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Abstract: Wine origin and ageing are two factors related to wine quality which in turn is associated
to wine metabolome. Currently, new metabolomic techniques and proper statistics procedures allow
accurate profiling of wine metabolome. Thus, the main goal was to evaluate different metabolomic
methodologies on their ability to provide patterns on the wine metabolome based on selected factors,
such as ageing of barrel-aged wine (factor time), prior usage of the barrels (factor barrel-type), and
differences between wine ageing in barrels or glass bottles (factor bottled-wine). In the current study,
we implement NMR, targeted and untargeted GC-MS and LC-MS metabolomic analytical techniques
so as to gain insights into the volatile and nonvolatile wine metabolome composition of red wines
from two cellars located in the only two Spanish Qualified Appellations of Origin; DOQ Priorat and
DOCa Rioja regions. Overall, 95 differentially significant metabolites were identified facilitating
the evaluation of the analytical methodologies performance and finding common trends of those
metabolites depending on the considered factor. The results did not favor NMR as an effective
technique on the current dataset whereas suggested LC-MS as an adequate technique for revealing
differences based on the factor time, targeted GC-MS on the factor barrel-type, and untargeted GC-MS
on the factor bottled-wine. Thus, a combination of different metabolomic techniques is necessary
for a complete overview of the metabolome changes. These results ease the selection of the correct
methodology depending on the specific factor investigated.
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1. Introduction

Wine is a complex hydroalcoholic solution including hundreds to thousands of different molecules
(e.g., sugars, amino acids, organic acids, lipids, phenolics, alkaloids, sterols, lignans, terpenes, fatty
acids). These compounds account for the metabolomic profile of the wine which confers and modulates
the quality and sensory properties of the final wine [1,2]. Several factors are involved in the wine
metabolome and quality, such as the grape variety, the yeast and bacteria performing the alcoholic and
malolactic fermentations, the winemaking practices (e.g., SO2 addition, fining agents) and ultimately,
the ageing process [1–4].

The wine ageing process is the period that starts at the end of winemaking with its introduction
in wooden barrels and continues after bottling until its consumption. Barrel ageing improves wine
stability, color, aroma, and flavor. It is well recognized that the main factors related to the quality
of barrel aged wines are the wine composition, ageing time, and wood composition along with its
toasting level [3]. In addition, after barrel ageing, factors such as storage conditions, SO2 addition, and
stopper composition may also influence wine chemical composition during bottle aging [4–6].
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Overall, the chemical composition of ageing wine reflects the history and conditions during ageing
and storage [1]. For instance, it is well recognized that compounds such as 5-methylfurfural are formed
during the toasting process and later transferred to the wine during the ageing process, whereas other
such as 4-ethylphenol and 4-ethylguaiacol have microbial origin [7,8]. Some authors have investigated
the effect of selected factors on the metabolomic profile of wines during ageing using mainly targeted
metabolomic or single analytical techniques [3,4,9]. The most widely analytical techniques used in
wine metabolomics are gas chromatography-mass spectrometry (GC-MS), high-performance liquid
chromatography-mass spectrometry (HPLC-MS), and nuclear magnetic resonance (NMR). GC-MS has
preferably been used to profile wine volatile metabolites whereas HPLC-MS has been the most widely
used for nonvolatiles, NMR spectroscopy gives a reproducible direct identification and quantification
of a broad range of analytes without sample pretreatment [10]. Though, NMR is limited as it is
unable to detect metabolites that are present in very small concentrations. Nevertheless, it has
been generally accepted that untargeted analysis is needed for a more comprehensive and holistic
analysis [1,11]. The use of the kinetic correlations in time-dependent processes as wine ages can
further contribute to metabolomic monitoring, discovery of new biomarkers, and metabolic network
investigations. Frequently, data are analyzed by multivariate statistical methods, but the choice of
the proper statistical treatment plays an important role in drawing conclusions. The most frequently
implemented methodologies include principal component analysis (PCA) or principal coordinate
analysis (PCoA), correlation analysis, ANOVA, t-tests, and hierarchical clustering analysis. However,
the reported statistical significance alone does not provide enough evidence for the importance of the
findings without estimating the magnitude of the effect [12]. Thus, the determination of the practical
significance (effect size) of different conditions or treatments is also of outstanding importance so as to
discern the most relevant changes in metabolites.

The aim of this study was to combine different metabolomic analytic techniques (NMR, targeted
and untargeted GC-MS, and untargeted LC-MS) to find common patterns on the evolutions of the
detected metabolites according to certain selected factors. For that, we analyzed red wines aged in
oak barrels from two cellars located in the only two Spanish Qualified Appellations of Origin; DOQ
Priorat (Porrera, Catalonia) and DOCa Rioja (Logroño, Spain) regions. The factors considered for
the comparison included time of wine ageing in the barrels, prior usage of the barrels and, in the
case of Rioja wines, differences between wine ageing in oak barrels or glass bottles. These factors are
shortly referred to as time, barrel-type, and bottled-wine, respectively, in the study. Moreover, it needs
to be underlined that among the aims of the current study is not the direct comparison of the wine
metabolome between the two cellars, as other factors such as grape variety and climatic conditions
would render such comparison incoherent. Instead, the study focuses on the comparison between the
different metabolomic analytical techniques in relation to their ability to reveal informative patterns
regarding the wine metabolome.

