Table S1. Reduction of the concentrations of proteins in Malvazija istarska wines (mean \pm standard deviation; n = 3; %) obtained after partial fining with bentonite at different points of fermentation and in final protein stable wines.

Protein	Stage	Treatment					
		СО	JU	BE	MD	EN	
RP-HPLC							
TL1	AFerm		52.17 ± 6.97	47.82 ± 20.75	56.08 ± 6.46	67.96 ± 8.96	
	ProStab	97.48 ± 0.76	97.13 ± 0.53	97.41 ± 1.09	97.93 ± 1.08	95.80 ± 1.49	
TL2	AFerm		32.27 ± 2.85 b	$33.56 \pm 6.96 \mathrm{b}$	$35.23 \pm 2.05 b$	52.52 ± 10.34 a	
	ProStab	85.85 ± 3.37 a	89.53 ± 3.30 a	89.95 ± 0.90 a	89.50 ± 0.65 a	76.69 ± 7.34 b	
TL3	AFerm		21.75 ± 4.45	18.90 ± 13.56	14.44 ± 5.01	32.41 ± 16.37	
	ProStab	64.05 ± 8.04 b	84.25 ± 5.57 a	83.85 ± 0.36 a	83.22 ± 2.69 a	65.6 ± 11.46 b	
TL4	AFerm		58.87 ± 5.24 c	60.91 ± 6.09 c	87.69 ± 2.15 b	96.61 ± 1.49 a	
	ProStab	98.57 ± 0.91 a	97.41 ± 0.23 a	97.80 ± 0.40 a	89.89 ± 3.40 a	59.86 ± 23.03 b	
CHI1	AFerm		48.27 ± 13.29	43.34 ± 16.77	44.55 ± 9.23	55.58 ± 8.27	
	ProStab	98.7 ± 0.09	98.34 ± 0.31	97.78 ± 0.69	97.72 ± 0.36	97.38 ± 0.49	
CHI2	AFerm		47.78 ± 11.36	47.03 ± 15.49	48.86 ± 9.20	61.87 ± 8.46	
	ProStab	99.71 ± 0.04	99.38 ± 0.18	99.47 ± 0.19	99.41 ± 0.18	99.23 ± 0.26	
total TL	AFerm		48.61 ± 3.91 c	47.86 ± 6.91 c	61.36 ± 2.26 b	73.48 ± 6.76 a	
	ProStab	92.39 ± 2.15 a	93.47 ± 1.95 a	93.71 ± 1.54 a	91.13 ± 1.64 a	$80.29 \pm 6.69 \mathrm{b}$	
total CHI	AFerm		48.06 ± 12.45	44.95 ± 16.20	46.43 ± 9.20	58.33 ± 8.33	
	ProStab	99.15 ± 0.03	98.79 ± 0.17	98.49 ± 0.49	98.43 ± 0.25	98.11 ± 0.42	
total	AFerm		48.37 ± 7.29	46.57 ± 10.85	54.74 ± 5.34	66.76 ± 7.27	
	ProStab	95.37 ± 1.32 a	95.77 ± 1.31 a	95.83 ± 1.24 a	94.92 ± 1.11 a	$90.34 \pm 2.70 \text{ b}$	
total TL / total CHI 1	AFerm		1.05 ± 0.25	1.14 ± 0.32	1.35 ± 0.20	1.27 ± 0.10	
	ProStab	0.93 ± 0.02 a	0.95 ± 0.02 a	0.95 ± 0.01 a	0.93 ± 0.01 a	0.82 ± 0.06 b	
SE-HPLC							
P93	AFerm		26.63 ± 0.83	25.06 ± 7.74	18.62 ± 7.39	13.75 ± 4.78	
	ProStab	20.68 ± 7.31 a	$6.06 \pm 4.25 \mathrm{b}$	$4.59 \pm 1.95 \mathrm{b}$	12.96 ± 3.54 ab	6.28 ± 6.24 b	
P67	AFerm		44.36 ± 6.95	54.98 ± 7.36	46.11 ± 2.92	53.85 ± 8.49	
	ProStab	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	
PR32	AFerm		100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	
	ProStab	100.00 ± 0.00	-	-	-	-	
PR25	AFerm		47.47 ± 4.63	54.48 ± 0.45	52.70 ± 1.44	55.46 ± 7.07	
	ProStab	88.49 ± 3.72 c	95.74 ± 1.87 a	95.19 ± 0.33 ab	95.83 ± 1.03 a	91.32 ± 1.87 bc	
PR23	AFerm		31.21 ± 6.40 c	46.19 ± 0.54 ab	41.33 ± 0.70 bc	51.89 ± 7.73 a	
	ProStab	$89.65 \pm 4.07 \mathrm{b}$	96.61 ± 2.02 a	96.75 ± 0.05 a	96.72 ± 0.90 a	90.50 ± 2.56 b	
PR22	AFerm		58.50 ± 5.08 c	61.38 ± 4.78 c	73.82 ± 2.04 b	84.90 ± 2.83 a	
	ProStab	93.94 ± 2.24 a	96.44 ± 1.75 a	95.97 ± 0.43 a	$95.11 \pm 1.58 a$	$85.87 \pm 1.91 \text{ b}$	
PR20	AFerm		53.55 ± 0.73 c	$58.37 \pm 1.90 \text{ c}$	67.79 ± 4.39 b	74.34 ± 2.05 a	
	ProStab	84.80 ± 0.69 a	$79.38 \pm 0.78 \text{ ab}$	74.84 ± 3.44 bc	74.74 ± 3.26 bc	$69.89 \pm 4.44 \text{ c}$	
total PR	AFerm		$48.99 \pm 3.62 \text{ c}$	$55.85 \pm 1.40 \text{ bc}$	59.01 ± 0.82 b	65.71 ± 5.08 a	
	ProStab	89.47 ± 2.61 ab	$93.46 \pm 1.81 \text{ a}$	92.30 ± 0.47 a	$93.04 \pm 1.29 \text{ a}$	$87.71 \pm 2.48 \text{ b}$	

