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Abstract: The purpose of this study was to develop a formulation of Sunsik with improved health
benefits by adding germinated wheat (GW) and herbal plant extract (HPE) using a response surface
methodology (RSM). The central composite experimental design (CCD) was used to evaluate the effects
of Sunsik with added HPE (2–4%) and GW (10–20%) on total phenolic content (TPC), total flavonoid
content (TFC), Trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging capacity, gamma butyric acid (GABA) content, total color changes (4E), browning
index (BI), water absorption index (WAI), and water solubility index (WSI). As a result of the CCD,
the independent and dependent variables were fitted by the second-order polynomial equation,
and the lack of fit for response surface models was not significant except in relation to WSI. The GABA
content, TPC, and TEAC were more adequate for a linear model than for a quadratic model, and they
might be affected by GW rather than HPE. Alternatively, the TFC, DPPH radical scavenging capacity,
WAI, WSI, 4E, and BI were fitted with quadratic models. The optimum formulation that could
improve antioxidant and physicochemical properties was Sunsik with 3.5% and 20% added HPE and
GW, respectively.

Keywords: cereal-based ready-to-drink beverage; convenient meal replacement (CMR);
germinated wheat; response surface methodology (RSM); gamma-amino butyric acid (GABA);
antioxidant properties

1. Introduction

Recently, the increase in single-person and double-income households has shifted consumers’
eating behaviors toward the increased consumption of home meal replacements (HMRs) or convenient
meal replacement (CMRs) [1]. As ready-to-eat foods, CMRs are a more convenient and simpler meal
replacement than HMRs, and they could reduce meal preparation and eating time. The CMR market
quadrupled from $600 million in 2009 to $2.3 billion 2019. In Korea, the proportion of single-person
households is expected to reach 35% of the total population in 2030, and the CMR market is expected
to continue to grow.

The types of CMR products are diversifying, such as to include liquid and powder grains, porridges,
and cereal bars. Among them, cereal-based beverages are a representative CMR product consumed
worldwide because they provide an efficient means to increase the intake of essential nutrients
among busy modern people. A few studies investigated the physicochemical and health-conscious
properties of various cereal beverages [2,3]. Bembem and Agrahar-Murugkar [2] reported that
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millet-based ready-to-drink beverages improved radical scavenging activity, total phenolic content
(TPC), and viscosity in the geriatric population. In another study, multigrain beverages prepared with
barley, oats, buckwheat, and red rice were identified as providing additional health benefits, such as
phenolic content and soluble fiber, to consumers [3].

Sunsik has been consumed for a long time as a cereal-based ready-to-drink beverage in Korea. It is
made of partially raw or thermal-processed and dried agricultural and marine products [4]. The most
common ingredients of Sunsik are roasted brown rice, barley, adlay, oat, and black beans [5]. With
the recent increase in the demand for healthy foods, much research has reported that additional
ingredients, such as various dried vegetables, nuts, and fruits, could be added to Sunsik to offer more
health-conscious nutrients [6–8]. For example, Park [8] reported that Sunsik with added mealworm
was higher in antioxidant capacities and in consumer preference than a control Sunsik. Regarding the
quality of ready-to-drink of Sunsik, it should disperse and dissolve well in water or milk within a few
minutes. Koh, Jang, and Surh [6] reported that fermented Sunsik had a higher soluble solid content,
oxidative stability, and amino acids than unfermented Sunsik, resulting in an improved solubility and
nutrient content. Although several studies reported enhancements in the quality and nutrient content
of Sunsik, there is limited information on the health benefits of Sunsik with added germinated wheat
(GW) and herbal plant extract (HPE).

Germination has been identified as an effective processing method to improve the nutritional
quality and health-related compounds of cereal [9]. In numerous studies, gamma amino butyric acids
(GABA) and phenolic acid compositions were increased as the germination time of wheat increased,
suggesting the possibility of GW as a health-conscious ingredient [10–12]. In addition, Dhillon et al. [13]
found that the antioxidant activity of and consumer preference for breads were improved when GW
flour at 30 ◦C for 72 h was partially used to make bread. The changes in the physiological and
biochemical properties of GW might be due to the activation of endogenous enzymes that break down
starch and protein into small molecules [14,15]. The activation of endogenous enzymes may also play a
role in increasing the solubility of Sunsik with added GW when it mixes with water or milk. In addition,
plant herbal medicines, such as Achyranthes aspera, safflower seed, and Acanthopanax, have been
used for the prevention of various diseases in traditional treatments in Asian countries [16,17]. It is
known that safflower seeds are rich in lignin, flavonoid, and serotonin and have excellent effects on
bone diseases, such as osteoporosis [18]. As previously published in many studies, the extracts of A.
aspera and Acanthopanax showed a reduced inflammatory effect and antioxidant capacities [19–22].
The above-mentioned herbal plant medicines are used not only for therapeutic purposes, but also by
adding them to various foods in the form of extracts to increase the health-related functions in the
food matrix, such as noodles, drinks, and cookies [23–26]. The HPEs, including A. aspera, safflower
seed, and Acanthopanax, used in this study confirmed previously the pharmacological effects on
osteogenic differentiation in human mesenchymal stem cells [27]. The mixture extracts of herbal plants
were freeze-dried and then were used in various food products of Gagopa Healing Food Co., Ltd.
(Changwon, Korea).