2. Materials and Methods

2.1. Samples

French oak mid-toasted barrels were the source of red wine samples. Two of them are located in
a winery of the DOQ Priorat (cellar Ferrer Bobet, FB) and the other two in the DOCa Rioja (bodega
institucional, Instituto de Ciencias de la Vid y el Vino, ICVV). In each region the two barrels differed in
time of usage, with one barrel being new, without any prior usage (BAN), while the other had been
used for one year and is referred as old (BAO). Cleaning of the used barrels was done with the standard
cellar practices (washing with pressurized hot water and rinsing). The main parameters of the wine
before being introduced in the barrels were similar: 13.8% and 14.1% ethanol; pH 3.3 and 3.4; 0.29
and 0.34 g/L acetic acid; 4.4 and 4.3 g/L tartaric acid (total acidity); 80 and 90 ppm total SO2; 1.5 and
1.2 g/L residual sugar; 0.88 and 0.94 g/L malic acid at the end of malolactic fermentation for FB and
ICVV, respectively. The barrels followed the habitual cellar management and were maintained with
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the rest of the barrels from the same vintage. In FB, grape variety was Carignan, which is the main and
characteristic variety in DOQ Priorat, and the wine samples were collected at the end of malolactic
fermentation inoculated with an autochthonous strain of Oenococcus oeni, completed inside BAO and
BAN and denoted as 0 time-point, at the time-points of 3, 6, and 9-months of barrel ageing from both
barrels, and at the 12-month time-point from BAN only, as BAO was accidentally used to refill other
barrels due to common practices in the cellar. On the other hand, the grape variety at ICVV winery
was Tempranillo, which is the main variety in DOCa Rioja, and the wine samples were collected at the
end of spontaneous malolactic fermentation, completed inside the steel tank and denoted as FML or 0
time-point, and after 3, 9, and 12-months of barrel ageing from both barrels. Additionally, the same
day that the wine finished the FML at ICVV winery and transferred into BAO and BAN, a sample
of 750 mL from each barrel was taken and bottled into a dark glass bottle as the cellar uses for its
wine commercialization. These bottle-aged wine samples, from the old (BTO) and new (BTN) barrel,
were stored in the same cellar as the barrels and analyzed after 12-months of bottle ageing. At each
sampling point, we sampled three bottles of 50 mL of aged wines with a sterilized pipette of 100 mL
introduced into the barrel by a top overture and used for stirring the wine in the barrel and sampling.
The schematic diagram of the sampling is presented in Figure 1. All collected wine samples were
immediately frozen and preserved at −80 ◦C prior to analysis. Thus, the sample replicates for the
metabolomic analysis were as follows: for the factor “barrel-type” that had two groups in FB and two
groups in ICVV (old and new barrel), four replicates represented each group; for the factor “time”
that has four groups in FB and four groups in ICVV (corresponding to the sampling timepoints), each
group represents an array containing two replicates; ICVV has an additional factor (“bottled-wine”)
that included two groups (0 and 12 months) with two replicates per group.
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Figure 1. Schematic representation of the experimental setup. The BAN represents new barrels and the
BAO the used ones, at the cellar Ferrer Bobet (FB) and cellar of “Instituto de Ciencias de la Vid y el
Vino” (ICVV). Barrels of 225 L were sampled at different time-points, expressed in months, taking 50
mL of wine. In FB, the malolactic fermentation was performed inside the steel tank, whereas in ICVV it
was performed inside the barrels. In addition, in ICVV the moment the wine was introduced in the
barrels, a sample of 750 mL was taken and placed into glass bottles (BTN and BTO). The bottled wines
were sampled after 12 months of maturation at cellar conditions.

2.2. H-NMR

The reagents used were phosphate buffer and phosphoric acid both from Sigma-Aldrich and D2O
from CortecNet. For NMR analysis, 450 µL of wine samples were mixed with 250 µL of 1.5 M PBS
(pH = 3.2) buffer in D2O. Then, the sample was vortexed and the mixture was centrifuged (15,000
rpm for 15 min at 4 ◦C) and 600 µL of the clear upper phase was placed into a 5 mm o.d. NMR tube
(Eretic Signal 0.6616 mM) and analyzed. 1H NMR spectra were recorded at 300 K on an Avance III 600
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spectrometer (Bruker®; Ettlingen, Germany) operating at a proton frequency of 600.20 MHz using
a 5 mm PBBO gradient probe. Wine aqueous samples were measured and recorded in procno 11
using a one-dimensional 1H pulse. Experiments were carried out using the nuclear Overhauser effect
spectroscopy (NOESY) presaturation sequence (RD-90◦-t1-90◦-tm-90◦ ACQ) to suppress the residual
water peak, and the mixing time was set at 100 ms. Solvent presaturation with irradiation power of 75
Hz was applied during relaxation delay (RD = 5 s) and mixing time, (noesypr1d pulse program in
Bruker®) to eliminate the residual water moisture of deuterated water. The acquisition time (ACQ)
was 3.42 s for a total recycling delay (RD + ACQ) of 8.42 s, the 90◦ pulse length was calibrated for each
sample and varied from 10.12 to 11.68 ms. The spectral width was 10 kHz (20 ppm), and a total of 256
transients were collected into 64 k data points for each 1H spectrum. The exponential line broadening
applied before Fourier transformation was of 0.5 Hz. The frequency domain spectra were manually
phased and baseline-corrected using TopSpin software (version 3.2, Bruker).

After preprocessing and visually assessing the NMR dataset, specific 1H regions of compounds
were identified in the spectra using a comparison into AMIX 3.9 software and Chenomx 8.4 software
and bibliography. Curated identified regions across the spectra were integrated using the same AMIX
3.9 software package and exported to excel spreadsheet in order to give relative concentrations.