CO – control wine without bentonite in fermentation, JU – initial granular sodium-activated bentonite dose (100 g/hL) added into clear juice, BE – initial granular sodium-activated bentonite dose (100 g/hL) added at the beginning of fermentation, MD – initial granular sodium-activated bentonite dose (100 g/hL) added in the middle of fermentation, EN – initial granular sodium-activated bentonite dose (100 g/hL) added near the end of fermentation. AFerm – wines analyzed after fermentation, ProStab – wines analyzed after total protein stabilization by additional post-fermentation fining with granular sodium-activated bentonite. AFerm reductions were calculated in relation to CO wine and ProStab reductions in relation to corresponding AFerm wines. Different lowercase letters in a row represent statistically significant differences among treatments, at p < 0.05 obtained by one-way ANOVA and LSD test. 1 ratio of % values.

-

Table S2. Reduction of the concentrations of proteins in Malvazija istarska wines (mean \pm standard deviation; n = 3; %) obtained after partial fining with bentonite and/or the addition of commercial enological tannin preparation during fermentation, and in final protein stable wines.

Protein	Stage	Treatment					
		CO	GSAB	ET	GSAB + ET		
RP-HPLC							
TL1	AFerm		78.20 ± 4.49 a	$23.82 \pm 9.19 \text{ b}$	89.51 ± 3.51 a		
	ProStab	96.04 ± 4.98	88.48 ± 8.88	95.21 ± 3.20	92.43 ± 2.89		
TL2	AFerm		60.50 ± 2.95 a	$18.26 \pm 8.16 \mathrm{b}$	71.36 ± 6.65 a		
	ProStab	$86.09 \pm 5.95 a$	65.81 ± 6.45 b	85.25 ± 1.31 a	56.34 ± 10.88		
TL3	AFerm		31.10 ± 1.83	11.27 ± 14.76	30.02 ± 9.68		
	ProStab	72.18 ± 8.23 a	$49.08 \pm 7.62 \mathrm{b}$	71.23 ± 7.18 a	56.14 ± 7.82 k		
TL4	AFerm		97.59 ± 1.77 a	19.90 ± 5.59 b	99.04 ± 0.62 a		
	ProStab	97.53 ± 2.93	100.00 ± 0.00	95.06 ± 3.53	89.07 ± 18.93		
CHI1	AFerm		52.45 ± 5.93 a	5.40 ± 15.22 b	71.37 ± 3.46 a		
