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Abstract: In practice, fresh-cut fruit and fruit salads are currently stored submerged in sugar syrup
(approx. 20%) to prevent browning, to slow down physiological processes and to extend shelf life.
To minimize browning and microbial spoilage, slices may also be dipped in a citric acid/ascorbic acid
solution for 5 min before storage in sugar syrup. To prevent the use of chemicals in organic production,
short-term (30 s) hot-water treatment (sHWT) may be an alternative for gentle sanitation. Currently,
profound knowledge on the impact of both sugar solution and sHWT on aroma and physiological
properties of immersed fresh-cuts is lacking. Aroma is a very important aspect of fruit quality and
generated by a great variety of volatile organic compounds (VOCs). Thus, potential interactive effects
of sHWT and sugar syrup storage on quality of fresh-cut apple slices were evaluated, focusing on
processing-induced changes in VOCs profiles. Intact ’Braeburn’ apples were sHW-treated at 55 ◦C
and 65 ◦C for 30 s, sliced, partially treated with a commercial ascorbic/citric acid solution and slices
stored in sugar syrup at 4 ◦C up to 13 d. Volatile emission, respiration and ethylene release were
measured on storage days 5, 10 and 13. The impact of sHWT on VOCs was low while immersion and
storage in sugar syrup had a much higher influence on aroma. sHWT did not negatively affect aroma
quality of products and may replace acid dipping.

Keywords: minimal processing; sugar syrup immersion; volatile organic compounds; chemical
prevention; ready-to-eat fruit salads

1. Introduction

Fresh-cut processing induces a catena of physiological responses [1,2] finally resulting in the loss
of quality and aroma and pronouncedly shortens the storage life of fresh-cut produce [3]. In current
practice, fresh-cut fruit for fruit salads are often stored in sugar syrup (ca. 20%), especially for use
by bulk purchasers [4]. This storage method may extend product shelf life by preventing enzymatic
and oxidative browning and transpiration, slows down respiration, ethylene metabolism and other
physiological processes [5–7]. In this context, however, microbial spoilage is the main factor limiting
shelf life [7]. It is therefore very important to remove the microorganisms adherent to the fruit skin [8]
before processing.
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In practice, e.g., apple slices are dipped in a mixture of citric and ascorbic acid solutions for
sanitation purposes. To prevent the consumption of these chemicals especially in organic production,
gentle physical sanitation methods are demanded.

As such, hot-water treatments (HWT) in the temperature range of 40–80 ◦C were shown to
effectively reduce microbial contamination, and are relatively inexpensive and easy to use [9].
In addition, HWT maintains storage quality of fruits [10–12]. Since they are chemical-free, particularly
short-term (15–60 s) hot-water treatments (sHWT) are suitable for organic production [13,14]. Besides
earlier studies on the impacts of HWT on structure and function of fruit epidermal tissue [15,16],
only recently, the effects of sHWT on surface tissue, heat transfer dynamics and suitability for
pre-processing of intact apples for fresh-cut salads were investigated in detail [12,17]. Furthermore,
the implications of sHWT on important quality parameters such as tissue browning, tissue strength
and on microbial loads of apple slices immersed in sugar syrup have been studied under semi-practical
conditions [18]. On the effects of sugar syrup storage on fresh-cut fruit quality attributes only very few
studies are available [7,19].

In contrast to analyses of sHWT impacts on visual and internal quality attributes of fresh-cut
fruit [12,17,18], studies on potential variations in fruit aroma, a very important aspect of fruit quality
sensation [2,20], are completely lacking. Aroma is generated by a great variety of permanent or
secondary VOCs [21], synthesized via numerous biosynthetic pathways, which, in turn, are regulated
by a great variety of enzymes and substrates [2,22,23]. Moreover, both respiration and ethylene
biosynthesis are also involved in VOCs evolution [24]. In addition, microbial growth may, directly or
indirectly, negatively affect product aroma [25,26]. Short-term-HWT and sugar syrup immersions may
influence all of these processes. Knowledge on the impact of both sugar solution and sHWT on aroma
development and physiological properties of immersed fresh-cuts is lacking.

Thus, the present study focused on the evaluation of the potential effects of sHWT (30 s, at 55 ◦C
or 65 ◦C) on the aroma-related quality of ‘Braeburn’ apple slices stored in sugar syrup under strictly
simulated practical condition. Some parts of the samples were also pre-treated with a commercial
ascorbic/citric acid solution to test the potential synergistic effects of this treatment on aroma. During
a 13 d-storage at 4 ◦C, respiration, ethylene emission and, for the first time, the processing-induced
direct and indirect changes in VOC profiles were measured at defined intervals. This will enable
comprehension of the respective quality-related physiological processes, to effectively select the optimal
process conditions and to verify whether sHWT can safely replace the use of chemicals in processing
of ecologically produced fresh-cut fruit salads.