2.3. GC-MS

The analytical standards 4-ethylphenol 99%, 4-ethylguaiacol analytical standard, 5-Methylfurfural
≥ 98%, 5-(hydroxymethyl) furfural analytical standard, 2-methylisoborneol solution, certified reference
material, TraceCERT®, 100 µg/mL in methanol, p-Cresol ≥ 99% (SI) and 3,4-dimethylphenol 98% (SI)
were purchased at Sigma-Aldrich, ultrapure water was from an in-house Milli-Q system (Millipore)
and methanol LC-MS grade, dichloromethane and ammonium sulfate were from Sigma-Aldrich. For
volatile compound extraction a liquid–liquid extraction method with dichloromethane was used.
Briefly, 2 g of ammonium sulfate were mixed with 3.15 mL of water, 1.35 mL of wine sample, and 10 µL
of IS solution at 100 mg/L and vortexed. Then, 250 µL of dichloromethane was added and mixed for 1 h.
The organic layer was collected and transferred to a chromatographic vial for their analysis by GC-MS.
GC-MS analysis was performed on a GCxGC-TOF Pegasus 4D from Leco Instruments equipped with
MPS autosampler from Guerstel. Chromatographic column was a CP-Sil 24 CB (30 m × 0.25 mm id,
0.25 µm film) from Agilent Technologies. The injection volume was 1 µL and it was performed in
pulsed splitless mode in a split/splitless injector at 250 ◦C. He (99.999%) was used as mobile phase at a
constant flow of 1.2 mL/min. For the elution of compounds, the following temperature program was
used: 50 ◦C for 2 min, 50–150 ◦C at 5 ◦C/min, 150–240 ◦C at 10 ◦C/min. The transfer line temperature
was 250 ◦C and ionization was made by electron impact at 70 eV with a source temperature of 250
◦C. The MS acquisition was in full scan after a solvent delay of 5 min between 35 and 600 m/z at 20
scan/seg.

Data analysis for both target and untargeted experiments were performed in Chromatof 4.50.8
software from LECO. For untargeted analysis, the chromatograms were deconvoluted by fixing a
baseline offset of 1, a peak width of 1 and signal/noise ratio of 100. For targeted analysis, the method
was validated by evaluating the limits of detection (LOD), limits of quantification (LOQ), linearity
(R2), recovery, accuracy, and repeatability using standard solutions and standard additions to a
representative pool of samples. Quantification of target compounds was performed by an internal
standard calibration method whose parameters are detailed at Supplementary Table S1.

2.4. LC-MS

The reagents used were ultrapure water from an in-house Milli-Q system (Millipore) and methanol
LC-MS grade, acetic acid LC-MS grade, formic acid LC-MS grade, ammonium acetate, and ammonium
formate were from Sigma-Aldrich. For untargeted LC-MS analysis, the wine samples were filtered
(0.22 µm, Nylon) and transferred to an amber glass vial and directly analyzed on a UHPLC-qTOF 6550
from Agilent Technologies. Chromatographic column was an Aquity BEH-C18 (100 × 2.1 mm, 1.7 µm)
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from Waters. For the elution of compounds, two different chromatographic methods were used with a
5 mM ammonium formate (pH = 3.8) for positive ionization mode and 5 mM ammonium acetate (pH =

4.5) for negative ionization mode as aqueous mobile phase and pure methanol as organic mobile phase
component in both methods. The elution gradient was the same for both mobile phases, consisting of
0–0%, 1 min; 0–65% 7 min; 65–100% 8 min; 100–100%, 11 min. The injection volume was 1 µL, the
flow rate was 0.6 mL/min, and column temperature was 40 ◦C. The ionization was performed both in
positive and negative electrospray in two separate runs and mass spectra was recorded between 100
and 1100 m/z at 3 spec/seg.

Data analysis was performed with Mass Profinder Software from Agilent. This software
deconvolutes the chromatograms to find the molecular features present in the samples and align their
mass and retention times resulting in a matrix containing the neutral mass of the feature, their retention
time, and the area of the chromatographic peak. For tentative identification of phenolic compounds,
the neutral mass obtained for the molecular features found both in positive and negative ionization
was matched against phenolic database (http://phenol-explorer.eu/) using Mass Hunter software and
allowing a maximum deviation of 20 ppm.

2.5. Chemical Classes

The assignment of chemical classes to the identified metabolites was based on the food database
(fooddb.ca), the yeast metabolome database [13], and the human metabolome database [14].

2.6. Statistical Analysis

Statistical analysis was based on the factors barrel-type and time. For FB, the factor barrel-type
included the 0, 3, 6, and 9-month barrel-aged wine samples separated in the groups of old and new
barrel resulting in four samples per group, whereas the factor time concerned the barrel-aged wine from
old and new barrel grouped by the attributes 0, 3, 6, and 9-month time-points leading to two samples
per group. Similarly, for ICVV the factor barrel-type concerned the 3, 9, and 12-month barrel-aged wine
samples divided into the groups of old and new barrel, and the factor time comprised the four groups
of 3, 9, 12-month barrel-aged and 12-month bottle-aged wine samples. Moreover, ICVV included the
additional factor bottled-wine which included the 12-month barrel-aged and 12-month bottle-aged
wine samples.

For the analytical methods NMR and targeted GC-MS, statistical significance for each metabolite
was derived from Student’s t-test based on the factor barrel-type and ANOVA on the factor time using
the Python module STATSMODELS [15]. The resulting p-values were FDR-corrected (q-values) and
the statistical significance (q-value ≤ 0.05) was coupled with practical significance which is defined
as a minimum 2-fold change between minimum and maximum value observed among the samples
(FCMM ≥ 2).