Currently, Sunsik with added GW flour and HPE is not available in the marketplace yet. Thus,
if GW and HPE are added to commercial Sunsik, which is conveniently used as ready to drink
beverage, the new Sunsik product might be more beneficial to health. The purpose of this study was to
determine the optimum formula amounts of GW flour and HPE powder for new Sunsik products as
cereal-based ready-to-drink beverages. To determine the optimum formulation of Sunsik, the response
surface methodology (RSM) was adopted using a central composite experimental design (CCD).
The antioxidant capacities, GABA, water absorption index (WAI), water solubility index (WSI), total
color changes (∆E), and browning index (BI) were analyzed to optimize the health-conscious nutrients
and quality of Sunsik; then, the newly optimized Sunsik was compared with control Sunsik in terms of
various health-conscious and physicochemical properties.



Foods 2020, 9, 1654 3 of 14

2. Materials and Methods

2.1. Materials

The Sunsik and HPE were provided from Gagopa Healing Food Co., Ltd. (Changwon, Korea).
The main ingredients of Sunsik consisted of 30% barley, 30% brown rice, 20% adlay, 10% black bean,
and 10% oat. In general, each cereal was steamed and then dry-roasted. The four roasted cereals were
pulverized in a batch for a production of the Sunsik. The Sunsik used in this study is being sold on
the market. Gagopa Healing Food Co., Ltd. (Changwon, Korea) found effects of HPE on osteogenic
differentiation through preliminary studies, and the results already published [27]. The HPE used
in this study is composed of safflower seed (85%), A. aspera (5%), manyprickle acanthopanax (5%),
and Kalopanax septemlobus (5%) [27]. In addition, the GW used in this study was prepared according to
preliminary experiments. Anzunbaengi wheat, which was cultivated in Jinju, Korea, was germinated at
17.6 ◦C for 46.18 h to enhance GABA. After germination, the GW was freeze-dried and then grounded
to powder. To develop a cereal-based ready-to-eat beverage to enhance health-related properties,
Sunsik was formulated with HPE and GW to maximize GABA and antioxidant capacities. The ranges of
HPE and GW used in this study were 2–4% and 10–20%, respectively, and the ranges were determined
based on samples of five points or more as a result of consumer acceptability (nine-point hedonic scale)
of Sunsik with added HPE or GW, respectively.

2.2. Experimental Design and Optimization of the Formulation

The amounts of HPE and GW were optimized using a CCD of an RSM [28]. The independent
values were studied at five different levels (− α, −1, 0, + 1, and + α), and the actual levels are presented
in Table 1.

Table 1. The coded levels and actual values of 13 experiments formulated with a central composite
design (CCD).

Experiment No. Coded Levels Actual Values

X1 (HPE, g) X2 (GW, g) X1 (HPE, g) X2 (GW, g) Sunsik (g)

1 −1 −1 1 5 44
2 1 −1 2 5 43
3 −1 1 1 10 39
4 1 1 2 10 38
5 α(−) 0 0.79 7.5 41.71
6 α(+) 0 2.21 7.5 40.29
7 0 α(−) 1.5 3.96 44.54
8 0 α(+) 1.5 11.04 37.46
9 0 0 1.5 7.5 41

10 0 0 1.5 7.5 41
11 0 0 1.5 7.5 41
12 0 0 1.5 7.5 41
13 0 0 1.5 7.5 41

Table 1 and they were evaluated to maximize the GABA, total flavonoid content (TFC), TPC,
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, Trolox equivalent antioxidant
capacity (TEAC), and WSI and to minimize the WAI, ∆E, and BI. The effects of the two independent
variables on the responses (Y) were modeled using the response surface regression, and they were
predicted by the following Equation (1) [28]:

Yk = β0 + β1X1 + β2X2 + β12X1 X2 + β11X2
1 + β22X2

2 (1)

where β0 is a constant, β1 and β2 are the linear coefficients, β12 is the interaction coefficient, and β11

and β22 are the quadratic coefficients. X1 and X2 are the levels of HPE and GW, respectively. Yk is the
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response variable, and each response variable is as follows; Y1 = GABA (µg/g), Y2 = TFC (µg CE/g),
Y3 = TPC (µg GE/100g), Y4 = DPPH (µM TE/100g), Y5 = TEAC (mM TE/100g), Y6 = WAI, Y7 = WSI,
and Y8 = ∆E, Y9 = BI. To validate the linear or quadratic model, each experimental data of independent
variables was compared with the predicted values using the model developed in this study.

2.3. Extraction Procedure of Sunsik Samples

In total, 5 g of each Sunsik sample was extracted with 80% ethanol at 65 ◦C for 2 h, and the
supernatants obtained by centrifugation (5000 rpm for 30 min) were evaporated to dryness at 45 ◦C
using a nitrogen evaporator (Eyela MG-2200, Tokyo Rikakikai Co. Ltd., Tokyo, Japan). The dried
extract was then re-dissolved with 80% ethanol into a final volume of 5 mL. The extract was used to
determine the GABA, TEAC, DPPH, TFC, and TPC.

2.4. Gamma-Amino Butyric Acid (GABA)

The GABA contents of the Sunsik samples were determined according to the method described in
Sharma et al. [29]. In brief, 0.1 mL of each extract was mixed with 0.2 mL of 0.2 M borate buffer and
1 mL of 6% phenol reagent. Then, 0.4 mL of 7.5% sodium hypochlorite was added, and the mixture was
boiled for 10 min in a water bath. The samples were immediately cooled for 5 min, and the absorbance
was measured using a spectrophotometer (EMC-11D-V Spectrophotometer, EMCLAB Instruments,
Duisburg, Germany) at 630 nm. The GABA was used as a standard curve and prepared with a range
of concentrations from 0 to 50 mg. Results were expressed as mg/g.

