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Abstract: Owing to the public health concern associated with the consumption of added sugar,
the World Health Organization recommends cutting down sugar in processed foods. Furthermore,
due to the growing concern of increased calorie intake from added sugar in sweetened dairy foods,
the present review provides an overview of different types and functions of sugar, various sugar
reduction strategies, and current trends in the use of sweeteners for sugar reduction in dairy food,
taking flavoured milk as a central theme where possible to explore the aforementioned aspects.
The strength and uniqueness of this review are that it brings together all the information on
the available types of sugar and sugar reduction strategies and explores the current trends that
could be applied for reducing sugar in dairy foods without much impact on consumer acceptance.
Among different strategies for sugar reduction, the use of natural non-nutritive sweeteners (NNSs),
has received much attention due to consumer demand for natural ingredients. Sweetness imparted
by sugar can be replaced by natural NNSs, however, sugar provides more than just sweetness to
flavoured milk. Sugar reduction involves multiple technical challenges to maintain the sensory
properties of the product, as well as to maintain consumer acceptance. Because no single sugar has a
sensory profile that matches sucrose, the use of two or more natural NNSs could be an option for food
industries to reduce sugar using a holistic approach rather than a single sugar reduction strategy.
Therefore, achieving even a small sugar reduction can significantly improve the diet and health of
an individual.

Keywords: sugar reduction strategies; flavoured milk; sweeteners; stevia; monk fruit

1. Introduction

The consumption of excessive free or added sugar contributes to total energy intake, and, possibly,
to increased body weight [1], the occurrence of obesity [2,3], and associated chronic diseases such as
type 2 diabetes [4,5]. Flavoured milk is used to promote milk intake to meet the recommended dietary
allowances (RDA) for vitamin D and calcium [4]. Milk appears to be the principal dairy product
consumed by children worldwide. It is estimated that between 60–80% of American children’s dairy
product consumption is comprised of fluid milk [6]. Furthermore, 68% of all milk available to children
in schools in the USA is flavoured, of which the majority is chocolate milk [7]. However, the regular
consumption of sweetened flavoured milk has been reported to increase energy intake more than
10% as compared with non-consumers [8–10]. The increased energy intake is further linked to the
occurrence of overweight, obesity [1–3], and type 2 diabetes [4,5].
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The World Health Organization (WHO) recommends less than 10% of total energy intake from
free sugars per day in both adults and children (strong recommendation). A further reduction to
below 5% is a conditional recommendation [11]. These guidelines have been considered by Public
Health England (PHE), which recommends a 20% sugar reduction in processed foods and beverages by
2020 [12]. A well-tested model of an epidemiological triad (hosts, vectors, and environments) provides
a framework to address such public health concerns [13,14]. The vectors rule of this model suggests
”small changes × large volumes = significant population benefits”. Therefore, even a small reduction
can significantly benefit a larger population in the long term.

Hence, the main focus of this review is to provide an overview of different types and functions of
sugar present in processed foods and beverages, current trends in the use of sweeteners, as well as
various sugar reduction strategies that could be applied for sugar reduction in milk-based products
without a significant impact on consumers’ sensory acceptance.

2. Types of Sweetener

Sweeteners can be categorized into nutritive sweeteners (NSs) and non-nutritive sweeteners
(NNSs) based on their nutritive value and sweetness potency (i.e., relative sweetness equivalent
to sucrose).

2.1. Nutritive Sweetener (NS)

The NSs include sugars such as sucrose, fructose, and lactose, as well high-fructose corn
syrup (HFCS), trehalose, and polyols (erythritol, isomaltitol, lactitol, maltitol, sorbitol, mannitol,
and xylitol) [15,16]. NSs have various advantages when added to foods and beverages (Table 2),
however, they provide calorie contribution. For these reasons, they are not preferred for sugar reduction
strategies where calorie reduction is important.

2.2. Non-Nutritive Sweeteners (NNSs)

Non-nutritive (intensive) sweeteners (NNSs) are food additives with high sweetness potency.
They are usually added in low amounts, and therefore their calorie contribution is almost negligible
and are preferred for use where calorie reduction is desired (Table 1) [15]. NS and NNS can both be
either natural or artificial [17–19]. Natural sweeteners are intrinsic to a food substance or commonly
occur in nature, e.g., stevia and monk fruit [20], while artificial sweeteners are not found in nature but
are synthesized from an existing natural source. The first artificial sweetener approved by the FDA was
Saccharin in 1958, while Advantame was the most recent one approved by the FDA in 2014. Similarly,
the first natural NNS approved for use by the FDA in 2009 was steviol glycosides with rebaudioside A
as the main component. Furthermore, the physiological effects relating to NNSs and NSs vary greatly.
NSs play more of a role in the regulation of hormonal secretion and brain activation to control appetite
as compared with NNSs [21]. Considering this evidence, NNSs may serve as a good substitute for
sugar reduction strategies.
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Table 1. Natural and artificial non-nutritive sweeteners (NNSs) used for sugar reduction in dairy products.

Non-nutritive
Sweetener (NNS) Structure ADI (mg/kg Body

Weight/day) Onset Lingering Off-taste Food and Beverages Amount of Sugar
Reduction Reference

Natural

Thaumatin
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Xylitol  

 

Artificial Sweetness intensity 
similar to sucrose 

Similar to Isomalt 1.0× 3.0 [32] 

* Sweetness potency-the indicated estimate values are times (×) that of sucrose. 

Table 2. Natural and artificial non-nutritive sweeteners (NNSs) used for sugar reduction in dairy products. 

Non-nutritive 
Sweetener 

(NNS) 
Structure 

ADI (mg/kg 
Body 

Weight/day) 
Onset Lingering Off-taste Food and 

Beverages 

Amount 
of Sugar 

Reduction 
Reference 

Natural 

Thaumatin 

 

50 Delay Long Nil 

Probiotic 
chocolate-
flavoured 

milk 

20% [15,38,39] 50 Delay Long Nil Probiotic chocolate-flavoured milk 20% [15,38,39]

Neohesperidine
dihydrochalcone
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Neohesperidine 
dihydrochalcone 

 

35 Delay Long 
Like 

licorice 

Chocolate, 
skimmed 

plain 
yoghurt 

- [15,40,41] 

Steviol 
glucosides 

 

4 Delay Moderate Bitter 

Chocolate 
milk, 

chocolate 
dairy 

desserts 

50% [15,42–45] 

35 Delay Long Like licorice Chocolate, skimmed plain yoghurt - [15,40,41]

Steviol glucosides
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Neohesperidine 
dihydrochalcone 

 

35 Delay Long 
Like 

licorice 

Chocolate, 
skimmed 

plain 
yoghurt 

- [15,40,41] 

Steviol 
glucosides 

 

4 Delay Moderate Bitter 

Chocolate 
milk, 

chocolate 
dairy 

desserts 

50% [15,42–45] 4 Delay Moderate Bitter Chocolate milk,
chocolate dairy desserts 50% [15,42–45]
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Table 1. Cont.

Non-nutritive
Sweetener (NNS) Structure ADI (mg/kg Body

Weight/day) Onset Lingering Off-taste Food and Beverages Amount of Sugar
Reduction Reference

Monk fruit
(Mogrosides V)
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Monk fruit 
(Mogrosides V) 

 

25 Delay Long Nil 
Chocolate 

milk 50% [42,43,46] 

Artificial 

Advantame 

 

5 Delay Moderate Nil 
Strawberry-
flavoured 
yoghurt 

100% [15,47,48] 

25 Delay Long Nil Chocolate milk 50% [42,43,46]

Artificial

Advantame
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Monk fruit 
(Mogrosides V) 

 

25 Delay Long Nil 
Chocolate 

milk 50% [42,43,46] 

Artificial 

Advantame 

 

5 Delay Moderate Nil 
Strawberry-
flavoured 
yoghurt 

100% [15,47,48] 
5 Delay Moderate Nil Strawberry-flavoured yoghurt 100% [15,47,48]

Neotame
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Neotame 

 

2 Delay Strong Nil 
Prebiotic 
chocolate 

dairy dessert 
100% [15,45] 

Sucralose 

 

5 
Slight 
delay 

Moderate 
Slight 
bitter 

Strawberry 
flavoured 
yoghurt, 

dairy 
desserts, 

lassi 

100% [15,44,48] 

Saccharin 

 

 

5 Rapid 
Non-

significant 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages 

39%-100% [15,48,49] 

2 Delay Strong Nil Prebiotic chocolate dairy dessert 100% [15,45]

Sucralose
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Neotame 

 

2 Delay Strong Nil 
Prebiotic 
chocolate 

dairy dessert 
100% [15,45] 

Sucralose 

 

5 
Slight 
delay 

Moderate 
Slight 
bitter 

Strawberry 
flavoured 
yoghurt, 

dairy 
desserts, 

lassi 

100% [15,44,48] 

Saccharin 

 

 

5 Rapid 
Non-

significant 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages 

39%-100% [15,48,49] 

5 Slight delay Moderate Slight bitter Strawberry flavoured yoghurt,
dairy desserts, lassi 100% [15,44,48]
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Table 1. Cont.