2. Materials and Methods

2.1. Material

Fresh mature ’Braeburn’ apples (Malus domestica Borkh.) were obtained from a commercial
fresh-cut salad producer. At the Department of Horticultural Engineering (Leibniz Institute for
Agricultural Engineering and Bioeconomy, Potsdam, Germany), the apples were stored at 4 ◦C and
95% relative humidity for up to 3 d until the start of the experiments. Undamaged apples of uniform
size (mean fresh mass: 150.7 ± 5.1 g and mean dry matter content: 177 ± 11 g kg−1) were selected.

2.2. Pre-Processing Short-Term Hot-Water Treatment

Before cutting, apples were divided in five batches of 16 fruit each. Apples from the control batch
were water-washed at approx. 20 ◦C. The other samples were hot-water-treated in a GFL 1086 water
bath (Gesellschaft für Labortechnik mbH, Burgwedel, Germany) by submerging four apples each for
30 s. Samples of two batches each were hot-water-treated at 55 ◦C or 65 ◦C, respectively, according to
Kabelitz and Hassenberg [12] and Kabelitz et al. [19]. These authors indicated that HWT at 55 ◦C for
30 s effectively reduced microbial loads without negatively affecting the external quality of samples,
while 65 ◦C showed to be a negative control treatment in terms of quality maintenance.
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2.3. Fresh-Cut Preparation and Sampling

After washing and hot-water treatments, all apples were cut under semi-practical hygienic
conditions in a cooling room at 4 ◦C. For this, apples were at first halved equatorially and then each
half-segment was cut into 16 pieces by a Parti apple cutter/corer (Gefu GmbH, Eslohe, Germany).
The controls and slices of one of each 55 ◦C and 65 ◦C sHWT batches were additional chemically treated
(= chemical prevention, cp) by immersing in ascorbic/citric acid solution (40 g ascorbic and 20 g citric
acid solved in 1 L deionized water) for 5 min (Figure 1). Slices of each batch were randomly filled in
12 commercial 840 mL plastic pails. Closely following practice, each pail containing approx. 48 apple
slices (approx. 228 g) was filled up with 450 mL sugar syrup (200 g L−1 invert sugar syrup, 72.7%;
Hanseatische Zuckerraffinerie GmbH & Co. KG, Hamburg, Germany plus 10 g L−1 OBSTSERVAL
HC-2 browning inhibitor (Konserval, Pharmacon Lebensmittelzusätze GmbH, Trittau, Germany).
The browning inhibitor contained ascorbic acid, sodium ascorbate and citric acid. All pails were tightly
closed and stored at 4 ◦C for up to 13 d. Three pails (replicates) of each batch were opened on days 5,
10 (the common maximum shelf-life) and on day 13. For further analyses, 26 apple slices of each pail
were removed.
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Figure 1. Scheme of the various pre- (short-term hot-water, sHWT, vs. washed) and post-cutting
(chemical prevention, cp, vs. no chemical prevention, non-cp) treatments of fresh-cut apples slices
stored in sugar syrup at 4 ◦C for up to 13 d.

2.4. Sampling of Volatile Organic Compounds (VOCs) and Ethylene

To determine VOCs emission, ethylene evolution and respiration rate (RR), 20 apple slices
were filled in a glass jar (1 L), which was hermetically closed by a glass lid. VOCs emitted
by samples accumulated at 4 ◦C for 1 h. Then VOCs were 10 min-extracted with 50/30 µm
divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fiber (stableFlex/SS, Supelco,
Bellefonte, PA, USA) via septum in glass lid. After VOCs extraction, 0.5 mL sample air was taken from
headspace with a 0.5 mL A-2 Series syringe (VICI Precision Sampling, Baton Rouge, LA, USA) via the
same septum to measure ethylene and CO2 concentrations.