2.5. Total Flavonoid Content (TFC)

TFC was determined using the methods previously described by Dahl [30]. The extract of samples
(250 µL) was added to 1.25 mL distilled water, and 70 µL of 5% sodium nitrite was added to the mixture.
After 6 min, 150 µL of 10% aluminum chloride was added to the mixture. After 5 min, 0.5 mL of 1 N
sodium hydroxide was added to the mixture. The absorbance was measured immediately at 510 nm.
Distilled water was used as a blank. Catechin was used as a standard curve and prepared with a range
of concentrations from 0 to 2.5 mg. The results were reported as catechin equivalents (CE) µg/g.

2.6. Total Phenolic Content (TPC)

TPC was determined by the method described by de la Rosa et al. [31] with modifications. TPC was
measured using the Folin-Ciocalteu method. In total, 100 µL of each extract was added to 2.5 mL
of 10% Folin-Ciocalteu reagent, and the mixture was allowed to stand for 2 min. Then, 2 mL of 6%
sodium carbonate was added to the mixture, and it was incubated at 50 ◦C for 15 min in a water bath.
The absorbance was measured at 760 nm, and distilled water was used as a blank. Gallic acid was
used as a standard curve and prepared with a range of concentrations from 0 to 50 mg. Results were
expressed as gallic acid equivalents (GAE) mg/g.

2.7. DPPH Radical Scavenging Capacity

The determination of the effect scavenging of the DPPH radical was based on a procedure
previously described by Wong et al. [32]. A 0.1 mM DPPH solution diluted with 100% methanol was
prepared. In addition, 0.1 mL of the sample and 1.9 mL of 0.1 mM DPPH were mixed well. The DPPH
solution was allowed to stand for 30 min at room temperature in the dark. Then, the absorbance
was measured at 515 nm, and 100% methanol was used as a blank. Furthermore, 10 mM Trolox was
used as a standard curve and prepared with a range of concentrations from 0 to 500 µM. Results were
expressed as µmol of Trolox equivalents (TE) µmol/100 g.
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2.8. Trolox Equivalent Antioxidant Capacity (TEAC)

TEAC was performed as described by Simsek and El [33], with modifications. Briefly, an ABTS+

stock solution was prepared with 7.4 mM ABTS and 2.6 mM potassium persulfate and mixed. After,
the mixture was allowed to stand for 16 h at room temperature in the dark. The ABTS+ stock solution
was diluted with 100% methanol to an absorbance wavelength of 0.7 at 734 nm. Then, 2960 µL of the
ABTS+ stock solution was added to 20 µL of the sample, and absorbance was measured after 7 min.
Trolox was used as a standard curve and prepared with a range of concentrations from 0 to 1000 µg.
Results were expressed as mmol of TE mmol/100 g.

2.9. Water Absorption Index (WAI) and Water Solubility Index (WSI)

The WAI and WSI of the optimized Sunsik and control samples were determined using methods
previously described by Du et al. [34] with slight modifications. In total, 2.5 g of the sample was added
to 30 mL of distilled water and mixed in a shaking water bath at 30 ◦C for 30 min. Then, the mixture
was centrifuged at 3000 rpm for 15 min. The supernatant and remaining sediment from the mixture
were weighted. The supernatant was decanted into an aluminum dish and dried at 105°C overnight
using a dry oven. The WAI and WSI were calculated as in the following equations, respectively.

WAI =
weightofthesediment (g)
weightofthesample (g)

(2)

WSI(%) =
weight o f dry solids f rom the supernatant (g)

weight o f the sample (g)
× 100 (3)

2.10. Color Properties

The color values of the optimized Sunsik and control samples were determined with a CIE Lab
system using a color meter (CR-400, Konica minolta sensing Inc., Osaka, Japan). It was calibrated with
a white ceramic plate before measuring the sample. The total color changes (∆E) and browning index
(BI) were calculated as follows [35,36]:

∆E =

√
(L∗0 − L∗)2 + (a∗0 − a∗)2 + (b∗0 − b∗)2 (4)

BI = [100(X − 0.31)]/0.172 (5)

X = (a∗ + 1.75L∗)/(5.645L∗ + a∗ − 3.012b∗) (6)

where L∗0, a∗0, and b∗0 are color parameters for the control and L∗, a∗, and b∗ are color parameters for each
Sunsik sample.

2.11. Apparent viscosity of Sunsik Samples

The apparent viscosity of the optimized Sunsik and control samples was measured using a digital
rotary viscometer (WVS-0.1M, DAIHAN Scientific, Gang-Won-Do, Korea). First, 45 g of the sample was
placed in a 500-mL beaker, and 300 mL of water or milk was poured in, followed by thorough mixing
with a magnetic stirrer (MS-20D, DAIHAN Scientific, Gang-Won-Do, Korea). Finally, the thoroughly
mixed sample was poured into a 250-mL beaker (SDS 2400, DONG SUNG science, Gang-Won-Do,
Korea) and the viscosity of the sample was measured. When measuring the viscosity, the standard was
measured when the torque value was close to 50%.