For the methods LC-MS and GC-MS, differential metabolomic analysis was performed using the
R package MetaboDiff [16]. The analytical steps followed by MetaboDiff included the imputation of
missing values using k-nearest neighbor imputation, k-means clustering outlier detection, variance
stabilizing normalization, and differential analysis based on Student’s t-test or ANOVA using the
factors barrel-type and time, respectively. The metabolites that were chosen for further analysis were
those that presented statistical significance with FDR-corrected p-value ≤ 0.05 and practical significance
with FCMM ≥ 2.

Principal coordinate analysis (PCoA) for the methods NMR, LC-MS, and GC-MS was based on the
Euclidean distance and permutational multivariate analysis of variance (PERMANOVA) on the distance
matrix was performed using the Python module SCIKIT-BIO [17] and the factors barrel-type and time.
Finally, hierarchical clustering was performed using the Python module SCIPY [18] after calculating
the growth rates of the barrel-aged wine samples for the periods 0–3, 3–6, 6–9, and 9–12-month
time-points for FB, and 0–3, 3–9, and 9–12-month time-points for ICVV. For comparison between
ICVV’s 12th-month bottle and barrel-aged wine samples, the hierarchical clustering was based on their

http://phenol-explorer.eu/
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growth rates for the period 0–12-month. The growth rate between two timepoints t1 and t2, represents
a coefficient k so that: k * C1 = C2, where C1 is the concentration of a metabolite at timepoint t1 and
C2 its concentration at timepoint t2. The growth rates were calculated as k = 1 + ((C2 − C1)/C1), if
there was an increase of concentration between t1 and t2 and as k = 1 + ((C1 − C2)/C1), if there was a
decrease of concentration between t1 and t2, so the growth rates were always positive values.

3. Results

3.1. NMR

The 39 identified metabolites with NMR are reported in Table S1 and Figure 2 for FB and ICVV.
For both cellars the concentration for the majority of the metabolites was very low ranging between 0
and 90 mmols with exception ethanol that ranged between 1000 and 1600 mmols. After performing
differential analysis, none of the metabolites of FB were found to be statistically significant for the
factors barrel-type and time, whereas for the cellar ICVV the metabolite formate was found to be
statistically significant for the factor barrel-type and methanol for the factor time. However, methanol
had FCMM < 2, leaving formate as the only metabolite with both statistical and practical significance
(FCMM = 5.6).
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Figure 2. Growth rates hierarchical clustering of samples for region FB (A,D,G) and ICVV (B,C,E,F,H,I)
based on different analytical methods. Acronyms BAN and BAO refer to 12th month barrel-aged wine
from new and old barrel, respectively, and BTN and BTO to bottle-aged wine from new and old barrel,
respectively. Samples containing the labels OLD and NEW refer to barrel-aged wine from old and new
barrel, respectively, whereas numbers at the beginning of the labels represent growth rate periods.

After performing PCoA for the cellar FB (Supplementary Figure S1A), the metabolites with
the highest loadings across the principal coordinate were saccharopine, 2,3 butanediol, tartaric acid,
and histidine, however, without demonstrating practical significance. The only metabolites with
practical significance were formate (FCMM = 2, Supplementary Figure S2A) and ethanal (FCMM = 3,
Supplementary Figure S2B), with the former having an impact on separating the early maturation
samples (≤3 months) from those of late maturation (≥6 months), and the latter showing differences
between old and new barrel for the samples of 3, 6, and 9 months. Nevertheless, their effect on the
samples clustering was minimal since PERMANOVA reported nonsignificant differences for the factors
barrel-type (p-value = 0.46) and time (p-value = 0.09), and overall the hierarchical clustering based on
the growth rates of the NMR metabolites did not reveal any informative clustering structure (Figure 2A,
Supplementary Figure S11).

Similarly to FB, most of the metabolites of the ICVV’s samples with the highest loadings across the
principal coordinates (Supplementary Figure S1B) were practically nonsignificant apart from sorbate
(FCMM = 2, Supplementary Figure S2D) that showed differences between early (≤3 months) and
late (≥9 months) maturation samples. The rest of the metabolites with practical significance were
acetoin (FCMM = 2, Supplementary Figure S2C) with similar PCoA loadings as gluconate that showed
differences between early (≤3 months) and late (≥9 months) maturation samples, and formate (FCMM
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= 5.6, Supplementary Figure S2E) and ethanal (FCMM = 3.5, Supplementary Figure S2H) where both
showed differences between old and new barrel and had similar PCoA loadings as sorbate. Practical
significance was also shown by uracil (FCMM = 2.4, Supplementary Figure S2F) and shikimic acid
(FCMM = 2.0, Supplementary Figure S2G) which had similar PCoA loadings as choline, however, their
capacity of demonstrating differences between the factors was minimal and mainly concerned the
discrepancy between the 9th month samples with the rest. After performing PERMANOVA, statistical
significance was found only for the factor time (p-value = 0.02) which upon the calculation of the
growth factors was attributed to the higher growth rates of formate and ethanal for the period of 0–3
months of the new barrel and the fact that the majority of the metabolites in both barrels had negative
growth rates for the period 9–12 months (Figure 2C, Supplementary Figure S13).

Overall, the metabolites did not present differences between the 12th month samples of bottle and
barrel-aged wine with exception the case of formate that demonstrated practical significance between
the 12th month BTN and BAN samples, an exception that also influenced the hierarchical clustering of
the samples due to its high growth rate for the BAN sample (Figure 2B, Supplementary Figure S12).