Non-nutritive
Sweetener (NNS) Structure ADI (mg/kg Body

Weight/day) Onset Lingering Off-taste Food and Beverages Amount of Sugar
Reduction Reference

Saccharin

Foods 2020, 9, 1400 10 of 17 

 

Neotame 

 

2 Delay Strong Nil 
Prebiotic 
chocolate 

dairy dessert 
100% [15,45] 

Sucralose 

 

5 
Slight 
delay 

Moderate 
Slight 
bitter 

Strawberry 
flavoured 
yoghurt, 

dairy 
desserts, 

lassi 

100% [15,44,48] 

Saccharin 

 

 

5 Rapid 
Non-

significant 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages 

39%-100% [15,48,49] 5 Rapid Non-significant Bitter and
metallic

Strawberry flavoured yoghurt,
lemon whey beverages 39%-100% [15,48,49]

Aspartame
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Aspartame 

 

40 
Slight 
delay 

Moderate 
Non-

significant 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages, 

lassi 

39–100% [15,49,50] 

Acesulfame K 

 

 

9 Quick Low 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lassi 

100% [15,50] 

Cyclamates 

 

 

11 Rapid 
Non-

significant 
Bitter and 

salty 

Strawberry 
flavoured 
yoghurt 

100% [15] 

40 Slight delay Moderate Non-significant Strawberry flavoured yoghurt,
lemon whey beverages, lassi 39–100% [15,49,50]

Acesulfame K
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Aspartame 

 

40 
Slight 
delay 

Moderate 
Non-

significant 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages, 

lassi 

39–100% [15,49,50] 

Acesulfame K 

 

 

9 Quick Low 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lassi 

100% [15,50] 

Cyclamates 

 

 

11 Rapid 
Non-

significant 
Bitter and 

salty 

Strawberry 
flavoured 
yoghurt 

100% [15] 

9 Quick Low Bitter and
metallic

Strawberry flavoured yoghurt,
lassi 100% [15,50]

Cyclamates
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Aspartame 

 

40 
Slight 
delay 

Moderate 
Non-

significant 

Strawberry 
flavoured 
yoghurt, 

lemon whey 
beverages, 

lassi 

39–100% [15,49,50] 

Acesulfame K 

 

 

9 Quick Low 
Bitter and 
metallic 

Strawberry 
flavoured 
yoghurt, 

lassi 

100% [15,50] 

Cyclamates 

 

 

11 Rapid 
Non-

significant 
Bitter and 

salty 

Strawberry 
flavoured 
yoghurt 

100% [15] 11 Rapid Non-significant Bitter and salty Strawberry flavoured yoghurt 100% [15]
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Table 2. Natural and artificial nutritive sweeteners (NSs), their advantages, disadvantages, sweetness potency, and calorie contribution.

Nutritive
Sweeteners (NS) Structure Type Advantages Disadvantages * Sweetness

Potency Calorie/g References

Sucrose

Foods 2020, 9, 1400 3 of 17 

 

 

Table 1. Natural and artificial nutritive sweeteners (NSs), their advantages, disadvantages, sweetness potency, and calorie contribution. 

Nutritive 
Sweeteners 

(NS) 
Structure Type Advantages Disadvantages 

* 
Sweetness 

Potency  
Calorie/g References 

Sucrose  

 
 

 

Natural 

Provides colour, 
flavour, bulkness 
and preservative 
actions against 

microbes 

Contributes 
calories to diets 1.0 4.0 [22] 

Glucose  

 
 

 

Natural Essential energy 
source for the brain 

Contributes 
calories to diets 

and affects satiety 
0.75× 4.0 [23] 

Natural Provides colour, flavour, bulkness and
preservative actions against microbes Contributes calories to diets 1.0 4.0 [22]

Glucose
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Table 1. Natural and artificial nutritive sweeteners (NSs), their advantages, disadvantages, sweetness potency, and calorie contribution. 

Nutritive 
Sweeteners 

(NS) 
Structure Type Advantages Disadvantages 

* 
Sweetness 

Potency  
Calorie/g References 

Sucrose  

 
 

 

Natural 

Provides colour, 
flavour, bulkness 
and preservative 
actions against 

microbes 

Contributes 
calories to diets 1.0 4.0 [22] 

Glucose  

 
 

 

Natural Essential energy 
source for the brain 

Contributes 
calories to diets 

and affects satiety 
0.75× 4.0 [23] 

Natural Essential energy source for the brain Contributes calories to diets and affects satiety 0.75× 4.0 [23]

Fructose
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Fructose  
 

 

 

Natural 
Sweetest 

carbohydrate in 
nature 

Contributes 
calories to diets but 

does not affect 
satiety like glucose  

1.5–1.8× 4.0 [24] 

Lactose 

 

 

 

Natural 
Raw material and 

prebiotics for 
probiotics 

Less contribution 
to sweetness 

0.11–0.13× 3.9 [25,26] 

Trehalose  

 

 

Artificial 

Antioxidant 
activity, food 

flavour enhancer; 
prevents starch 

aging; odor 
reduction and 

extension of the 
shelf life  

Contributes 
calories 0.5–0.7× 3.6 [27–30] 

Natural Sweetest carbohydrate in nature Contributes calories to diets but does not affect
satiety like glucose 1.5–1.8× 4.0 [24]

Lactose
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Fructose  
 

 

 

Natural 
Sweetest 

carbohydrate in 
nature 

Contributes 
calories to diets but 

does not affect 
satiety like glucose  

1.5–1.8× 4.0 [24] 

Lactose 

 

 

 

Natural 
Raw material and 

prebiotics for 
probiotics 

Less contribution 
to sweetness 

0.11–0.13× 3.9 [25,26] 

Trehalose  

 

 

Artificial 

Antioxidant 
activity, food 

flavour enhancer; 
prevents starch 

aging; odor 
reduction and 

extension of the 
shelf life  

Contributes 
calories 0.5–0.7× 3.6 [27–30] 

Natural Raw material and prebiotics for probiotics Less contribution to sweetness 0.11–0.13× 3.9 [25,26]

Trehalose
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Fructose  
 

 

 

Natural 
Sweetest 

carbohydrate in 
nature 

Contributes 
calories to diets but 

does not affect 
satiety like glucose  

1.5–1.8× 4.0 [24] 

Lactose 

 

 

 

Natural 
Raw material and 

prebiotics for 
probiotics 

Less contribution 
to sweetness 

0.11–0.13× 3.9 [25,26] 

Trehalose  

 

 

Artificial 

Antioxidant 
activity, food 

flavour enhancer; 
prevents starch 

aging; odor 
reduction and 

extension of the 
shelf life  

Contributes 
calories 0.5–0.7× 3.6 [27–30] 

Artificial
Antioxidant activity, food flavour enhancer;
prevents starch aging; odor reduction and

extension of the shelf life
Contributes calories 0.5–0.7× 3.6 [27–30]
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Table 2. Cont.