2.12. Cell Proliferative Effects of Sunsik Samples on Caco-2 and HepG2 Cells

In total, 15 g of the Sunsik samples was extracted with 80% ethanol, evaporated to dryness at
45 ◦C, and re-dissolved in dimethyl sulfoxide (DMSO) according to a previously described method [37].
The Caco-2 (ATCC®HTB-37TM, Manassas, USA) cell was cultured in MEM (Hyclone Laboratories Inc.,
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South Logan, UT, USA) with 10% or 20% fetal bovine serum (FBS, Welgene, Daegu, Korea) at 37 ◦C in
a humidified incubator with 5% CO2. The cell proliferation of Sunsik extracts was determined by MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The cells (1 × 104/well) were
seeded in 96-well plates and then allowed to attach overnight. After overnight, the media included
with Sunsik extracts were exchanged and incubated for 72 h. After 72 h of incubation, cell proliferation
was determined using the MTT Cell Proliferation Assay kit (Roche Ltd., Mannheim, Germany) at
570–655 nm with a SpectraMax®i3 plate reader (Molecular Devices, Sunnyvale, CA, USA).

2.13. Data Analysis

The Design Expert software (version 11, State-Ease Inc., Minneapolis, USA) was used to analyze the
experimental data for best fit model equations and to obtain response plots for each response variable.
The combination of independent variables generating the highest overall desirability was selected
as the optimum formulation. To validate the optimization process, the Sunsik was prepared using
the optimum levels of independent variables and analyzed for the selected responses. The absolute
residual error (%) was calculated using the experimental and predicted data through the following
Equation (7):

Absolute residual error(%) =
Actual value− Predicted value

Actual value
× 100 (7)

All experiments were carried out in triplicate, and ANOVA was performed to determine differences
among the samples using the XLSTAT software (Addinsoft, Paris, France). When a difference among
the samples was identified, the Student Newan–Keul’s (SNK) multiple comparison was performed to
separate the means.

3. Results and Discussion

3.1. Fitting the Model and Statistical Analysis

The RSM is often used to determine the formulation ratio of a new product in the food industry.
In this study, a CCD was applied to determine the optimum formulation of HPE and GW to prepare
healthy Sunsik, a cereal-based ready-to-drink Korean beverage. The independent and dependent
variables were fitted by linear or quadratic equations, and Table 2 shows the statistical results of the
regression coefficients, R2, adjusted R2, lack of fit, and p values of the fitted models on analyzed
responses by CCD. As shown in Table 2, the lack of fit for response surface models was not significant
without the WSI, implying that the response surface models were adequately explained for predicting
the relevant responses [28].

Table 2. The regression coefficients, R square, adjusted R square, lack of fit, and p values of the fitted
models on dependent variables.

Health Conscious Properties Physicochemical Properties

GABA TFC TPC DPPH TEAC WAI WSI ∆E BI

Constant β0 2.09 30.99 70.57 106.59 120.16 1.85 48.44 0.2224 20.02

Linear
β1 0.0170 1.11 −0.32 3.71 ** 1.34 0.0068 −0.3332 * −0.2736 ** 0.2590 **
β2 0.1031 ** 3.03 *** 2.21 * 3.32 ** 3.39 ** −0.0196 * 4.52 0.1071 * 0.0150

Quadratic β11 1.18 * 2.39 ** −0.0394 0.0882 * −0.0362 *** −0.1831
β22 −1.45 * −3.46 ** 0.0140 * −4.61 0.2708 ** −0.0531

Interaction β12 −1.47 −2.80 0.0263 ** −2.03 0.1384 0.0061

R2 0.546 0.889 0.487 0.886 0.563 0.828 0.583 0.952 0.702

Adjusted R2 0.455 0.809 0.384 0.804 0.476 0.805 0.285 0.917 0.489

Lack of Fit (p value) 0.196 0.745 0.052 0.094 0.228 0.533 0.041 0.452 0.193

p value 0.019 0.003 0.004 0.003 0.015 0.013 0.203 0.0002 0.075

*, **, *** significantly differ at p > 0.05, p < 0.01, and p < 0.001, respectively. β1: herbal plant extract; β2:
germinated wheat.
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Among the responses, GABA, TPC, and TEAC were more adequate for a linear model than for
a quadratic model. Because the β2 values of GABA (p < 0.01), TPC (p < 0.05), and TEAC (p < 0.01)
differed significantly, the GABA, TPC, and TEAC contents of newly developed Sunsik might be affected
by GW rather than HPE. The final equations of GABA, TPC, and TEAC as follows:

GABA = 2.09 + 0.017×HPE + 0.1031×GW (8)

TPC = 70.57− 0.3237×HPE + 2.21×GW (9)

TEAC = 120.16 + 1.34×HPE + 3.39×GW (10)

As described in Table 2, the TFC, DPPH, WAI, WSI, ∆E, and BI were fitted with quadratic models.
The final equations of TFC, DPPH, WAI, WSI, ∆E, and BI were coded as follows:

TFC = 30.99 + 1.11×HPE + 3.03×GW + 1.18×HPE×GW− 1.45×HPE2
− 1.47×GW2 (11)

DPPH = 106.59 + 3.71×HPE + 3.32×GW + 2.39×HPE×GW− 3.49×HPE2
− 2.80×GW2 (12)

WAI = 1.85+ 0.0068×HPE−0.0196×GW−0.0394×HPE×GW+ 0.014×HPE2 + 0.0263×GW2 (13)