3.2. Targeted GC-MS

The results for targeted GC-MS are given in Figure 3 for FB and ICVV. For FB, the metabolites
4-ethylphenol and 4-ethylguaiacol demonstrated similar trends between old and new barrels, with the
former having almost identical values between the barrel-types across the time-points and the latter
showing a converging tendency of the barrel-types after the 3rd month (Supplementary Figure S3A).
After performing differential analysis, the metabolite 5-methylfurfural showed statistical significance
for the factor barrel-type (q-value = 0.009) and the metabolite 4-ethylguaiacol for the factor time (q-value
= 0.002). However, only 5-methylfurfural was considered to present practical significance having a
median fold-change of 12.4 between the barrel-types.

Regarding ICVV, the metabolite 5-methylfurfural displayed practical significance of 3.9-fold
change difference between the 12th month barrel and bottle-aged wine from new barrel without
being accompanied by statistical significance for the factor bottled-wine (Supplementary Figure S3B).
However, it presented statistical significance for the factor barrel-type (p-value = 0.033) and practical
significance of median fold-change of 96.4 between the barrel-types (Supplementary Figure S3C). The
rest of the metabolites were statistically nonsignificant and ranged in low concentrations (<23 µg/L).
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Figure 3. Color coded visualization of Table S2 included in the Supplementary Materials showing the
metabolites detected by NMR and targeted GC-MS for cellars FB (left) and ICVV (right). The color
gradient was individualized for the range of detection of each metabolite. Numbers at the end of
the sample acronyms represent the sampling month. Targeted GC-MS metabolites are indicated with
an asterisk.
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3.3. LC-MS

From the 502 metabolites initially identified with LC-MS, only 14 metabolites were found to be
statistically and practically significant for FB (Figure 4) with average FCMM of 6.3 and 17 for ICVV
(Figure 5) with average FCMM of 6.

After performing PERMANOVA on the distance matrix for the cellar FB, statistically significant
differences were found only for the factor time (p-value = 0.01). The impact of the metabolites on
the samples clustering (Supplementary Figure S4A) could be distinguished in two groups with the
metabolites of each group having similar loadings across the first principal coordinate. The first
group contained the metabolites whose concentrations had an increasing trend and had similar PCoA
loadings as eriodictyol and the second group those metabolites with a decreasing trend and PCoA
loadings similar to isorhamnetin-3-o-glucoside (Supplementary Figure S5A). From the comparison of
the groups becomes apparent that the calculated FCMM was derived from the differences between the
samples of 0 and 9th or 12th month. This is also being depicted in the hierarchical clustering based on
the growth factors where in both barrels the first trimester appears to be the most distant to the rest
mainly due to the high growth factors of caffeic acid, jaceosidin, naringin, and luteolin 7-glucoside
during that period (Figure 2D, Supplementary Figure S14).

In the same manner, the LC-MS metabolites for the ICVV samples were divided in those with
increasing and those with decreasing tendency (Supplementary Figure S6), with the metabolites of
each group having similar PCoA loadings across the first principal coordinate (Supplementary Figure
S4B). Once more, PERMANOVA reported statistical significance only for the factor time (p-value =

0.04), and in combination with the hierarchical clustering based on the growth factors it seems that
these differences concern the early (≤3 months) and late (≥9 months) maturation periods (Figure 2F,
Supplementary Figure S16). Regarding the bottle and barrel-aged 12th month wine samples, although
they demonstrated practically nonsignificant differences with exception the metabolite scopoletin with
FCMM of 2 between BAO and BTO and 2.5 between BAN and BTN (Supplementary Figure S6), minor
differences in their growth factors created a cumulative effect able to differentiate the two sample
groups (Figure 2E, Supplementary Figure S15). However, these differences could only be observed
across the second principal coordinate of the LC-MS PCoA (Supplementary Figure S4B), that accounted
only for 9.5% of the overall observed variation in ICVV’s samples, suggesting weak differences.
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Figure 4. Color coded visualization of Table S3 included in the Supplementary Materials showing the
metabolites detected by LC-MS with statistical and practical significance, for cellar FB. Numbers at the
end of the sample acronyms represent the sampling month. The color gradient was individualized for
each metabolite and the numeric values representing the area of the detected chromatographic peaks
after applying variance stabilization are available in Supplementary Table S3. The metabolites can be
grouped in the following chemical classes: (1) benzene and substituted derivatives, (2) cinnamic acids
and derivatives, (3) flavonoids, and (4) organooxygen compounds. Metabolites that exhibited increasing
tendency are indicated as superscript (U) and those with decreasing tendency as superscript (D).
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Figure 5. Color coded visualization of Table S4 included in the Supplementary Materials showing the
metabolites detected by LC-MS with statistical and practical significance, for cellar ICVV. Numbers at the
end of the sample acronyms represent the sampling month. The color gradient was individualized for
each metabolite. Additionally, the numeric values represented the area of the detected chromatographic
peaks after applying variance stabilization (Table S4). The metabolites can be grouped in the following
chemical classes: (1) benzene and substituted derivatives, (2) cinnamic acids and derivatives, (3)
coumarins and derivatives, (4) flavonoids, (5) phenol ethers, and (6) phenols. Metabolites that
exhibited increasing tendency are indicated as superscript (U) and those with decreasing tendency as
superscript (D).