Nutritive
Sweeteners (NS) Structure Type Advantages Disadvantages * Sweetness

Potency Calorie/g References

Erythritol

Foods 2020, 9, 1400 5 of 17 

 

Erythritol  

 

Artificial 

Highly stable, low 
calorie contribution, 

tooth-friendly 
sweetener 

providing volume, 
texture, and 

microbiological 
stability 

Can cause 
gastrointestinal 

symptoms 
0.7× 0.2 [31] 

Isomalt 
(Isomaltitol) 

 

Artificial 
Heat resistant and 

tooth-friendly 

Laxative effect 
along with 

gastrointestinal 
symptoms 
(abdominal 
discomfort, 

bloating and 
flatulence if 
consumed in 

excess i.e., >50 g) 

0.45–0.6× 2.0 [31,32] 

Lactitol  

  

Artificial 
Low calories 

suitable for sugar-
free foods 

Similar to Isomalt 0.35–0.4× 1.9 [31] 

Artificial
Highly stable, low calorie contribution,

tooth-friendly sweetener providing volume,
texture, and microbiological stability

Can cause gastrointestinal symptoms 0.7× 0.2 [31]

Isomalt
(Isomaltitol)
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Erythritol  

 

Artificial 

Highly stable, low 
calorie contribution, 

tooth-friendly 
sweetener 

providing volume, 
texture, and 

microbiological 
stability 

Can cause 
gastrointestinal 

symptoms 
0.7× 0.2 [31] 

Isomalt 
(Isomaltitol) 

 

Artificial 
Heat resistant and 

tooth-friendly 

Laxative effect 
along with 

gastrointestinal 
symptoms 
(abdominal 
discomfort, 

bloating and 
flatulence if 
consumed in 

excess i.e., >50 g) 

0.45–0.6× 2.0 [31,32] 

Lactitol  

  

Artificial 
Low calories 

suitable for sugar-
free foods 

Similar to Isomalt 0.35–0.4× 1.9 [31] 

Artificial Heat resistant and tooth-friendly
Laxative effect along with gastrointestinal

symptoms (abdominal discomfort, bloating
and flatulence if consumed in excess i.e., >50 g)

0.45–0.6× 2.0 [31,32]

Lactitol
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Trehalose  Artificial 

Antioxidant 
activity, food 

flavour enhancer; 
prevents starch 

aging; odor 
reduction and 

extension of the 
shelf life  

Contributes 
calories 

0.5–0.7× 3.6 [27–30] 

Erythritol  Artificial 

Highly stable, low 
calorie 

contribution, tooth-
friendly sweetener 
providing volume, 

texture, and 
microbiological 

stability 

Can cause 
gastrointestinal 

symptoms 
0.7× 0.2 [31]

Isomalt 
(Isomaltitol) Artificial 

Heat resistant and 
tooth-friendly 

Laxative effect 
along with 

gastrointestinal 
symptoms 
(abdominal 
discomfort, 

bloating and 
flatulence if 
consumed in 

excess i.e., >50 g) 

0.45–0.6× 2.0 [31,32] 

Lactitol  Artificial 
Low calories 

suitable for sugar-
free foods 

Similar to Isomalt 0.35–0.4× 1.9 [31]Artificial Low calories suitable for sugar-free foods Similar to Isomalt 0.35–0.4× 1.9 [31]

Maltitol
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Maltitol  

  

Artificial 

Heat resistance, 
strong flavour 

consistency, and 
tooth-friendly as it 
is not fermented by 

tooth plaque 
forming 

microorganisms 

Similar to Isomalt 0.5–0.9× 3.0 [31,33] 

Sorbitol  

 

Artificial 

Bulking agent, 
humectant, 

sequestrant and 
acts as stabilizer 

Similar to Isomalt 0.6× 2.6 [31,34] 

Mannitol  

 

Artificial 

Crystallization in 
the form of a 

colourless/white 
needle/rhombus 

with extremely low 
hygroscopicity  

Only 18% (w/v) 
soluble in water at 

25 °C  
0.5–0.72× 1.6 [35–37] 

Artificial
Heat resistance, strong flavour consistency,
and tooth-friendly as it is not fermented by

tooth plaque forming microorganisms
Similar to Isomalt 0.5–0.9× 3.0 [31,33]

Sorbitol
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Maltitol  

  

Artificial 

Heat resistance, 
strong flavour 

consistency, and 
tooth-friendly as it 
is not fermented by 

tooth plaque 
forming 

microorganisms 

Similar to Isomalt 0.5–0.9× 3.0 [31,33] 

Sorbitol  

 

Artificial 

Bulking agent, 
humectant, 

sequestrant and 
acts as stabilizer 

Similar to Isomalt 0.6× 2.6 [31,34] 

Mannitol  

 

Artificial 

Crystallization in 
the form of a 

colourless/white 
needle/rhombus 

with extremely low 
hygroscopicity  

Only 18% (w/v) 
soluble in water at 

25 °C  
0.5–0.72× 1.6 [35–37] 

Artificial Bulking agent, humectant, sequestrant and
acts as stabilizer Similar to Isomalt 0.6× 2.6 [31,34]
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Table 2. Cont.

Nutritive
Sweeteners (NS) Structure Type Advantages Disadvantages * Sweetness

Potency Calorie/g References

Mannitol

Foods 2020, 9, 1400 6 of 17 

 

Maltitol  

  

Artificial 

Heat resistance, 
strong flavour 

consistency, and 
tooth-friendly as it 
is not fermented by 

tooth plaque 
forming 

microorganisms 

Similar to Isomalt 0.5–0.9× 3.0 [31,33] 

Sorbitol  

 

Artificial 

Bulking agent, 
humectant, 

sequestrant and 
acts as stabilizer 

Similar to Isomalt 0.6× 2.6 [31,34] 

Mannitol  

 

Artificial 

Crystallization in 
the form of a 

colourless/white 
needle/rhombus 

with extremely low 
hygroscopicity  

Only 18% (w/v) 
soluble in water at 

25 °C  
0.5–0.72× 1.6 [35–37] Artificial

Crystallization in the form of a
colourless/white needle/rhombus with

extremely low hygroscopicity
Only 18% (w/v) soluble in water at 25 ◦C 0.5–0.72× 1.6 [35–37]

Xylitol
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Xylitol  

 

Artificial Sweetness intensity 
similar to sucrose 

Similar to Isomalt 1.0× 3.0 [32] 

* Sweetness potency-the indicated estimate values are times (×) that of sucrose. 

Table 2. Natural and artificial non-nutritive sweeteners (NNSs) used for sugar reduction in dairy products. 

Non-nutritive 
Sweetener 

(NNS) 
Structure 

ADI (mg/kg 
Body 

Weight/day) 
Onset Lingering Off-taste Food and 

Beverages 

Amount 
of Sugar 

Reduction 
Reference 

Natural 

Thaumatin 

 

50 Delay Long Nil 

Probiotic 
chocolate-
flavoured 

milk 

20% [15,38,39] 

Artificial Sweetness intensity similar to sucrose Similar to Isomalt 1.0× 3.0 [32]

* Sweetness potency-the indicated estimate values are times (×) that of sucrose.
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3. Functions of Sugar

Sugar (sucrose) performs different functions in beverages. It provides sweetness and also helps to
balance other tastes such as sour, salty, and spicy in less sweet products [51]. An important reason
for using sugar in beverages is because it is a cheap and an efficient way to increase the liking and
acceptance of foods.

3.1. Sweetness

The primary role of sugar is to provide sweetness to foods. The sweetness profile of sugar depends
upon the quality and type of sugar [52]. Sweet is one of the four basic tastes [53]. The chemical tastants
for sweetness bind to taste receptor cells (TRC) in the oral cavity and activate the intracellular signaling
elements [54,55]. The receptors initiate a signal of the information to the taste processing regions of the
brain through afferent nerve fibres [56]. In addition, the sweet taste signaling mechanism also operates
in the gastrointestinal (GI) tract [57–60]. Therefore, a taste reception throughout the alimentary canal
may influence satiety and regulate energy intake in an individual [21,61].

In terms of perception, there are four dimensions of taste, i.e., quality, intensity, temporal,
and spatial patterns [62]. The quality attribute describes the sensations of taste compounds into
four basic tastes, i.e., sweet, sour, salty, and bitter [53]. The intensity of the taste compounds is
influenced by their concentration. The temporal aspect relates to the time duration of the intensities
perceived, while the spatial attribute denotes the location on the tongue and oral cavity for taste
sensations [62]. The sweetness perceived from sucrose varies from other types of sweeteners based
on these four dimensions which have the potential to influence consumer acceptance. Furthermore,
the sweetness perception can be triggered by the addition of vanilla, caramel, or fruity aromas [63–65].