	ProStab	90.13 ± 7.33	73.45 ± 9.64	88.65 ± 5.73	80.05 ± 7.93		
CHI2	AFerm		54.08 ± 7.16 a	-0.56 ± 16.86 b	72.82 ± 2.98 a		
	ProStab	90.80 ± 5.86 a	70.99 ± 7.17 b	88.34 ± 4.86 a	79.11 ± 7.57 a		
total TL	AFerm		$74.90 \pm 2.83 \text{ b}$	19.97 ± 3.26 c	81.25 ± 3.37 a		
	ProStab	91.58 ± 5.06 ab	67.86 ± 5.65	89.97 ± 2.18 ab	64.82 ± 5.69 k		
total CHI	AFerm		53.20 ± 6.48 a	2.65 ± 15.97 b	72.04 ± 3.12 a		
	ProStab	90.44 ± 6.65 a	72.35 ± 8.55 b	88.50 ± 5.26 a	79.60 ± 7.61 a		
total	AFerm		$65.90 \pm 4.29 \text{ b}$	12.78 ± 6.94 c	77.43 ± 3.19 a		
	ProStab	91.10 ± 5.72 a	70.40 ± 7.21 b	89.33 ± 3.44 a	72.48 ± 5.48 k		
total TL / total CHI 1	AFerm		1.42 ± 0.12	0.90 ± 2.03	1.13 ± 0.02		
	ProStab	1.01 ± 0.02 a	0.94 ± 0.04 a	1.02 ± 0.04 a	0.82 ± 0.08 b		
SE-HPLC							
P93	AFerm		3.94 ± 0.34	15.05 ± 13.26	13.38 ± 15.78		
	ProStab	-6.41 ± 10.96	2.41 ± 2.81	-29.95 ± 29.80	-25.67 ± 24.76		
P67	AFerm		38.57 ± 1.52	35.69 ± 6.04	60.24 ± 21.02		
	ProStab	88.57 ± 9.82	80.79 ± 7.15	93.74 ± 10.84	100.00 ± 0.00		
PR32	AFerm		100.00 ± 0.00 a	$29.29 \pm 8.81 \text{ b}$	100.00 ± 0.00		
	ProStab	100.00 ± 0.00	-	100.00 ± 0.00	-		
PR25	AFerm		$52.52 \pm 5.80 \text{ b}$	24.43 ± 1.32 c	73.59 ± 2.73 a		
	ProStab	88.55 ± 7.08 a	71.95 ± 4.63 b	89.94 ± 2.80 a	70.75 ± 7.46 b		
PR23	AFerm		61.31 ± 5.36 b	$29.87 \pm 3.20 \text{ c}$	81.36 ± 4.73 a		
	ProStab	91.16 ± 5.54 a	$79.96 \pm 4.06 \mathrm{b}$	92.81 ± 3.17 a	75.32 ± 8.73 b		
PR22	AFerm		$82.18 \pm 2.71 \text{ b}$	$16.96 \pm 5.58 \text{ c}$	$92.76 \pm 2.69 a$		
	ProStab	92.05 ± 4.61 ab	$84.34 \pm 4.71 \text{ b}$	98.94 ± 1.30 a	$93.80 \pm 6.18 a$		
PR20	AFerm		75.72 ± 1.19 a	$22.06 \pm 4.00 \text{ b}$	79.89 ± 4.07 a		
1120	ProStab	81.62 ± 1.43 a	$51.50 \pm 0.74 \mathrm{b}$	83.67 ± 1.28 a	19.65 ± 13.65		
total PR	AFerm		$65.50 \pm 3.99 \text{ b}$	$23.96 \pm 2.09 \text{ c}$	80.37 ± 3.34 a		
	ProStab	88.33 ± 4.90 a	$71.61 \pm 3.42 \text{ b}$	90.84 ± 1.59 a	61.06 ± 6.65 c		