WSI = 48.44− 0.3332×HPE + 4.52×GW + 0.0882×HPE×GW− 4.61×HPE2
− 2.03×GW2 (14)

∆E = 0.2224− 0.2736×HPE + 0.1071×GW− 0.0362×HPE×GW + 0.2708×HPE2 + 0.1384×GW2 (15)

BI = 20.02 + 0.259×HPE + 0.015×GW− 0.1831×HPE×GW− 0.0531×HPE2 + 0.0061×GW2 (16)

The higher values of R2 and adjusted R2 mean desirability of the model to explain the relationships
between variables [28]. In this study, the responses with R2 values of 0.8 or higher were TFC, DPPH,
WAI, and ∆E, indicating that the fitted equations adequately describe the effects of adding GW and
HPE to Sunsik on each dependent variable.

3.2. Effects of Independent Values on Health-Conscious Properties

The GABA, TFC, and TPC contents and antioxidant capacities (DPPH radical scavenging capacity
and TEAC) of differently formulated Sunsik samples by CCD are shown in Table 3. Significant
differences among the 13 samples were found in the GABA (p < 0.01), TFC (p < 0.001), TPC (p < 0.001),
DPPH (p < 0.05), and TEAC (p < 0.05) contents. The GABA content, TFC, and TPC are some of the
major compounds that contribute to the antioxidant capacities, such as DPPH and TEAC [11,30,38].
The GABA content and TPC were in the ranges of 1.81–2.25 µg/g and 67–76 µg GE/100g, respectively.
As shown in Table 2, the GABA content and TPC were significant in the β2 value (p < 0.01 for GABA
and p < 0.05 for TPC) but not significant in the β1 value, indicating that the GABA content and TPC of
Sunsik with added HPE and GW were influenced by increased GW. These results were also confirmed
in the three-dimensional response surface plots of Figure 1a,c.

Table 3. The experimental values of the health-conscious variables for each independent variable.

Experiment No. GABA **
(Y1, µg/g)

TFC ***
(Y2, µg CE/g)

TPC ***
(Y3, µg

GE/100 g)

DPPH *
(Y4, µM

TE/100 g)

TEAC *
(Y5, mM
TE/100 g)

HPE
(g)

GW
(g)

Sunsik
(g)

1 1 5 44 2.01 ± 0.09 ab 26 ± 2.30 bc 71 ± 2.23 cd 96 ± 3.7 b 113 ± 3.93 b

2 2 5 43 2.00 ± 0.08 ab 24 ± 1.21 c 67 ± 0.44 f 102 ± 2.9 ab 114 ± 3.70 b

3 1 10 39 2.19 ± 0.13 a 29 ± 3.68 abc 76 ± 0.88 a 95 ± 3.1 ab 122 ± 5.48 ab

4 2 10 38 2.14 ± 0.16 a 32 ± 3.34 ab 74 ± 0.97 b 110 ± 9.2 ab 122 ± 3.30 ab

5 0.79 7.5 41.71 1.98 ± 0.06 ab 26 ± 0.92 abc 69 ± 0.70 de 96 ± 6.9 b 116 ± 4.27 b

6 2.21 7.5 40.29 2.12 ± 0.04 a 31 ± 2.80 abc 72 ± 0.09 c 103 ± 9.4 b 123 ± 2.86 ab

7 1.5 3.96 44.54 1.81 ± 0.15 b 22 ± 2.00 c 68 ± 0.40 ef 94 ± 6.9 ab 119 ± 3.60 ab
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Table 3. Cont.

Experiment No. GABA **
(Y1, µg/g)

TFC ***
(Y2, µg CE/g)

TPC ***
(Y3, µg

GE/100 g)

DPPH *
(Y4, µM

TE/100 g)

TEAC *
(Y5, mM
TE/100 g)

HPE
(g)

GW
(g)

Sunsik
(g)

8 1.5 11.04 37.46 2.17 ± 0.08 a 33 ± 3.48 abc 72 ± 0.88 c 107 ± 8.3 a 127 ± 5.22 a

9 1.5 7.5 41 2.09 ± 0.04 a 30 ± 2.54 ab 69 ± 0.99 de 108 ± 8.8 ab 120 ± 2.36 ab

10 1.5 7.5 41 2.11 ± 0.11 a 30 ± 1.43 ab 68 ± 0.02 ef 106 ± 1.8 ab 123 ± 4.42 ab

11 1.5 7.5 41 2.17 ± 0.11 a 30 ± 1.90 abc 69 ± 0.71 de 105 ± 2.5 ab 124 ± 4.95 ab

12 1.5 7.5 41 2.16 ± 0.20 a 33 ± 3.64 abc 71 ± 0.07 cd 105 ± 3.7 ab 122 ± 4.76 ab

13 1.5 7.5 41 2.25 ± 0.12 a 33 ± 2.32 abc 71 ± 0.94 cd 109 ± 8.5 ab 119 ± 7.35 ab

All values are means of three replications ± standard deviation. Values with the same letter(s) within a column are
not significantly different. *, **, *** significantly differ at p > 0.05, p < 0.01, and p < 0.001, respectively.
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(GW: germinated wheat; HPE: herbal plant extract; GABA: gamma aminobutyric acid; TFC: total
flavonoid content; TPC: total phenolic acid).