3.2. Flavour

Milk naturally has lactose that participates in numerous Maillard reactions. A Maillard
reaction occurs when amino groups interact with sugars [66]. The reaction leads to the formation
of brown nitrogenous polymers or melanoidins along with other compounds having specific
flavours [67]. The flavour compounds mainly include aldehydes, imines, acetal, diacetyl, furfural,
and hydroxymethylfurfural (HMF). These are formed due to the breakdown of sugars, amino acids,
and other intermediate compounds during Maillard reactions. The reaction is enhanced at a higher
temperature and pH. In foods containing sugar, the Maillard reaction occurs simultaneously with
caramelisation. The reaction occurs during pasteurisation and UHT treatment of milk [51]. The flavour
compounds produced in milk by Maillard reactions include Strecker aldehydes, S- and N-containing
compounds, maltol, and diacetyl [68,69]. The flavour in flavoured milk may occur due to Maillard
reactions during the heat treatment. Therefore, sugar reduction in flavoured milk may reduce Maillard
reactions which may further impact consumer acceptance. Having said that, however, this connection
has not been established with flavoured milk.

3.3. Mouthfeel

Sugar is utilized to provide the desired mouthfeel in beverages. Sucrose contains hydroxyl (–OH)
groups that interact with water in beverages to form hydrogen bonds. This increases the viscosity or
bulk of the product and provides a proper “mouthfeel” if added in sufficient quantity [70]. A lower
sugar concentration from 5% to 10% is used for sweetening of beverages which increases the viscosity
and gives the perception of “mouthfeel” without the sensation of thickness. However, when sugar is
used at higher concentrations from 60% to 75%, as in the case of syrups, the thickening effect can be
observed easily. The interaction of sugar with water alters the behaviour of hydrophilic compounds
such as proteins, starches, and hydrocolloids [70]. Sugar is usually mixed with hydrocolloids (e.g., gums
and pectin) before adding to a liquid medium such as fruit juice in order that hydrocolloid molecules
can hydrate properly and provide the desired mouthfeel. Similar to sucrose, fructose and lactose
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are ideal for providing mouthfeel of a product. Due to their higher solubility, they provide the
desired mouthfeel in food and drinks [51,71]. In addition, mono- and disaccharides, the higher
molecular weight oligosaccharides also provide increased viscosity and ultimately improve the body
and mouthfeel of beverages [72,73]. Therefore, sugar reduction strategies with the aid of high potency
sweeteners often require other ingredients such as starch and gums to compensate for the bulk deceased
by a reduced portion of sugar.

3.4. Food Safety

Sugar has an important role in food industries because of its significance in processing and
shelf-life control [74,75]. The unique preservative property of sugar (sucrose), in addition to other
functionalities, make it an essential nutrient in the world diet for ensuring food safety. Industrial
sugar is usually obtained by processing of sugar cane and sugar beet. The reduction of sugar alters
(increases) the water activity (aw) level in sweetened milk-based beverages that further creates a
favourable environment for lipid oxidation, non-enzymatic browning (Maillard reaction), the growth
of microorganisms, and enzyme activity that pose safety and stability issues to the product [76].

The defects of milk quality include excessive acidity, microbiological and mechanical impurities,
and changed sensory qualities, i.e., taste, smell and colour. The degree of intensity of these defects
determines the speed of the deterioration of milk quality and is closely related to the number of bacteria
in the milk and its storage temperature. The consequences of bacterial growth in milk can be seen
on its physicochemical properties [77,78]. The major changes are observed for colour, pH, acidity,
viscosity, and development of off-flavours. The off-flavours develop due to fat hydrolysis [79], while
changes in pH, acidity, and viscosity occur due to fermentation of lactose into lactic acid [80].

Milk provides a favourable environment for the growth of many microorganisms such as
mesophilic and psychrotrophic bacteria. Milk is pasteurised at 72 ◦C for 15 s to check their
growth. However, as the pasteurised milk is stored under refrigerated temperatures, psychrotrophic
spore-formers, especially the Bacillus spp. can predominate [81]. Sometimes, even post-pasteurisation,
the shelf-life is at risk due to the growth of endospore-forming and heat-resistant bacteria [82,83].
The psychrotrophic bacteria are thermolabile, and thus inactivated during pasteurisation, however,
the enzyme (lipase) produced by these bacteria is heat resistant. The enzyme causes free fatty acids
(FFAs) to release through lipid hydrolysis that develops the rancid flavour in milk [84,85]. Therefore,
the inactivation of these enzymes is crucial to guarantee the safety and quality of milk [86]. Furthermore,
the safety and quality of milk need attention when reducing sugar in sweetened dairy products.

4. Chemistry of Sweet Taste

Sweet taste provides a cue for calorie-rich food which innately attracts animals and humans.
However, this attraction to sweetness poses a significant concern for human health [87]. Sugar
replacement is a challenge for the food industry, and knowledge of structure-taste relationships can
provide insights into the chemical space associated with a sweet taste [88]. All sweet-tasting compounds
are detected by a heterodimer composed of two class C G protein-coupled receptors (C GPCRs), T1R2
and T1R3 subunits, which are expressed at the surface of the taste buds [89,90]. Some additional
pathways such as glucose transporters and ATP-gated K+ channels have also been proposed for sweet
taste recognition [91,92].

Sweet taste receptors can recognize low to high molecular weight, and artificial or natural
compounds [93]. In addition, allosteric modulators of the sweet taste receptor have been reported,
as observed for other class C GPCRs [94,95]. For example, positive allosteric modulators (PAMs)
amplify the receptor response effect as evoked by sweet compounds. Hence, this may be utilized to
reduce sugar intake while still maintaining the desired sweetness level [17,96,97]. Molecular modelling
plays a significant role in the characterization of the binding modes of different modulators for the
sweet taste receptor. The PAMs bind at an allosteric site which is different from the orthosteric site,
the canonical site of T1R2 and T1R3 agonists [95]. Furthermore, negative allosteric modulators (NAMs)
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such as lactisole and gymnemic acids, have been predicted to have been located at a different binding
site within the T1R3 TM domain [98,99]. In addition, molecular modelling has also revealed the
binding modes of sweet compounds into the orthosteric binding site [100]. It has been predicted that
the volume of T1R2 and T1R3 orthosteric binding pockets are big enough to bind small and large
sweeteners in an open form [101].

In addition, several machine learning methods based on physicochemical properties and
fingerprints of molecules [87] have been developed to predict the sweetness of molecules [102,103].
Furthermore, it is interesting to note similarities between sweet detection in the oral cavity by sweet
oral taste receptor cells (TRC) and in the gastrointestinal tract (GIT) by the gastrointestinal sweet
TRC [104–108]. The taste perception is initiated in the oral cavity while satiety hormones’ release is
initiated in the GIT [90]. The existence of an identical nutrient-sensing mechanism in the oral cavity and
GIT seems reasonable since both are part of the alimentary canal and accountable for the identification
of nutrients and non-nutrients in foods [90], along with regulating the sweet taste perception of various
sweeteners [62].

5. Sugar Reduction Strategies

To achieve sugar reduction targets, several strategies could be implemented such as improving
dietary behaviour, minimizing the marketing of high sugar foods, and shifting consumer purchase
behaviour towards low and no added sugar products, reformulating products with lower concentrations
of sugar, and imposing sugar excise tax are the major strategies [109]. Among these, the effective way
to attain sugar reduction would be to decrease the added sugar content of the processed products [110].
Product reformulation with partial substitution of sugar using suitable sweeteners is the most preferred
method for sugar reduction in foods and beverages [111]. However, caution should be taken while
reducing sugar, the reduction should be carried out in such a way that it meets the sensory expectations
of consumers, if not they would be expected to reject the products even if the products are better for
health [112].

Among the various methods for sugar reduction, the major ones are: (i) Lactose Hydrolysis,
(ii) Ultra-/Nanofiltration, (iii) Product Reformulation by Partial or Total Replacement with Sweeteners,
(iv) Gradual Reduction of Sugar, (v) Use of Multisensory Interactions, and (vi) Heterogeneous
Distribution [32,62]. These methods are briefly described in the following subheadings and their
feasibilities and applications in food and beverages are summarized in Table 3.

