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We thank Dr. Laatikainen for the interest in our article and appreciate his comments. While some
points raised are appreciated, there are several comments that we do not consider “on the point” or of
relevance regarding our research report.

Sourdough modifies multiple bioactivities in wheat bread. The main topic of our article was
to investigate the changes of Alpha-Amylase/Trypsin Inhibitor (ATI) protein concentration and
bioactivity in yeast-fermented bread vs. sourdough bread [1] rather than compare the impact of these
two fermentations on the symptoms of irritable bowel syndrome (IBS) patients, as performed by
Laatikainen et al. [2]. Laatikainen determined the fructan content in yeast bread (0.23 g per 100 g
bread) vs. sourdough-fermented bread, finding a reduced fructan content in sourdough bread (0.06 per
100 g bread). While this was significant, the overall diet provided to the patients may otherwise not
have had a reduced content of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) [2].
Thus the statement that the bread had a substantially reduced FODMAPs content that would then
explain potential differences in patients’ complaints cannot be easily upheld.

We also maintain that a comparison of sourdough bread to bread produced by a straight dough
process may not enable to assess the contribution of specific wheat components, as sourdough
fermentation has a profound impact on multiple wheat components that are known or suspected to
contribute to symptoms in IBS or non-celiac wheat sensitivity (NCWS) patients. Sourdough fermentation
reduces the FODMAP content of wheat [3,4], modifies and partially degrades gluten proteins and
the gluten macropolymer [5], and partially degrades ATI [1]. In addition, sourdough bread also
has a reduced content of phytate and can increase the content of dietary fibre by the synthesis of
bacterial exopolysaccharides and by the modification of starch digestion, modifying bioactive phenolic
compounds [6,7] and favouring beneficial changes in the gut microbiota [8]. A study in IBS patients
comparing sourdough bread with yeast-fermented bread thus assesses the combined effect of all of
these modifications [2]. A more targeted reduction in specific components without modifying of the
bread making process is required to inform on the contribution of specific wheat components. This can
be achieved, e.g., by using enzymes [4] or by using isogenic lactic acid bacteria that differ in specific
metabolic properties [9].

ATI contamination in gluten preparations. Alpha-amylase/trypsin inhibitors (ATIs) that are
water/salt-soluble and the CM ATIs are also chloroform/methanol-soluble. Commercial gluten
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isolate/vital gluten contains between 1 and 3 wt% (weight percent) of ATIs, depending on the
starch separation and production process. Thus, a comparison of an ATI/gluten/free-diet and a
commercial gluten containing diet (containing 3% of ATI) showed an intestinal and extra-intestinal
immune activation in mouse models of disease that was equivalent to the same amount of purified
ATIs in chow, whereas the same amount of gluten did not show immune activation, after the near
complete removal of ATI by further extraction [10–12]. We performed several clinical studies to confirm
the results of mouse studies in patients, including a study that confirmed disease activation in patients
with familial Mediterranean fever [13].

Dietary triggers of IBS and NCWS remain unknown. While IBS patients appear to be a substantial
subgroup of NCWS patients, another large subgroup of NCWS patients has mainly extra-intestinal
symptoms or exacerbation of their chronic diseases [14]. The first appears to be due to an immediate
reaction (atypical, IgE negative food allergy) to whole wheat, as assessed by endoscopic duodenal
challenge and confocal laser endomicroscopy [15,16]. Here, wheat is the prominent food trigger;
ATIs may contribute both as allergens and pro-inflammatory proteins to this novel form of atypical
food allergy in patients with NCWS-IBS [10–12,17–20]. Therefore, in general, NCWS patients benefit
from a gluten-free diet that is also an ATI-free diet and often a low-FODMAP diet. A FODMAP-reduced
diet can improve IBS symptoms, mainly by reducing bloating, but is only sustainable in mild forms
of IBS. Importantly, adverse effects of FODMAPs are dose-dependent and a supply of FODMAPs is
important for a healthy gut microbiota.

Certainly, more studies are needed to understand the role of different dietary triggers for NCWS
and its subgroups of wheat-induced IBS (atypical wheat allergens) and wheat-induced exacerbation of
chronic disease (ATIs). Here, the role of food processing in changing the immunogenicity of major
(proteinaceous) triggers appears to play a major role, as exemplified by the wheat ATIs. Because IBS
and NCWS have multiple dietary triggers, and because sourdough fermentation has a profound effect
on the bioactive (inflammatory) components of wheat bread, future studies should include a thorough
determination of biochemical modifications of proteins, carbohydrates and other wheat components as
well as well-designed clinical studies.
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