3.4. Untargeted GC-MS

From the 394 metabolites initially detected with GC-MS, 16 metabolites were found to have
statistical and practical significance for FB with mean FCMM of 8.2 (Figure 6) and 48 for ICVV with
mean FCMM of 16 (Figure 7).
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Figure 6. Color coded visualization of Table S5 included in the Supplementary Materials showing the
metabolites detected by GC-MS with statistical and practical significance, for cellar FB. Numbers at the
end of the sample acronyms represent the sampling month. The color gradient was individualized for
each metabolite and the numeric values representing the area of the detected chromatographic peaks
after applying variance stabilization are available in Supplementary Table S5. The metabolites can be
grouped in the following chemical classes: (1) amines, (2) benzene and substituted derivatives, (3)
carboxylic acids, (4) fatty acyls, (5) hydroxy acids, (6) indoles, (7) keto acids, (8) lactones, (9) phenols,
(10) saturated hydrocarbons, (11) unsaturated hydrocarbons. Metabolites that exhibited increasing
tendency are indicated as superscript (U) and those with decreasing tendency as superscript (D),
whereas metabolites with relatively stable concentrations but with a peak on the 6th month are denoted
as (S).
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Figure 7. Color coded visualization of Table S6 included in the Supplementary Materials showing the
metabolites detected by GC-MS with statistical and practical significance, for cellar ICVV. Numbers at
the end of the sample acronyms represent the sampling month. The color gradient was individualized
for each metabolite and the numeric values representing the area of the detected chromatographic
peaks after applying variance stabilization are available in Supplementary Table S6. The metabolites
can be grouped in the following chemical classes: (1) benzene and substituted derivatives, (2) carbonyl
compounds, (3) carboxylic acids and derivatives, (4) fatty acyls, (5) hydroxy acids and derivatives,
(6) indoles and derivatives, (7) keto acids and derivatives, (8) lactones, (9) olefins, (10) oxolanes, (11)
phenols, (12) phenylpropanoic acids, (13) phenol lipids, (14) saturated hydrocarbons, (15) stilbenes, (16)
tetrahydrofurans, (17) thiolanes, (18) unsaturated hydrocarbons. Metabolites that exhibited increasing
tendency are indicated as superscript (U) and those with decreasing tendency as superscript (D),
whereas metabolites with relatively stable concentrations but with a peak on the 6th month are denoted
as (S).
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As with the previous methods, PERMANOVA on the distance matrix showed statistical differences
only for the factor time in both cellars (p-value = 0.006 for FB and p-value = 0.01 for ICVV). For FB three
groups of metabolites could be observed influencing the sample clustering (Supplementary Figure S7A).
The first group included the metabolites with increasing trend having similar PCoA loadings to diethyl
succinate (Supplementary Figure S7A), the second group metabolites with decreasing trend and PCoA
loadings similar to indole-3-methyl acetate, and the third group metabolites whose calculated FCMM
derived from the differences between the 6th month sample against the rest and had similar PCoA
loadings to 4,6,8-trimethylon-1-ene (Supplementary Figure S8). The latter group appears to be the
reason for the clustering of the periods 9–12 and 3–6 months after performing hierarchical clustering
based on the growth rates (Figure 2G, Supplementary Figure S17).

For ICVV, two main groups of metabolites seemed to be influencing the sample clustering
(Supplementary Figure S7B). As with LC-MS, the first group demonstrated an increasing trend and
had similar PCoA loadings to 2-methyltetrahydrothiophen-3-one (Supplementary Figure S7B) and the
second group included metabolites with decreasing tendency and similar PCoA loadings to dibutyl
phthalate (Supplementary Figures S9 and S10). These two groups could differentiate the early (≤3)
from the late (≥9) maturation wine samples, however, due to the occasional nonlinearity of the trends
caused mainly by the 9th month samples in cases such as 6-tridecene (Supplementary Figure S9),
palmitic and stearic acids (Supplementary Figure S10) the periods 0–3 and 9–12 months clustered
together during the hierarchical clustering based on growth rates (Figure 2I, Supplementary Figure
S19).

With regard to the 12th month bottle and barrel-aged wine, a number of metabolites displayed
practical significance with a mean FCMM of 7.3 between BAO and BTO and mean FCMM of 6.9
between BAN and BTN that could be separated into two groups. The first group included the
metabolites 4,6,8-trimethylnon-1-ene, palmitic acid, stearic acid, 1-dodecanol, and 6-tridecene whose
values were higher for the bottle-aged wine samples (Supplementary Figures S9 and S10) and had
similar PCoA loadings to 4,6,8-trimethylnon-1-ene (Supplementary Figure S7B). The second group
included the metabolites methyl 2-methoxy-2-phenylacetate, oxoglutaric acid, 2,10-dimethylundecane,
5-ethoxyoxolan-2-one, 1-tetradecene, and ethyl-3-hydroxybutyrate that displayed higher values for the
barrel-aged wine samples (Supplementary Figures S9 and S10) and received similar PCoA loadings to
phenol, 2-(2h-benzotriazol-2-yl)-4,6-bis(1,1-dimethylpropyl) (Supplementary Figure S7B). These two
groups appear to mainly have influenced the separation of the 12th month bottle and barrel-aged wine
samples after performing growth rates hierarchical clustering (Figure 2H, Supplementary Figure S18).
Additionally, the separation of these two groups of the factor bottled-wine occurs towards the second
principal coordinate of GC-MS PCoA (Supplementary Figure S7B) that accounts for 26.2% of the total
observed variation suggesting better separation capacity of GC-MS than LC-MS for this factor.

4. Discussion

In the current study, the metabolomic profile of barrel-aged wines from two cellars was surveyed
by combining NMR, targeted GC-MS, and untargeted GC-MS and LC-MS. The statistical significance
(p-value or q-value ≤ 0.05) was accompanied by practical significance (FCMM ≥ 2) for evaluating
the differences between the groups of the factors barrel-type, bottled-wine, and time, since statistical
significance alone does not provide enough evidence for the importance of the findings [12].