5.1. Lactose Hydrolysis

Lactose hydrolysis can be utilized as a method for sugar reduction in dairy foods and beverages.
Currently, enzymatic lactose hydrolysis has been used to produce lactose-reduced milk [113,114].
Lactose hydrolysis can be achieved either by adding β-galactosidase to pasteurised milk and storing
the mixture for around 10–12 h, at 35–45 ◦C, and then applying further heat to de-activate the enzyme or
by adding lactase to UHT milk before packaging where lactose is subsequently hydrolysed into glucose
and galactose over a few days [115]. Lactose hydrolysis in milk causes approximately 70% of the lactose
breakdown and increases the sweetness equivalent to two per cent of added sugar [115–117], therefore,
increasing sweetness as compared with regular milk [117,118]. Additionally, a study investigated the
application of lactose hydrolysis to naturally sweeten chocolate milk and revealed that the hydrolysis
of lactose could not reach the sweetness desired for the chocolate milk, presumably due to the cocoa
present in chocolate milk which had some bitterness [119]. Li, Lopetcharat, Qiu, and Drake [119] further
tried adding lactose directly through the application of permeate followed by hydrolysis, but the
permeate powder resulted in an intense salty taste due to the presence of minerals, and ultimately the
approach failed to sweeten chocolate milk [119]. However, lactose hydrolysis could apply to other
flavoured milks such as vanilla or strawberry milk. Furthermore, lactose hydrolysis has been applied
as a means of sugar reduction in yoghurt [120–122] where the consumers could not detect a difference
between yoghurt containing 4 g of sucrose/100 g of yoghurt and the lactose-hydrolysed yoghurt with
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less than 2–3 g of added sucrose/100 g of yoghurt. In addition to this, a 25% reduction in sugar was
achieved by lactose hydrolysis in ice-cream [123].

Table 3. Sugar reduction strategies, feasibility, and their applications in milk-based products and
other foods.

Method Advantage Disadvantage Use of
Sweeteners Application Example Reference

Lactose hydrolysis Natural and easily
achievable process

Quite expensive and
desired sweetness

might not be achieved
Yes/No

Lactose hydrolysis
applicable in milk
only, though the

hydrolysed milk can
be used to make

milk-based products

Flavoured milk, yoghurt,
and ice-cream [119–123]

Ultra-/nanofiltration Relatively easy, quick,
and cost-effective process

Works better
in conjunction
with lactose

hydrolysis process

Yes/No

Applicable in lactose
hydrolysed milk

which then can be
used to make

milk-based products

Cheese and yoghurt [124–127]

Product reformulation
(partial and

total replacement)

Substantial amount of
sugar can be reduced

Sensory profile and
satiety value of

sucrose cannot be
replaced totally

Yes
The most common

approach in both solid
and liquid foods

Probiotic/chocolate
flavoured milk, jam,

chocolate, juice
[39,42,128]

Gradual reduction Relatively easy process
Consumers should
accept the changed

sensory profile
No Both in solid and

liquid foods
Chocolate flavoured

milk, salt [129,130]

Multisensory
interactions

Formulation easy
and achievable

without sweeteners

High level of sugar
reduction cannot

be achieved
No

Both in solid and
liquid foods (aroma);
liquid foods (colour)

Milk desserts, cheese,
orange juice, strawberry

yoghurt, vanilla
milk desserts

[128,131–133]

Heterogenous
distribution

The composition
of the product is

minimally affected

Achievable only on
small scale No

Solid foods
(stimulation of taste

receptors, serum
release, reducing
particle-size) and

liquid foods
(reduced viscosity)

Semi-solid food gels,
beverages, dairy desserts [134–138]

5.2. Ultra- and Nanofiltration

The single-use of enzymes (lactase/β-galactosidase) for lactose hydrolysis is an expensive
process [139]. Therefore, the membrane recovery system such as ultra- and nanofiltration are
extremely helpful for the recovery and reuse of the enzymes. Ultrafiltration is a pressure-driven process
that removes lactose from milk, and thus can be used as a sugar reduction technique [140]. The high
molecular weight compounds such as fat and protein are retained by the ultrafilter membrane, while
the low molecular weight compounds (lactose, minerals, vitamins and water) are able to pass through
the membrane. Then, water is added to the suspended solids to obtain lactose-free milk. It is not as
sweet as lactose-hydrolysed milk, therefore a NNS can be added to gain the desired sweetness [114,140].
This method has been applied for sugar reduction in cheese and yoghurt, where lactose was removed
from the milk before processing into cheese and yoghurt [124–127].

During lactose hydrolysis by an enzyme, β-galactosidase, the galacto-oligosaccharides (GOS)
formation occurs with a yield that is only around 40%. This suggests that a significant portion of
the lactose remains unreacted, while some are converted into monosaccharides. Hence, the resulting
raw GOS (rGOS) is a mixture of lactose, glucose, and galactose [141–143]. Galacto-oligosaccharides
(GOS) are short oligosaccharides chains with several galactoses and one terminal glucose. In addition,
it is observed that the lactose prevents the usage of GOS in the formulation of lactose-free foods for
lactose intolerant. Furthermore, lactose along with glucose and galactose, increase the caloric value,
while decreasing the prebiotic potential of GOS, thereby limiting its application to produce low-calorie
foods. Therefore, removal of GOS by nanofiltration can be achieved to produce low calorie or low
sugar foods for infants and diabetics [144,145]. Santibáñez et al. [146] were successful in removing
monosaccharides and lactose with improved GOS retention using a hydrolysed rGOS nanofiltration
technique with the TriSep XN45 membrane at 20 bar, 45 ◦C, and 1500 rpm.
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5.3. Product Reformulation by Partial or Total Replacement with Sweeteners

Product reformulation by partial or total replacement with sweeteners is the most commonly used
method as consumers prefer the sweet taste, and this method is suitable in various food matrices ranging
from a solid to liquid foods [111]. Currently, there are several NSs (Table 2) and NNSs (Table 1) available
for sugar substitution. However, the point to be noted is that the type of sweetener used for sugar
substitution is product specific and no single sweetener and matrix model can be generally applied to
any product [32]. The relative sweetness is approximate and varies with the type and concentration of
the sweeteners. The relative sweetness of sweeteners is evaluated using the magnitude estimation
method [147] considering a direct quantitative measurement of the subjective intensity of sweetness
with a reference sucrose sample. The psychophysical relationship provides practical formulation
information on increased sweetness intensity perception as a function of concentration [148]. Therefore,
the concentration of a specific sweetener can only be determined by several trial and error experiments
in the laboratory for individual products to check the desired sweetness achieved without much impact
on consumer acceptance.

NNSs can be used for partial or total replacement of sugar in foods, however, there still exists
common issues of differences in the temporal sensory profile [149] and bitter aftertastes [150,151].
However, the use of binary and ternary mixtures of sweeteners can overcome this issue to some
extent [152,153]. Li, Lopetcharat, and Drake [42] were successful in partially reducing sugar in chocolate
milk with stevia and monk fruit extract and maintaining a temporal sweetness profile. In line with
this, the metallic aftertaste of Reb A (stevia compound) can be possibly masked by using a specific
compound of monk fruit such as mogroside V40/V50 at different concentrations depending upon
the product.

5.4. Gradual Reduction of Sugar

Gradual reduction is the method where sugar is slowly and progressively cut from the products,
so that the consumers cannot easily distinguish the differences and gradually adapts to a lower
sugar content without impacting their sensory recognition [110]. The threshold testing called a
“just noticeable difference” (JND) determines the change in sugar concentration which causes the
perceivable change in sweetness intensity by 50% of consumers [154]. This JND could be a valuable
option to be explored for gradual sugar reduction without consumer awareness [119,155]. This strategy
has already been successfully implemented in the UK for salt reduction in products containing high
salt [156]. Organizations such as “Action on Sugar” [110] have suggested a similar strategy as the salt
reduction program in the UK for sugar reduction in foods. However, the reduction in sugar over time
might well be different from the slow reduction of salt. In fact, the JND has been implemented for sugar
reduction in dairy-based emulsions and chocolate milk [129,157]. Hoppert et al. [157] investigated a
matrix-specific sugar reduction and found that an individual was more sensitive to sugar reduction in
products with higher fat concentration, i.e., the JND was low. On the basis of this model, 5 to 20% of
sugar can be gradually reduced and the reduced sugar product still may be liked by the consumers
although they may notice a difference in the sweetness in dairy-based emulsions [157] and chocolate
milk [129]. Taking this into consideration, Oliveira et al. [129] reduced up to 12.9% of sucrose in
chocolate milk without influencing liking by consumers. Furthermore, Li et al. [119] stated that a
gradual sugar reduction under 30% had no significant influence on consumer acceptance.