Conversely, the addition of HPE and GW had significant quadratic effects (p < 0.05 for β11 and
p < 0.05 for β22) on TFC (Table 2). Figure 1b shows the three-dimensional response surface plots of
TFC, implying the TFC of Sunsik is increased by both HPE and GW.

The antioxidant properties of 13 Sunsik samples corresponding to the experiments generated by
the CCD were determined by DPPH and TEAC (Table 3). The DPPH and TEAC values of the samples
differed significantly (both p < 0.05) and were in the ranges of 96–110 µM TE/100g and 113–127 mM
TE/100 g, respectively. As presented in Table 2, the DPPH value was fitted with a quadratic model while
TEAC value was fitted with a linear model. The comprehensive effects of the dependent variables
(HPE and GW) on the antioxidant properties of Sunsik are represented by the response surface plots in
Figure 2.

Foods 2020, 9, x FOR PEER REVIEW 8 of 14 

 

11 1.5 7.5 41 2.17 ± 0.11 a 30 ± 1.90 abc 69 ± 0.71 de 105 ± 2.5 ab 124 ± 4.95 ab 
12 1.5 7.5 41 2.16 ± 0.20 a 33 ± 3.64 abc 71 ± 0.07 cd 105 ± 3.7 ab 122 ± 4.76 ab 
13 1.5 7.5 41 2.25 ± 0.12 a 33 ± 2.32 abc 71 ± 0.94 cd 109 ± 8.5 ab 119 ± 7.35 ab 

All values are means of three replications ± standard deviation. Values with the same letter(s) within 
a column are not significantly different. *, **, *** significantly differ at p > 0.05, p < 0.01, and p < 0.001, 
respectively. 

Conversely, the addition of HPE and GW had significant quadratic effects (p < 0.05 for β11 and p 
< 0.05 for β22) on TFC (Table 2). Figure 1b shows the three-dimensional response surface plots of TFC, 
implying the TFC of Sunsik is increased by both HPE and GW. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Three-dimensional response surface plots of the GABA content (a), TFC (b), and TPC (c). 
(GW: germinated wheat; HPE: herbal plant extract; GABA: gamma aminobutyric acid; TFC: total 
flavonoid content; TPC: total phenolic acid). 

The antioxidant properties of 13 Sunsik samples corresponding to the experiments generated by 
the CCD were determined by DPPH and TEAC (Table 3). The DPPH and TEAC values of the samples 
differed significantly (both p < 0.05) and were in the ranges of 96–110 µM TE/100g and 113–127 mM 
TE/100 g, respectively. As presented in Table 2, the DPPH value was fitted with a quadratic model 
while TEAC value was fitted with a linear model. The comprehensive effects of the dependent 
variables (HPE and GW) on the antioxidant properties of Sunsik are represented by the response 
surface plots in Figure 2. 

 
(a) 

 
(b) 

Figure 2. Three-dimensional response surface plots of DPPH (a) and TEAC (b). 

The Sunsik samples with higher antioxidant activities contained relatively high GABA content, 
TPC, and TFC. These results are in agreement with previous studies [11], which reported a higher 
antioxidant capacity of the samples containing higher GABA content, TPC, and TFC. The increments 
of TPC and GABA content in Sunsik samples could be explained by the addition of GW. Chen et al. 
[39] reported that phenolic contents in GW increased by lignin synthesis during germination. In 

Figure 2. Three-dimensional response surface plots of DPPH (a) and TEAC (b).



Foods 2020, 9, 1654 9 of 14

The Sunsik samples with higher antioxidant activities contained relatively high GABA content, TPC,
and TFC. These results are in agreement with previous studies [11], which reported a higher antioxidant
capacity of the samples containing higher GABA content, TPC, and TFC. The increments of TPC and
GABA content in Sunsik samples could be explained by the addition of GW. Chen et al. [39] reported
that phenolic contents in GW increased by lignin synthesis during germination. In addition, another
study explained that the GABA content in GW increased via the decarboxylation of L-glutamate [11].
Safflower seed, a major material of HPE, has protective effects against osteoporosis and a beneficial
effect on atherogenic risk through various phenolic compounds, such as lignin and flavonoids [25].
Recently, the antioxidant, anti-cancer, anti-inflammatory effects of safflower seeds have been identified
by a few studies [25,40,41].

3.3. Effects of Independent Values on Physicochemical Properties

The WAI and WSI are important parameters in powdered cereal-based beverages, such as Sunsik,
which is eaten by dissolving in milk or water. The WAI and WSI values of the Sunsik samples tested in
this study are presented in Table 4. The WAI values of the Sunsik samples were in the range of 1.82–1.95
and did not differ significantly (Table 4). Although there was no statistically significant difference in
the WAI values of Sunsik samples, they tended to increase as the amount of HPE increased (Figure 3a).
The WAI value of reconstituted powder, such as Sunsik examined in this study, might play a role in
preventing its dissolution in milk or water [42]. As shown in the WAI results of Table 2, the linear
coefficients of HPE (β1) and GW (β2) were 0.0018 and −0.0195, respectively, implying that GW in
newly formulated Sunsik had a negative effect. The WSI is the amount of soluble components released
from the Sunsik samples, and the values ranged from 32% to 59% (Table 4). The WSI values of Sunsik
with 1.5 g of added HPE and 11.04 g of added GW were the highest among the samples, suggesting the
contribution of GW to the solubility of the newly formulated Sunsik samples (Figure 3b).