CO – control wine without bentonite or commercial enological tannin preparation added during fermentation, GSAB – initial dose (95 g/hL) of granular sodium-activated bentonite added near the end of fermentation, ET – commercial enological tannin preparation (25 g/hL divided in three portions) added during fermentation, GSAB + ET – initial dose (95 g/hL) of granular sodium-activated bentonite added near the end of fermentation and commercial enological tannin preparation (25 g/hL divided in three portions) added during fermentation. AFerm – wines analyzed after fermentation, ProStab – wines analyzed after total protein stabilization by additional post-fermentation fining with bentonite. AFerm reductions were calculated in relation to CO wine and ProStab reductions in relation to corresponding AFerm wines. Different lowercase letters in a row represent statistically significant differences among treatments, at p < 0.05 obtained by one-way ANOVA and LSD test. 1 ratio of $^\circ$ values.

Table S3. Reduction of the concentrations of proteins in Malvazija istarska wines (mean \pm standard deviation; n = 3; %) obtained after partial fining with different types of bentonite in fermentation, and in final protein stable wines.

Protein	Stage	Treatment						
		СО	GSAB	PEN	MVN	PUR		
RP-HPLC								
TL1	AFerm		66.94 ± 2.24 c	$74.72 \pm 3.30 \text{ b}$	73.25 ± 1.86 b	94.16 ± 1.10 a		
	ProStab	95.76 ± 0.92 a	88.65 ± 0.41 bc	86.09 ± 1.44 bc	89.47 ± 0.93 b	84.58 ± 3.56 c		
TL2	AFerm		49.70 ± 3.21 b	48.83 ± 2.26 b	$46.55 \pm 2.87 \mathrm{b}$	73.95 ± 2.08 a		
	ProStab	93.18 ± 0.39 a	87.07 ± 1.03 b	80.94 ± 3.79 c	84.61 ± 2.03 bc	74.11 ± 2.7 d		
TL3	AFerm		$28.64 \pm 5.21 \text{ b}$	13.35 ± 5.27 c	10.70 ± 4.31 c	49.28 ± 2.45 a		
	ProStab	88.43 ± 0.99 a	84.23 ± 1.47 ab	77.30 ± 5.15 b	$80.74 \pm 4.27 \text{ b}$	64.66 ± 2.45 c		
TL4	AFerm		$77.38 \pm 1.20 \text{ b}$	96.83 ± 1.94 a	97.76 ± 0.34 a	98.49 ± 0.17 a		
	ProStab	97.27 ± 1.16	91.46 ± 0.57	91.49 ± 1.49	93.44 ± 1.59	95.54 ± 5.30		
CHI1	AFerm		62.84 ± 3.22 c	70.30 ± 3.11 b	61.80 ± 3.30 c	83.41 ± 1.77 a		
	ProStab	94.97 ± 0.21 a	88.70 ± 0.62 b	85.54 ± 1.85 b	88.52 ± 0.47 b	76.74 ± 3.62 c		
CHI2	AFerm		63.13 ± 3.37 c	$74.78 \pm 3.09 \mathrm{b}$	66.61 ± 2.78 c	85.78 ± 1.44 a		
	ProStab	95.34 ± 0.30 a	88.91 ± 0.74 b	85.18 ± 2.04 b	87.87 ± 0.47 b	77.69 ± 4.21 c		
total TL	AFerm		64.87 ± 1.48 c	73.39 ± 2.32 b	72.52 ± 1.55 b	89.09 ± 1.00 a		
	ProStab	95.29 ± 0.77 a	88.16 ± 0.66 b	82.45 ± 3.10 c	85.85 ± 1.80 bc	$73.56 \pm 2.9 d$		
total CHI	AFerm		62.97 ± 3.29 c	72.30 ± 3.09 b	63.96 ± 3.07 c	84.47 ± 1.62 a		
	ProStab	95.14 ± 0.24 a	$88.79 \pm 0.67 \mathrm{b}$	$85.39 \pm 1.90 \mathrm{b}$	$88.25 \pm 0.39 \mathrm{b}$	77.13 ± 3.86 c		