5.5. Use of Multisensory Interactions

The multisensory method is a technique where sugar reduction is achieved without the use of
NNSs or any other sweeteners. It enhances the sensation perception by the aroma, colour, and other
stimuli to perceive sweetness intensity [62]. The use of the aroma attribute could be a practical and
viable alternative for sugar reduction, however, not as effective, in terms of magnitude, as with NNS
approaches. Alcaire et al. [132] was able to reduce the effect of a 20% reduction of added sugar in
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milk desserts using aroma-related cross-modal interactions. Aroma is associated with the perception
of sweetness in any specific product [158] and the taste-smell integration in the brain is related to
existing experiences with taste-smell combinations. Tastants and odourants have both been revealed
to generate overlapping activations in a specific part of the brain [159], thereby leading to enhanced
sweetness perception. Contrary to this, the effect of colour on the perception of sweetness intensity
is still unclear and leads to various interpretations. The enhanced perception of sweetness intensity
because of a change in colour could be due to existing product experiences, as in the case of aroma.
Spence et al. [160] demonstrated that the effect of colour on flavour and taste intensities was ambiguous.
Therefore, the application of colour for sugar reduction is very limited, but still could be effective for
specific product-colour combinations [62].

5.6. Heterogeneous Distribution

This is another unique method for sugar reduction which uses stimulation of taste receptors,
serum release, as well as particle size and viscosity of foods to enhance the sweetness in foods [62].
The taste receptors play a vital role in the perception of sweetness intensity. Burseg et al. [161] showed
that an ”on-off” mode of tastant had an increased perception of the tastant as compared with a
constant-rate delivery of the tastant, which is known as pulsated delivery. Another possible way to
enhance sweetness perception and reduce sugar in solid foods is by modifying the serum or fluid
release from solid food matrices. In addition, particle-size and viscosity also play an important role in
sweetness perception, but variably in solid and liquid foods [62].

6. Recent Trends in the Use of Natural Sweeteners for Sugar Reduction Strategies

Although artificial NNSs have been used in dairy-based foods and beverages, consumers prefer
and demand products with natural sweeteners [162,163]. Consumers choose “all-natural” labelled
products assuming them to be healthier, even without the knowledge of actual nutritional information
displayed on the package [164–167]. For example, Li, Lopetcharat, and Drake [163] found that the
parents preferred to buy the chocolate flavoured milk added with natural NNSs or sucrose over the
artificial NNSs for their children. Similarly, Li, Lopetcharat, and Drake [42] and Oltman et al. [168]
revealed the consumers’ preference of “naturally sweetened” labels for chocolate milk and protein
beverages. Therefore, the use of natural NNSs such as stevia and monk fruit could provide better
opportunities for consumer acceptance.

6.1. Stevia (Stevia rebaudiana)

Stevia (Stevia rebaudiana) belonging to the Asteraceae family is native to Paraguay. However, today
it is widely known and cultivated all over the world including some parts of Asia and Europe [169,170].
It is one of the natural low-calorie sweeteners commonly used in dairy products such as yoghurt and
ice cream, even in baked goods and soft drinks [171–173]. The sweetness of stevia comes from the
steviol glycosides present in stevia leaves.

There are several compounds of steviol glycosides such as Rebusoside, steviolbioside, Stevioside,
Rebaudioside A (Reb A), Reb B, Reb D, Reb E, Reb M, etc. depending upon the groups present at R1 and
R2 positions (Table 4). Among these stevia compounds, Reb A is found in maximum proportion in the
stevia leaf. When stevia was compared with other artificial NNSs (aspartame, sucralose, and neotame)
in prebiotic chocolate dairy desserts for relative sweetness, it showed that neotame had the highest
sweetening potency as compared with 8% sucrose (in the dessert), followed by sucralose, aspartame,
and stevia [45]. In addition, Reb A has a lingering bitter or liquorice-like aftertaste. However, this can be
masked by using other compounds such as Reb D and Reb M which are more similar to sucrose and do
not have a bitter aftertaste [174]. These have the potential to replace greater proportions of sugar within
foods/beverages, even without the use of taste modulators. Reb M has a more sucrose-like sensory
profile as compared with Reb A. Reb M has faster sweetness onset, and lower bitterness lingering,
sourness, and astringency than Reb A [174]. Reb M is produced by the enzymatic bioconversion
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of purified stevia leaf extract. Furthermore, Reb M has been approved in Canada for use as a food
additive. It is intended to be used in food and beverages for human consumption in Australia and
New Zealand at the permitted levels for steviol glycosides which is 4 mg kg−1 body weight day−1 [175].
Other compounds of steviol glycosides are still under the process of approval in different countries for
their use in foods and beverages.

Additionally, some studies have revealed that stevia has possible hypotensive roles [176],
in addition to increasing insulin sensitivity and glucose tolerance in humans [20]. Several in vitro and
in vivo studies have suggested that stevia could be used to control glucose metabolism in diabetes.
However, the mechanisms underlying the antidiabetic action have not been fully revealed and further
in-depth research was required [177,178]. Furthermore, studies in animal models have revealed that
NNSs (e.g., sucralose, saccharin, aspartame, acesulfame potassium, neotame, stevia, and monk fruit)
interacted with sweet taste receptors expressed in enteroendocrine cells, and thereby increased the
intestinal glucose absorption through the enhanced expression of Na-dependent glucose transporter
isoform1 [179–181] and the movement of glucose transporter 2 (GLUT2) to the upper membrane of
intestinal epithelial [182]. In contrast, studies conducted in people have shown mixed results for the
effect of NNSs on plasma glucose and insulin regulation [183–189]. However, chronic effects on glucose
metabolism could result from regular consumption of NNSs [179–181,190].

In addition, stevia leaf extract has also been reported to possess some therapeutic action due to
antioxidant activity. Antioxidants scavenge the free radical electrons and superoxides and prevent
damage to the tissues [191]. Shukla et al. [192] reported the in vitro potential of ethanolic leaf extract
of stevia to be used as a natural antioxidant. The use of synthetic antioxidants such as butylated
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are posing a risk to several health
hazards, therefore, there is a growing trend to replace these with the use of antioxidants from natural
sources [193]. Furthermore, stevia also exhibits some antimicrobial activities and can inhibit the growth
of infectious bacteria such as Salmonella typhi, Aeromonas hydrophila, Vibrio cholerae, Bacillus subtilis,
and Staphylococcus aureus [194–198]. Steviol glycosides are considered to be safe, however, consumption
that is more than the acceptable daily intake (ADI) limit of 4 mg kg−1 body weight day−1 may change
the composition of the gut microbiota (EU regulation 1129/2011) [199–201].
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Table 4. Different compounds of steviol glycosides with varying groups at R1 and R2 positions [174,202,203].

Compound R1 R2 Chemical Formula Structure * Sweetness Potency

Rubusoside Glucose β1 (Glcβ1-) Glcβ1- C32H50O13

Foods 2020, 9, 1400 17 of 17 

 

3Table 4. Different compounds of steviol glycosides with varying groups at R1 and R2 positions [174,202,203]. 

Compound R1 R2 
Chemical 
Formula Structure 

* Sweetness 
Potency 

Rubusoside 
Glucose β1 

(Glcβ1-) Glcβ1- C32H50O13 

 

114 

Steviolbioside H Glcβ(1-2)Glcβ1- C32H50O13 

 

90 

Stevioside Glcβ1- Glcβ(1-2)Glcβ1- C38H60O18  210 

114

Steviolbioside H Glcβ(1-2)Glcβ1- C32H50O13

Foods 2020, 9, 1400 17 of 17 

 

3Table 4. Different compounds of steviol glycosides with varying groups at R1 and R2 positions [174,202,203]. 