From previous studies we know that NMR is a useful technique to differentiate vintage,
geographical origin, climate, and ageing effect on bottle-aged wine quality [9,19–21]. Consonni et al. [9]
used NMR to analyze different vintages and ageing times of Amarone wines and found an increase
of amino acids during ageing. These authors attributed the increase in amino acids to grape protein
degradation ascribed to hydrolysis of yeast and bacteria proteins after their autolysis during the ageing
process. Recently, Cassino et al. [21] studied wine evolution during bottle aging and found mostly a
decrease in organic acids (lactic acid, succinic acid, and tartaric acid) and an increase in esters (ethyl
acetate and ethyl lactate). Furthermore, Catechin and epicatechin decreased during aging in all wines
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while gallic acid increased in almost all red wines [21]. Nevertheless, in the current study NMR had
the least effectiveness in providing informative differences between the groups of the studied factors.
From all the metabolites detected by NMR, formate was the only metabolite with both statistical and
practical significance for the factor barrel-type in wine samples coming only from ICVV. Although,
formic acid has been detected in wine before using NMR [22], it has not been linked previously to
barrel ageing.

We designed a targeted GC-MS analysis focused on absolute quantification of 4-ethylphenol,
4-ethylguaiacol, 5-methylfurfural, 2-methylisoborneol, and 5-hidroximethylfurfural as previous studies
have related those compounds to wine quality [4,23]. For those studies it is known that there is an
enrichment in ethylphenols during wine ageing in barrels but at lower concentration when the barrels
are new [3]. Additionally, forced ageing conditions during bottle-aged wine storage resulted in a
considerable influence on wine quality increasing the production of dioxane and dioxolane isomers,
furfural, and 5-methylfurfural. However, in ICVV and FB samples only 4-ethylphenol, 4-ethylguaiacol,
and 5-methylfurfural were detected by this methodology. In fact, both cellars showed significant
differences for the concentration of 5-methylfurfural between new and old barrels, having a lower
concentration in the latter. This could be reasoned from the fact that this compound is connected with
the barrel toasting process justifying its high concentration in the new barrel. Additionally, the high
discrepancy of the 5-methylfurfural levels between the new barrels in FB and ICVV could be attributed
to the intensity of the toasting process, whereas the detection of 5-methylfurfural in BTN indicates
that merely a few hours are enough to transfer this compound to the wine in the case of new barrel
and that the compound is stable in the bottle-aged wine even after a 12-month period. Finally, in both
cellars the compounds 4-ethylphenol and 4-ethylguaiacol were nonsignificant and ranged below their
perception thresholds, 620 and 140 µg/L respectively [24]. Altogether, the results from 5-HMF confirms
the results from previous studies while the concentration of the ethylphenols did not change much
across barrel ageing or between new and old barrels.

Regarding LC-MS, in both cellars the majority of the identified metabolites were flavonoids
demonstrating a decreasing tendency with the exception of the metabolites eriodictyol and jaceosidin
in FB and 6-methoxyluteolin in ICVV that increased over time. Total flavonoid content has been
reported to decrease after a 70-days storage period [25], however, the temporal concentrations of
these three metabolites in the ageing wine have not been monitored before despite the fact that their
antioxidant properties have been reported [26–28]. Moreover, flavonoid compounds in the wine are
represented by groups of flavonols, flavan-3-ols, and anthocyanins. Contact between wine and wood
results in a continuous decrease in the anthocyanins content [29] that could be explained by oxidation
reactions during ageing or from condensation reactions between anthocyanins and certain wood
molecules, all of which generate large, insoluble, and precipitable polymers. The second major group
of metabolites identified was benzene derivatives that displayed an increasing trend in both cellars,
except the metabolites gallic acid and vanillic acid in ICVV which despite their decreasing tendencies
they exhibited overall stable levels. Although the lack of time-series studies of benzene derivatives
in ageing wine, studies such as [30] have observed an increase of this chemical class during the late
Cabernet Sauvignon grape ripening stage. From the chemical class of cinnamic acids, caffeic acid has
been detected with increasing trend in both cellars although it reached higher concentrations in FB.
Assuming that the intensity of the toasting process in FB was lower than ICVV, based on the levels
of 5-methylfurfural, we could explain this discrepancy of caffeic acid concentrations since studies
such as [31] have shown that the content of caffeic acid was significantly lower in toasted French
oak woods compared to nontoasted. The same study also reports scopoletin and syringaldehyde
of having correspondingly similar and inverse relation to the toasting process compared to caffeic
acid. Although these two metabolites have been detected only in ICVV’s wine samples, the similar
levels of scopoletin to caffeic acid and the higher concentrations of syringaldehyde in relation to
caffeic acid could potentially corroborate these findings. Overall, the two groups of metabolites
with temporal increasing and decreasing concentrations, showed statistical and practical significance
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between the early (≤3 months) and late (>3 months) maturation periods, in both cellars, but revealed
no differences for the factor barrel-type. Furthermore, although no statistical and practical significance
was reported for the factors barrel-type and bottled-wine, for the latter factor subtle differences between
the metabolites growth rates created a cumulative effect able to separate the 12-month bottle-aged
wines from the 12-month barrel-aged wines.