Table 4. The experimental values of the physicochemical variables for each independent variable.

Experiment No.
WAI WSI (%) *** ∆E *** BI **

HPE
(g)

GW
(g)

Sunsik
(g)

1 1 5 44 1.88 ± 0.06 42 ± 1.92 d 0.72 ± 0.18 ab 19.4 ± 0.35 c

2 2 5 43 1.95 ± 0.04 41 ± 1.01 d 0.22 ± 0.06 bc 20.2 ± 0.38 ab

3 1 10 39 1.91 ± 0.02 41 ± 0.49 d 1.12 ± 0.24 abc 20.0 ± 0.39 abc

4 2 10 38 1.82 ± 0.12 40 ± 0.33 d 0.48 ± 0.08 b 20.1 ± 0.20 ab

5 0.79 7.5 41.71 1.86 ± 0.04 41 ± 1.17 d 1.13 ± 0.27 ab 19.5 ± 0.34 bc

6 2.21 7.5 40.29 1.91 ± 0.02 40 ± 1.26 d 0.39 ± 0.12 b 20.4 ± 0.32 a

7 1.5 3.96 44.54 1.92 ± 0.08 32 ± 0.23 e 0.43 ± 0.04 b 20.3 ± 0.31 ab

8 1.5 11.04 37.46 1.89 ± 0.02 59 ± 0.63 a 0.56 ± 0.16 b 19.9 ± 0.23 abc

9 1.5 7.5 41 1.86 ± 0.06 49 ± 1.12 c 0.23 ± 0.02 bc 20.2 ± 0.23 ab

10 1.5 7.5 41 1.89 ± 0.05 53 ± 2.11 b 0.06 ± 0.03 c 20.2 ± 0.05 ab

11 1.5 7.5 41 1.83 ± 0.05 46 ± 1.89 c 0.24 ± 0.04 bc 20.0 ± 0.11 abc

12 1.5 7.5 41 1.83 ± 0.01 48 ± 1.95 c 0.29 ± 0.07 bc 19.8 ± 0.09 abc

13 1.5 7.5 41 1.84 ± 0.08 46 ± 1.93 c 0.30 ± 0.06 bc 19.9 ± 0.01 abc

All values are means of three replications ± standard deviation. Values with the same letter(s) within a column are
not significantly different. **, *** significantly differ at p < 0.01 and p < 0.001, respectively.

Significant differences were observed in the ∆E (p < 0.001) and BI (p < 0.01) values among the
newly formulated Sunsik samples (Table 4), which were in the ranges of 0.22–1.13 and 19.2–20.3,
respectively. In the results of the regression coefficients, the HPE addition negatively affected and
the GW addition positively affected the ∆E of the newly formulated Sunsik. The three-dimensional
response surface plots also showed a similar trend (Figure 3c), indicating that the color of the newly
formulated Sunsik was mostly affected by a higher GW amount than HPE amount. Such a result was
expected, as more GW (10–20%) was added to Sunsik than HPE (2–4%). The color affects consumer
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perceptions of various foods or beverages, and color changes or a brown color during processing or
cooking might negatively affect consumer preferences [43]. As shown in Figure 3d, the brown color
changes of Sunsik were the result of adding HPE. In a preliminary experiment to determine the range
of the HPE amount, consumers tended not to prefer Sunsik with more than 4% HPE added due to its
darkened color.
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3.4. Optimization and Validation

Cereal-based products like Sunsik are often developed with the addition of two or more ingredients
to provide additional health benefits to consumers. In this study, both GW and HPE had a significant
effect on the health-related properties and physicochemical characteristics of Sunsik. The additions of
GW and HPE in newly formulated Sunsik were response specific. Thus, optimization is needed to
attain a formulation with the desired characteristics concerning all the responses.

Sunsik, a cereal-based ready-to-drink beverage, was optimized considering maximized properties,
such as GABA, TFC, TPC, DPPH, TEAC, and WSI. By contrast, WAI, ∆E, and BI were minimized in
Sunsik products. The optimized formula of Sunsik developed in this study was 10 g of GW, 1.79 g of
HPE, and 38.21 g of Sunsik corresponding to the highest desirability of 0.719. In addition, the predicted
and actual values for optimized formulations of Sunsik are presented in Table 5. Both the predicted
and actual values were compared and were verified using absolute residual error values (Table 5).
The errors for the responses were found to be less than 5% without ∆E. This indicated the precision of
the developed and optimized regression models for the newly formulated Sunsik products.



Foods 2020, 9, 1654 11 of 14

Table 5. Predicted and actual values of the optimized Sunsik formulation.

Responses Optimized Formulation

Goal Predicted Values Actual Values Error (%)

GABA (Y1, µg/g) Maximize 2.21 2.23 ± 0.04 0.9
TFC (Y2, µg CE g) Maximize 33.39 33.75 ± 0.25 1.07

TPC (Y3, µg GE/100g) Maximize 72.56 73.26 ± 0.46 0.97
DPPH (Y4, µM TE/100g) Maximize 110 112 ± 0.58 2.12
TEAC (Y5, mM TE/100g) Maximize 124 125 ± 0.58 0.54

WAI (Y6) Minimize 1.84 1.80 ± 0.03 2.44
WSI (Y7) Maximize 49.2 48.52 ± 1.28 0.25
∆E (Y8) Minimize 0.38 0.25 ± 0.03 11.71
BI (Y9) Minimize 20.06 20.42 ± 0.12 1.61