Compound R1 R2 
Chemical 
Formula Structure 

* Sweetness 
Potency 

Rubusoside 
Glucose β1 

(Glcβ1-) Glcβ1- C32H50O13 

 

114 

Steviolbioside H Glcβ(1-2)Glcβ1- C32H50O13 

 

90 

Stevioside Glcβ1- Glcβ(1-2)Glcβ1- C38H60O18  210 

90

Stevioside Glcβ1- Glcβ(1-2)Glcβ1- C38H60O18 210

Rebaudioside B (Reb B) H Glcβ(1-2)[Glcβ(1-3)]4.2.4Glcβ1- C38H60O18

Foods 2020, 9, 1400 18 of 17 

 

 

 

Rebaudioside B 
(Reb B) 

H Glcβ(1-2)[Glcβ(1-
3)]4.2.4Glcβ1- 

C38H60O18 

 

150 150



Foods 2020, 9, 1400 17 of 34

Table 4. Cont.

Compound R1 R2 Chemical Formula Structure * Sweetness Potency
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Table 4. Cont.

Compound R1 R2 Chemical Formula Structure * Sweetness Potency
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Table 4. Cont.

Compound R1 R2 Chemical Formula Structure * Sweetness Potency

Reb O Glcβ(1-3)Rhaα(1-2)[Glcβ(1-3)]Glcβ1- Glcβ(1-2)[Glcβ(1-3)]Glcβ1- C62H100O37
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6.2. Monk Fruit (Siraitia grosvenorii)

Another natural NNS among the trends for food application is the extract of monk fruit. Among the
various compounds present in monk fruit, the mogroside V, which belongs to a family of triterpenoids,
is the major one responsible for sweetness. It is derived from ripe monk fruit (Siraitia grosvenorii)
also known as Luo Han Guo [43,150]. The fruit was discovered and classified initially in the 1930s and
belongs to the family Cucurbitaceae [204]. The use of monk fruit has been authorised in Canada as
a sweetener in foods with a maximum limit of 0.8% (as mogroside V). Furthermore, the monk fruit
extract can be used as a low cost, high-intensity natural sweetener in various products [205]. The ADI
of monk fruit has not been established, since no adverse effects have been reported, however, the ADI
of monk fruit juice concentrate is approximately 25 mg kg−1 body weight day−1 [150].

Furthermore, this fruit has been used as a natural sweetener [206] and as a traditional medicine for
the treatment of pharyngitis, pharyngeal pain, cough, cold, sore throat, constipation, and dire thirst in
China [207,208]. Mogroside in monk fruit has shown beneficial health effects against diabetes, malignant
tumor, and inflammation in animal models [209,210] and could be used as a low-calorie sweetener
for diabetic patients [206]. The extract of mogroside is effective in the oxidative modification of
low-density lipoprotein [211]. The in vitro results for antioxidant activity revealed mogroside V to have
reactive oxygen species (ROS) scavenging ability [206]. Similarly, Lim [212] reported the antioxidant
activity of monk fruit extracts and its potential role for anticancer, antiviral, antihyperglycemic,
and antidiabetic activities.

7. Sweeteners Used for Sugar Reduction in Chocolate Flavoured Milk

Several researchers have tried to reduce sugar in chocolate flavoured milk using different strategies
and sweeteners (Table 5). Rad et al. [213] evaluated the effect of stevia on the physical properties of
chocolate milk and found that above 50% substitution by stevia had a negative impact on sedimentation
and viscosity (Table 5). Similarly, Li, Lopetcharat, and Drake [42] considered consumer acceptance for
the optimisation of Monk fruit extract and stevia leaf extract separately in skim chocolate milk and
found a partial reduction of sucrose with substitution by monk fruit extract or stevia leaf extract to
have a sensory profile comparable to control milk. Alternatively, Zhang and Gruen [214] estimated the
iso-sweetness of rebaudioside A (Reb A), monk fruit, erythritol, lactitol, and xylitol with respect to 10.1%
sucrose-sweetened whey protein beverages and found Reb A to have the highest sweetness potency as
compared with others. Bordi Jr et al. [215] was successful in reducing 35% of sugar in chocolate milk
using 150 ppm of Reb A stevia without impacting overall liking. Furthermore, Azami et al. [216] used
liquorice extract as a sugar substitute in chocolate milk and studied the microbial aspect, as well as
consumer acceptance and physicochemical properties, where no significant variations in acidity, pH
and microbial growth were seen, however, higher colour and sedimentation stability as compared
with the control were observed. These studies suggested that a considerable amount of added sugar
could be reduced in chocolate flavoured milk using an appropriate strategy and sweeteners (which
was product specific) without compromising the sensory properties, physicochemical properties,
or microbial safety. However, the limitation was that most studies focused on consumer acceptability
but not on the changes in the stability and physicochemical properties.
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Table 5. Different sweeteners and methods used for sugar reduction in chocolate flavoured milk.

Method Sweetener/Others Consumer Acceptance Study Physicochemical Study Microbial Study Outcomes Reference

Partial (50%)/total (100%)
substitution Stevia/inulin (thickening agent) No Sedimentation and viscosity No

100% stevia increased precipitation, decreased
viscosity while 50% stevia with inulin had better

physical property
[213]

Partial substitution Monk fruit extract/stevia leaf extract 9-Point hedonic,
just about right (JAR) No No

Sucrose (39.7 g/L) with monk fruit extract
(46 mg/L) or stevia leaf extract (30 mg/L) had

sensory profile comparable to control
milk (51.4 g/L sucrose)

[42]

Partial substitution Thaumatin/vanilla (probiotic culture) 9-Point hedonic, temporal
check-all-that-apply (TCATA) No No

20% sugar reduction as compared with a control
(9% sugar) affected sweetness perception but not

overall liking; vanilla increased sweetness
perception only with 40–60% sugar reduction;

10 ppm of thaumatin showed increased sweetness
perception only when sugar reduction was 60%

[39]

Partial (50%)/total (100%)
substitution D-tagatose/probiotic strains 5-Point hedonic scale pH, redox potential, acidity No (probiotic

strains evaluated)

Probiotic strains and D-tagatose significantly
affected probiotic viability, physical and chemical
properties of chocolate milk. Therefore, proper

selection of sugar ratio is recommended

[217]

Partial substitution Reb A stevia Preference test (7-point hedonic) No No 150 ppm of stevia was optimum for 35% sugar
reduction without difference in overall liking [215]

Gradual reduction - 9-Point hedonic, CATA No No
12.9% of sugar can be reduced by a fraction of

6.66% added sugar in two sequent reductions to
maintain consumer liking

[129]

Partial substitution Liquorice extract powder
(LEP)/cocoa powder (CP)

5-Point hedonic scale,
preference ranking test

Sedimentation, pH,
acidity, colour

Total bacterial
and yeast count

0.35:0.65; LEP/CP (based on 1/100 g CP)
and 5 g per 100 g sucrose was optimum for

consumer acceptance with no significant
variations in acidity, pH, and microbial growth

but significantly higher colour and sedimentation
stability than the control

[216]
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8. Consumer Preference for Flavoured Milk and Possible Solutions for Sugar Reduction

Consumers’ preferences are continuously shifting towards healthier food alternatives. This is
mainly due to the increasing awareness in consumers regarding the impact of foods on health [218].
Most of the dairy and other beverages’ companies have focused on producing healthier products
without compromising changes in the sensory profile to maintain the market value, since a better
sensory profile of the product is vital for consumer liking and acceptance of the product [219].
Furthermore, consumer acceptance of chocolate flavoured milk is largely dependent on the sweetness
and texture profile [220]. Texture profile is further dependent on ingredients such as sugar, fat,
protein, as well as stabilisers like carrageenan, and other thickening agents present in chocolate
milk [221]. Overall, it seems that there is not a single driver, but multiple drivers including flavour,
sweetness, and mouthfeel for the consumer acceptance of chocolate milk which also holds for other
beverages. These drivers will vary with the variation in sugar concentrations. In fact, sugar as well
as other components (e.g., fat, protein, salt, stabiliser, flavour, etc.) present in a food matrix work
in synergy rather than individually to maintain an optimum food matrix and provide nutrition and
health effects [222]. The fat and other food components may be important factors for influencing the
intensity and liking of sweetness and consumption of sugar in beverages [223]. However, there is
limited information on the interaction of different food components and their influence on taste and
consumer acceptance. Therefore, while reducing sugar, it is critical to analyze how product properties
(physicochemical and microbial) vary with sugar concentrations and how they influence the consumer
preference and acceptance of the product.