As far GC-MS is concerned, a higher variety of chemical classes was identified in both cellars,
compared to the other methods, with carboxylic acids being one of the chemical classes that included
solely metabolites with increasing trends in both cellars. Among these metabolites was methionol, in
ICVV samples, whose degradation has been suggested as a good indicator of oxidation in the wine
and that its concentration could be maintained depending on the levels of oxygen and the amount
of oxygen scavengers [32]. Given that the level of methionol increased during the first trimester and
thereafter remained relatively stable, suggests low initial oxidation levels that increased over time.
Another chemical class composed of metabolites with increasing concentrations in both cellars was
keto acids with oxoglutaric acid being mutually identified and being described as a metabolite that
binds free SO2 [33]. The rest of the chemical classes included metabolites that presented both increasing
and decreasing trends, that could be explained by small fluctuations of temperature and oxygen levels
as well as lysing events. Overall, in both cellars GC-MS did not reveal differences based on the factor
barrel-type and had better performance than NMR but worse than LC-MS in clustering the samples in a
sensible manner based on the growth rates suggesting an underlying noise. Nevertheless, GC-MS was
the only method that detected metabolites with practical significance for the factor bottled-wine, that
mainly influenced the separation between the 12-month bottle and barrel-aged wines. Regarding this
factor, studies such as [34] have shown significant differences in the aroma after comparing wine ageing
in oak barrels and glass bottles with a trained tasting panel. However, in the current study, among
these metabolites, the ones that have been connected to aromatic characteristics are palmitic acid,
stearic acid, and 1-dodecanol [35,36] all of them having higher concentrations in the bottle-aged wines.

5. Conclusions

From the four metabolomic analytical techniques implemented in the current study, NMR was
the least effective in providing informative insights based on the given dataset, targeted GC-MS
was the only technique that presented significant differences based on the factor barrel-type based
mainly on 5-methylfurfural changes, whereas LC-MS and GC-MS were the only methods displaying
significant differences for the factor time in both regions. From the latter two methods, GC-MS was
also the only one with sufficient separating capacity based on the factor bottled-wine. Nevertheless, no
significant differences of metabolites were observed for the factor barrel-type, probably because just
one year of barrel usage was not enough to drive differentiation of metabolites at both types of barrels.
Currently, the lack of a dedicated open source metabolomic database on the organoleptic characteristics
of metabolites renders difficult the inference of the changes imposed on the ageing wine based on the
identified metabolites from the untargeted analytical methods. However, the identified metabolites
in this study appear to aggregate in two groups; one with increasing and the other with decreasing
concentrations and differed significantly between the early and late maturation periods, in both cellars.
Thus, common patterns on the metabolites according to the selected factors were discovered even if
the origin and characteristics of the wines were different.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/10/1381/s1,
Table S1. Quality parameters for GC targeted analysis. Table S2. Concentration of metabolites detected by
NMR and targeted GC-MS for cellars FB and ICVV. Table S3. LC-MS metabolites, with statistical and practical
significance, for cellar FB. Values represent the area of the detected chromatographic peaks after applying variance
stabilization. Table S4. LC-MS metabolites, with statistical and practical significance, for cellar ICVV. Values
represent the area of the detected chromatographic peaks after applying variance stabilization. Table S5. GC-MS
metabolites, with statistical and practical significance, for cellar FB. Values represent the area of the detected
chromatographic peaks after applying variance stabilization. Table S6. GC-MS metabolites, with statistical and
practical significance, for cellar ICVV. Values represent the area of the detected chromatographic peaks after
applying variance stabilization. Figure S1: PCoA for cellars FB (A) and ICVV (B) based on the NMR metabolites.

http://www.mdpi.com/2304-8158/9/10/1381/s1
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Figure S2: Log2 values of NMR metabolites with practical significance for the cellars FB (A,B) and ICVV (C–H).
Figure S3: GC-MS targeted based on the factors barrel-type and time for cellar FB (A) and ICVV (C). Figure S4:
PCoA for cellars FB (A) and ICVV (B) based on the LC-MS metabolites. Figure S5: LC-MS log2 values of metabolites
for cellar FB. Acronyms BAO and BAN refer to barrel-aged wine from old and new barrels, respectively. Figure S6:
LC-MS log2 values of metabolites for cellar ICVV. Figure S7: PCoA for cellars FB (A) and ICVV (B) based on the
GC-MS metabolites. Figure S8: GC-MS log2 values of metabolites for cellar FB. Figure S9: GC-MS log2 values of
first 25 out of 48 metabolites for cellar ICVV. Figure S10: GC-MS log2 values of last 23 out of 48 metabolites for
cellar ICVV. Figure S11: NMR growth rates heatmap for periods 0–3, 3–6, 6–9, and 9–12 based on barrel-type
(OLD or NEW) for cellar FB. Figure S12: NMR growth rates for period 0–12 of barrel-aged wine from new (BAN)
and old (BAO) barrels as well as of bottle-aged wine from new (BTN) and old (BTO) barrels for cellar ICVV. Figure
S13: NMR growth rates for periods 0–3, 3–9, and 9–12 based on barrel-type (OLD or NEW) for cellar ICVV. Values
represent percentage of increase or decrease for each metabolite for the given period. Figure S14: LC-MS growth
rates heatmap for periods 0–3, 3–6, 6–9, and 9–12 based on barrel-type (OLD or NEW) for cellar FB. Figure S15:
LC-MS growth rates for period 0–12 of barrel-aged wine from new (BAN) and old (BAO) barrels as well as of
bottle-aged wine from new (BTN) and old (BTO) barrels for cellar ICVV. Figure S16: LC-MS growth rates for
periods 0–3, 3–9, and 9–12 based on barrel-type (OLD or NEW) for cellar ICVV. Figure S17: GC-MS growth rates
heatmap for periods 0–3, 3–6, 6–9, and 9–12 based on barrel-type (OLD or NEW) for cellar FB. Figure S18: GC-MS
growth rates for period 0–12 of barrel-aged wine from new (BAN) and old (BAO) barrels as well as of bottle-aged
wine from new (BTN) and old (BTO) barrels for cellar ICVV. Figure S19: GC-MS growth rates for period 0–3, 3–9,
and 9–12 based on barrel-type (OLD or NEW) for cellar ICVV.
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