total	AFerm		63.94 ± 2.36 c	$72.86 \pm 2.70 \text{ b}$	68.34 ± 2.14 c	86.84 ± 1.30 a		
	ProStab	95.22 ± 0.52 a	88.48 ± 0.67 b	83.91 ± 2.47 c	87.18 ± 0.91 bc	75.61 ± 3.39 d		
total TL / total CHI 1	AFerm		$1.03 \pm 0.03 b$	1.02 ± 0.01 b	1.14 ± 0.04 a	$1.05 \pm 0.01 \text{ b}$		
	ProStab	1.00 ± 0.01	0.99 ± 0.00	0.97 ± 0.02	0.97 ± 0.02	0.95 ± 0.02		
SE-HPLC								
P93	AFerm		20.00 ± 4.92	21.53 ± 11.26	24.96 ± 1.36	30.11 ± 5.22		
	ProStab	11.45 ± 17.63	4.28 ± 14.61	6.07 ± 10.06	5.47 ± 6.51	3.35 ± 9.35		
P67	AFerm		$10.23 \pm 6.27 \mathrm{b}$	$2.14 \pm 6.70 \text{ b}$	-2.16 ± 8.44 b	41.29 ± 3.74 a		
	ProStab	89.02 ± 0.36 a	86.31 ± 0.05 a	81.33 ± 1.87 a	83.27 ± 3.82 a	68.53 ± 11.63 b		
PR32	AFerm		100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00		
	ProStab	100.00 ± 0.00	-	-	-	-		
PR25	AFerm		52.71 ± 1.53 c	61.30 ± 4.12 b	$58.52 \pm 0.77 \text{ b}$	81.76 ± 1.21 a		
	ProStab	94.59 ± 0.66 a	90.64 ± 1.52 ab	$86.10 \pm 2.52 \mathrm{b}$	$88.11 \pm 1.23 \text{ b}$	75.06 ± 4.12 c		
PR23	AFerm		61.07 ± 1.14 c	71.96 ± 2.96 b	71.21 ± 1.05 b	88.71 ± 0.57 a		
	ProStab	95.24 ± 0.01 a	90.66 ± 1.54 a	87.46 ± 1.33 ab	89.06 ± 1.33 a	80.45 ± 7.59 b		
PR22	AFerm		68.60 ± 1.72 c	$82.96 \pm 3.33 \text{ b}$	82.99 ± 1.39 b	93.76 ± 0.47 a		
	ProStab	96.15 ± 0.58	89.18 ± 1.06	86.75 ± 1.82	89.45 ± 1.52	82.43 ± 8.46		
PR20	AFerm		$61.38 \pm 2.45 d$	71.46 ± 2.46 c	81.96 ± 0.15 b	93.57 ± 0.31 a		
	ProStab	96.15 ± 0.25 a	91.18 ± 0.03 a	87.54 ± 1.85 a	86.37 ± 2.09 a	59.01 ± 10.96 b		
total PR	AFerm		59.20 ± 0.29 c	69.44 ± 3.23 b	$69.87 \pm 0.70 \text{ b}$	87.57 ± 0.72 a		
	ProStab	95.32 ± 0.18 a	90.58 ± 1.24 ab	$86.73 \pm 2.02 \text{ b}$	88.31 ± 1.31 b	75.65 ± 4.89 c		

CO – control wine without bentonite in fermentation, GSAB – initial dose (95 g/hL) of granular sodium-activated CX Special Grain bentonite added near the end of fermentation, PEN – initial dose (95 g/hL) of Pentagel bentonite added near the end of fermentation, MVN – initial dose (143 g/hL) of Mastervin Compact bentonite added near the end of fermentation, PUR – initial dose (238 g/hL) of Siha Puranit bentonite added near the end of fermentation. AFerm – wines analyzed after fermentation, ProStab – wines analyzed after total protein stabilization by additional post-fermentation fining with granular sodium-activated CX Special Grain bentonite. AFerm reductions were calculated in relation to CO wine and ProStab reductions in relation to corresponding AFerm wines. Different lowercase letters in a row represent statistically significant differences among treatments, at p < 0.05 obtained by one-way ANOVA and LSD test. 1 ratio of 6 values.

