)						
Vanillic acid	4					
Vanillin	5					
<i>p</i> -coumaric acid	6					
Hydroxytyrosol acetate	7					
o-coumaric acid (internal standard)	11					
Dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA)	12					
Dialdehydic form of decarboxymethyl elenolic acid liked to <i>p</i> -HPEA						
(p-HPEA-EDA)						
Pinoresinol	15					
Cinamic acid	16					
Acetoxypinoresinol	17					
Aldehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EA)	20					
Aldehydic form of elenolic acid linked to tyrosol (<i>p</i> -HPEA-EA)	22					
Identified at λ_{ex} = 235 nm						
Elenoic acid	А					
Identified at λ_{ex} = 335 nm						
Luteolin	19					
Apigenin	21					

Table S2. Phenolic compounds identified in the VOO samples subjected to storage at moderate conditions. The compounds are grouped according to the excitation wavelength chromatogram where they were registered.

Figure S1. An example of chromatogram obtained from the phenol analysis. The chromatograms correspond to VOO1 (fresh oil). The codes are shown in **Table S2**.

Figure S2. An example of chromatogram obtained from the α -tocopherol analysis. The chromatogram corresponds to VOO1 (fresh oil).

Figure S3. An example of chromatogram of the degradation products of chlorophyll a obtained in the analysis. The chromatogram corresponds to VOO3 (fresh oil).

Figure S4. PARAFAC scores of the sample set (different monovarietal samples during the storage at moderate conditions). Component 1 ($\lambda_{ex}/\lambda_{em}$ 408/678 nm), component 2 ($\lambda_{ex}/\lambda_{em}$ 293/322 nm), component 3 ($\lambda_{ex}/\lambda_{em}$ 408/668 nm), component 4 ($\lambda_{ex}/\lambda_{em}$ 300/418 nm), component 5 ($\lambda_{ex}/\lambda_{em}$ 280/314 nm), and component 6 ($\lambda_{ex}/\lambda_{em}$ 340/450 nm).