3.5. Health-Conscious and Physicochemical Properties of Optimized Sunsik

Because the purpose of this study was to develop a newly formulated Sunsik containing GW
and HPE to provide health benefits over the commercially available Sunsik, various properties
of commercial and optimized Sunsik were compared. The health-conscious and physicochemical
properties of both Sunsik samples are presented in Table 6. The GABA content, TPC, and TFC might
be major constituents contributing to the antioxidant capacities and antiproliferative cancer cells [38].
Significant differences between the commercial and optimized Sunsik samples with respect to the
GABA content (p < 0.001), TFC (p < 0.001), and TPC (p < 0.001) were observed (Table 6). The optimized
Sunsik contained more GABA (2.23 µg/g) content, TFC (33.75 µg CE/ 100g), and TPC (73.75 µg GE/100g)
than commercial Sunsik (GABA: 1.7 µg/g; TFC 19.8 µg CE/100 g; TPC: 54.4 µg GE/100g), confirming
health benefits of optimized Sunsik compared to commercial Sunsik.

In addition, the DPPH (p < 0.001) and TEAC (p < 0.001) of optimized Sunsik, to which 10 g of GW
and 1.79 g of HPE were added, increased significantly compared to commercial Sunsik. Numerous
studies have been developed new product with more antioxidant or antiproliferative activities to
contribute health benefits of consumed products [7,8,38]. According to Kim and Kim [38], cereal
products containing higher phenolic or flavonoid contents had higher antioxidant capacities. In this
study, optimized Sunsik contained higher TPC, TFC, DPPH, and TEAC values than the commercial
Sunsik. Similar trends were observed in terms of the proliferative activities of cancer cells. The relative
proliferative effects on Caco-2 and HepG2 cells after treatment with an extract of the samples are
shown as the median effective dose (EC50) in Table 6. The EC50 values of optimized Sunsik for Caco-2
and HepG2 cells were 45.7 and 35.2 mg/mL, respectively. Commercial Sunsik was relatively high in
EC50 values of Caco-2 (97.9 mg/mL) and HepG2 (76.2 mg/mL) cells compared to those of optimized
Sunsik (Caco-2: 45.7 mg/mL; HepG2: 35.2 mg/mL), indicating relatively low antiproliferative activities.
Many studies have reported that foods or beverages with antioxidant activities have cancer-protective
effects [37], suggesting that cereal-based beverages could inhibit cancer cell growth. In this study,
optimized Sunsik added with GW and HPE showed higher antioxidant capacity and antiproliferative
activity than commercial Sunsik.

The WAI, WSI and viscosity of optimized Sunsik with added GW and HPE were compared to
commercial Sunsik, and the results are shown in Table 6. The WAI and viscosity of cereal-based
beverages are important quality factors [3,4]. According to the finding of Fernandes, Sonawane,
and Arya [3], the high absorbing properties in cereal-based beverages resulted in increased viscosity,
and high viscosity negatively affected mouthfeel and overall acceptability in sensory tests. According
to the results of the current study, the WAI and viscosity of optimized Sunsik with added GW and HPE
were less than that of the commercial Sunsik sample. The low WAI and viscosity might contribute to
the solubility of Sunsik, which is eaten by dissolving in milk or water, showing higher WSI values in
optimized Sunsik than in commercial Sunsik.
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Table 6. Health-conscious and physicochemical properties of the optimized Sunsik formulation.

Commercial Sunsik Optimized Sunsik

Health conscious
properties

GABA (µg/g) *** 1.7 ± 0.09 b 2.23 ± 0.04 a

TFC (µg CE/g) *** 19.8 ± 1.72 b 33.75 ± 0.25 a

TPC (µg GE/100g) *** 54.4 ± 3.57 b 73.26 ± 0.46 a

DPPH (µM TE/100g) *** 77.3 ± 2.06 b 112 ± 0.58 a

TEAC (mM TE/100g) *** 96.9 ± 3.27 b 125 ± 0.58 a

EC50 for Caco-2 cell
(mg/mL) *** 97.4 ± 4.2 a 45.7 ± 1.6 b

EC50 for HepG2 cell
(mg/mL) *** 76.2 ± 3.8 a 35.2 ± 2.5 b

Physicochemical
properties

WAI *** 3.6 ± 0.03 a 1.80 ± 0.03 b

WSI (%) *** 7.4 ± 0.1 b 48.52 ± 1.28 a

Apparent viscosity (cP) *** 294 ± 2.87 a 47 ± 4.42 b

All values are means of three replications ± standard deviation. Values with same letter(s) within a row are not
significantly different. *** significantly differ at p < 0.001.

4. Conclusions

This study showed that the CCD and RSM could be used to optimize the formulation of Sunsik,
a cereal-based ready-to-eat beverage. RSM predicted that a Sunsik formula of 10 g GW, 1.79 g HPE,
and 38.21 g Sunsik would provide a better quality with more health-conscious and physicochemical
characteristics. The optimized Sunsik is characterized by higher GABA, TPC, TFC, DPPH, TEAC,
and WAI values than commercial Sunsik. The EC50 of cancer cells, WAI, and viscosity were low
in optimized Sunsik compared to commercial Sunsik. Overall, Sunsik with 10 g of added GW and
1.79 g of added HPE might increase various health-related components and biological activities while
maintaining the quality of the cereal-based beverage.
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