The reduction of sugar and its impact on consumer acceptance can be overcome using sweeteners
to enhance the sensory and functional properties of sucrose to some extent. No single sweetener has
similar functionality to sucrose, therefore, the use of two or more sweeteners as a blend can provide a
flavour and taste profile similar to that that of sucrose. For example, the combined effect of stevia and
sucralose has improved sensory and physical properties in the sugar-free dairy dessert [44]. In addition,
the use of two sweeteners as a blend (Cyclamate/Saccharin blend, 2:1) minimises off-flavour or bitter
aftertaste in peach nectar [224]. Similarly, blending Reb M with Reb B/Reb D resulted in sweetness
synergy with an improvement in sweetness intensity, onset and bitterness perception [174]. Similarly,
blending aspartame (APM) and acesulfame-K (ACE-K) resulted in sweetness synergy by approximately
30% [150]. Furthermore, aroma plays a significant role in taste perception [225]. It can either mask or
increase the perception of a taste [226]. As sweetness perception is enhanced by the addition of vanilla,
caramel, or fruity aromas [63–65], their usage enhances the sensory perception of products. Therefore,
the best possible solution could be to use a holistic approach utilizing various sugar reduction strategies
along with the use of natural NNSs in trends such as stevia and monk fruit compounds with a superior
sensory contribution.

9. Sugar and Energy Content of Commercial Chocolate Flavoured Milk

Flavoured milk consumption is popular among both adults and children. It provides essential
nutrients similar to plain milk (with 4–5% sugar) but with added sugar and flavour in varying
amounts [227]. Chocolate milk is the most popular and frequently consumed product among all other
flavoured milk [216,228]. Normal commercial chocolate milk contains 8–13% total sugar (Table 6,
the ones with the lower values are with partially reduced sugar, reduced fat, or lactose-free) of which
half of the sugar comes from naturally occurring lactose in milk and the remainder from added sugars.
The consumption of chocolate flavoured milk helps to meet the recommended daily intake for dairy
products and some nutrients such as calcium and potassium [229,230] but the extra added sugar leads
to additional calories (1 g sugar = 4 calories and 1 calorie = 4.2 joules) as summarized in Table 6. This is
further linked to the occurrence of overweight, obesity [2,3], and type 2 diabetes [4,5], as stated earlier.
Therefore, reducing added sugar content in chocolate milk will help reduce the calorie contribution
through its consumption.
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Table 6. Composition of Australian commercial chocolate flavoured milk.

S.N. Chocolate Flavoured Milk Manufacturer Energy (KJ) Fat (%) Sugar (%) Protein (%) Salt (Na, %)

1 Big M original Part of LD&D Australia PTY LTD 284 1.80 9.50 3.20 0.04
2 Norco fm North Coast Fresh Food & Cold Storage Co-operative Company Ltd. 327 1.90 11.00 4.00 0.05
3 Norco NATURAL Malt, Honey and Chocolate North Coast Fresh Food & Cold Storage Co-operative Company Ltd. 423 3.70 10.60 4.20 0.08
4 Norco REAL Iced Chocolate North Coast Fresh Food & Cold Storage Co-operative Company Ltd. 411 3.90 10.80 4.20 0.05
5 Norco REAL FUEL North Coast Fresh Food & Cold Storage Co-operative Company Ltd. 422 3.60 9.30 6.00 0.05
6 RAM Farmdale 360 3.50 8.30 3.70 0.05
7 Coach House Dairy NuLac Foods P/L, Australia 551 8.00 11.00 4.00 0.04
8 OAK Chocolate Parmalat Food Products PTY LTD 376 3.40 10.60 3.50 0.05
9 UP & GO Liquid Breakfast Sanitarium (Australia Health & Nutrition Assoc. Limited) 327 1.50 7.70 3.30 0.06
10 Barista Bros Butterscotch Brownie Coca-cola Amitil (Australia) PTY LTD 226 1.40 7.10 2.70 0.06
11 EMMA & TOMS EMMA & TOMS Foods PTY LTD 188 1.30 4.80 3.50 0.04
12 Pauls ZYMIL Parmalat Australia PTY LTD 317 3.10 8.30 3.30 0.04
13 Pauls Farmhouse Gold Parmalat Australia PTY LTD 419 5.00 9.80 3.60 0.04
14 Pauls Farmhouse Gold chocolate custard Parmalat Australia PTY LTD 515 5.00 13.00 3.20 0.04
15 Big M Double Choc Big M (Part of LD&D Australia PTY LTD) 302 2.50 8.90 3.30 0.04
16 OAK Chocolate Parmalat Food Products PTY LTD 376 3.40 10.60 3.50 0.05
17 OAK THE MAX COOL CHOC MINT Parmalat Food Products PTY LTD 373 3.40 10.30 3.70 0.05
18 OAK PLUS PROTEIN Parmalat Food Products PTY LTD 299 1.40 7.80 6.00 0.06
19 OAK THICK CHOC MINT Parmalat Food Products PTY LTD 383 3.50 10.90 3.60 0.05
20 OAK THICK DEATH BY CHOCOLATE Parmalat Food Products PTY LTD 381 3.50 10.90 3.60 0.05
21 Norco Mighty Cool NORCO (North Coast Fresh Food & Cold Storage Co-operative Company Ltd.) 263 1.40 8.20 3.90 0.06
22 RAM BERT Farmdale 269 1.30 8.40 3.80 0.05
23 Woolworths Chocolate milk Woolworths 235 1.40 5.80 3.90 0.04
24 Pauls MILKY MAX Parmalat Australia PTY LTD 298 1.80 10.30 3.20 0.05
25 Dairy Farmers Fresh milk Dairy Farmers 248 1.80 7.10 3.20 0.05
26 EDGE BIG M CHOCOLATE Big M (part of LD&D Australia PTY LTD) 283 1.80 8.80 3.30 0.04
27 Nippy’s ICEDCHOCOLATE KNISPEL BROS PTY LTD 267 1.70 7.90 3.00 0.04
28 Moo Chocolate Devondale 334 3.40 9.10 3.00 0.05
29 Breaka Chocolate Parmalat Australia PTY LTD 316 2.00 10.20 3.70 0.05
30 Since 1967 OAK Chocolate Parmalat Food Products PTY LTD 360 2.00 12.20 3.60 0.06
31 Nestle Ready to Drink Chocolate Nestle 300 1.40 8.40 4.00 0.05
32 M2GO Alfred Foods 281 1.80 9.40 3.10 0.04
33 LIDDELLS Lactose free Chocolate Milk LIDDELLS 313 3.30 7.90 3.00 0.03
34 LIDDELLS Lactose free, 99% Fat Free Chocolate Milk LIDDELLS 263 1.00 9.80 3.20 0.07

Source: Information gathered from online and in-person supermarkets (Coles, Woolworths, ALDI, and IGA) survey near Burwood, Australia.
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10. Future Prospective and Conclusions

The key findings of this review are that the sugar can be reduced by employing several strategies
namely lactose hydrolysis, ultra- and nanofiltration, total/partial replacement of sugar, gradual
reduction, multisensory interactions, or heterogeneous distribution. However, all of these methods
have their advantages and disadvantages. The use of any method or sweetener is product specific and
can vary with the type of product, both with solid and liquid food products. Furthermore, limitations
with nutritional studies lie with the challenge to optimize the correct proportion of ingredients in a
reformulated food product as all the individual ingredients have their specific function to perform.
Some ingredients work in synergy, while some mask or inhibit the effect of others in a complex food
matrix system. In addition, as no single sugar has a sensory profile similar to sucrose, therefore, trying
a combination of two or more natural NNSs among trends could be an option for food industries to
reduce sugar but still maintain consumer liking and acceptance of the product. However, their potential
application in different food products and the impact on the sensory, physicochemical, and nutritional
properties, in addition to food safety issues must be carried out. Furthermore, the use of multiple
strategies outlined in this review could incredibly assist food companies to overcome the technical
challenges underlying sugar reduction and to achieve at least a small reduction that could benefit the
health of the population significantly.
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