Figure S1. Total residual concentrations of pathogenesis-related (PR) proteins in protein stable Malvazija istarska wines (mean \pm standard deviation; n = 3) obtained after partial fining with bentonite at different points of fermentation followed by additional fining by a required dose of granular sodium-activated bentonite after fermentation. CO – control wine without bentonite in fermentation, JU – initial granular sodium-activated bentonite dose added into clear juice, BE – initial granular sodium-activated bentonite dose added at the beginning of fermentation, MD – initial granular sodium-activated bentonite dose added in the middle of fermentation, EN – initial granular sodium-activated bentonite dose added near the end of fermentation. TL – thaumatin-like proteins, CHI – chitinases, RP-HPLC – reverse phase high-performance liquid chromatography, SE-HPLC – size exclusion high-performance liquid chromatography. Different lowercase letters above bars represent statistically significant differences among treatments with respect to total bentonite dose required, at p < 0.05 obtained by one-way ANOVA and LSD test.

Figure S2. Total residual concentrations of pathogenesis-related (PR) proteins in protein stable Malvazija istarska wines (mean \pm standard deviation; n = 3) obtained after partial fining with bentonite and/or the addition of commercial enological tannin preparation during fermentation followed by additional fining by a required dose of granular sodium activated bentonite after fermentation. CO – control wine without bentonite or commercial enological tannin preparation added during fermentation, GSAB – initial dose of granular sodium-activated bentonite added near the end of fermentation, ET – commercial enological tannin preparation added during fermentation. GSAB + ET – initial dose of granular sodium-activated bentonite added near the end of fermentation and commercial enological tannin preparation added during fermentation. TL – thaumatin-like proteins, CHI – chitinases, RP-HPLC – reverse phase high-performance liquid chromatography, SE-HPLC – size exclusion high-performance liquid chromatography. Different lowercase letters above bars represent statistically significant differences among treatments with respect to total bentonite dose required, at p < 0.05 obtained by one-way ANOVA and LSD test,

Figure S3. Percentage of bentonite sediment (%) after treatment of grape juice with a dose of 95 g/hL of granular sodium-activated bentonite and equivalent doses of other bentonites determined by a preliminary protein stability test. Abbreviations: GSAB - granular sodium-activated bentonite CX Special Grain, PEN - activated sodium bentonite Pentagel, MVN - activated sodium bentonite with specifically adsorbed silica and activated silica Mastervin Compact, PUR - active Na-Ca bentonite SIHA Puranit

Figure S4. Total residual concentrations of pathogenesis-related (PR) proteins in protein stable Malvazija istarska wines (mean \pm standard deviation; n = 3) obtained after partial fining with different types of bentonite in fermentation followed by additional fining by a required dose of granular sodium-activated bentonite after fermentation. CO – control wine without bentonite in fermentation, GSAB – initial dose (95 g/hL) of granular sodium-activated bentonite CX Special Grain added near the end of fermentation, PEN – initial dose (95 g/hL) of sodium-activated bentonite Pentagel added near the end of fermentation, MVN – initial dose (143 g/hL) of activated sodium bentonite with specifically adsorbed silica and activated silica Mastervin Compact added near the end of fermentation, PUR – initial dose (238 g/hL) of active Na-Ca bentonite Siha Puranit bentonite added near the end of fermentation. TL – thaumatin-like proteins, CHI – chitinases, RP-HPLC – reverse phase high-performance liquid chromatography, SE-HPLC – size exclusion high-performance liquid chromatography. Different lowercase letters above bars represent statistically significant differences among treatments with respect to total bentonite dose required, at p < 0.05 obtained by one-way ANOVA and LSD test.