2.5. Analysis of Volatile Organic Compounds

VOCs were analyzed with a GCMS-QP2010 SE gas chromatograph-mass spectrometer (GC–MS;
Shimadzu Europa GmbH, Duisburg, Germany) on a DB-WAX (Agilent Technologies, Palo Alto, CA,
USA) column (30 m× 0.25 mm× 0.25 µm). SPME fiber was introduced into the GC injector (set to 250 ◦C
and fitted with a SPME liner (0.75 mm × 5.0 mm × 95 mm); Shimadzu GCs; Restek, Bellefonte, PA, USA)
for 30 min for VOC desorption and conditioning before next extraction. Helium was used as carrier
gas (flow rate: 0.8 mL min−1). The following temperature program was used: 35 ◦C (hold 1 min), ramp
to 110 ◦C at 5 ◦C min−1 and ramp to 230 ◦C at 10 ◦C min−1 (hold 3 min). The mass spectrometer (MS)
detector worked in full scan mode (mass-to-charge ratio: 35–250 m/z) and operated in electron impact
mode at 70 eV. Measured chromatogram peaks were integrated based on quantifier and qualifier ions
of target compound (Table 1) using MSD Chem-Station E.02.01.1177 (Agilent Technologies, Palo Alto,
CA, USA). Specific VOCs were identified (1) by NIST v2.0f library (NIST, Gaithersburg, MD, USA) and
(2) by retention index (RI) calculated for each compound according to van Den Dool and Kratz [27].



Foods 2020, 9, 78 4 of 15

RIs were determined based on an alkane standard (C7–C30; 1000 µg mL−1; Supelco, Bellefonte, PA,
USA). For this, 5 µL of alkane standard was injected in a 3.9 L glass jar, extracted with SPME after
equilibrium time of 1 d and analyzed as described above. The RIs were compared with those given
by van Den Dool and Kratz [27] by using online NIST Chemistry WebBook [28]. The total integrated
peak area of each VOC was used to calculate a semi-quantitative VOC concentration expressed in
nL L−1 based on the external standard 2-methylbutyl 3-methylbutanoate (CAS-number: 2245-77-4).
A standard curve of 2-methylbutyl-3-methylbutanoate was created in the concentration range from 5
to 1000 nL L−1.

Table 1. All identified volatile organic compounds (VOCs) emitted by intact, freshly cut and variously
treated (sHWT/chemical prevention) fresh-cut apple slices as characterized by their CAS registry
numbers, calculated retention indices (RI), previously reported retention indexes (RIliterature), and
quantifier and qualifier ions used for peak integration.

Chemical Group VOCs CAS-Number RI RIliterature
Quantifier (Qualifier)

Ions (m z−1)

esters (21) Ethyl acetate 141-78-6 903 863–908 43 (45–61)
Ethyl propionate 105-37-3 963 939–976 57 (74–75)

Ethyl 2-methylpropanoate 97-62-1 968 957–969 43 (41–71)
Propyl acetate 109-60-4 977 952–996 43 (61–73)

Methyl butyrate 623-42-7 988 969–993 74 (43–71)
Methyl 2-methylbutyrate 868-57-5 1011 1000–1010 57 (41–88)

Isobutyl acetate 110-19-0 1014 1000–1031 43 (56–73)
Ethyl butyrate 105-54-4 1035 1000–1073 71 (43–88)

Ethyl 2-methylbutanoate 7452-79-1 1050 1022–1073 57 (41–102)
Butyl acetate 123-86-4 1069 1049–1105 43 (56–73)

2-methylbutyl acetate 624-41-9 1116 1111–1125 43 (55–70)
Ethyl valerate 539-82-2 1129 1131–1139 88 (57–85)

Ethyl 2-butenoate 10544-63-5 1154 1158–1158 69 (41–99)
Pentyl acetate 628-63-7 1165 1175–1181 43 (55–70)

Methyl hexanoate 106-70-7 1178 1176–1189 74 (43–99)
Ethyl hexanoate 123-66-0 1222 1196–1245 71 (43–89)

Hexyl acetate 142-92-7 1258 1251–1311 43 (56–61)
2-Hexen-1-yl acetate 10094-40-3 1317 -

Hexyl butyrate 2639-63-6 1397 1393–1410 71 (43–89)
Hexyl 2-methylbutanoate 10032-15-2 1414 1415–1416

Hexyl hexanoate 6378-65-0 1610 1596–1599 43 (56–117)
ketones (2) 2-Butanone 78-93-3 908 875–926 43 (57–72)

1-Penten-3-one 1629-58-9 1020 1019–1056
alcohols (6) Ethanol 64-17-5 943 900–955 45 (43–46)

2-Methyl-1-propanol 78-83-1 1096 1092–1114 43 (41–42)
1-Butanol 71-36-3 1143 1116–1166

2-Methyl-1-butanol 1565-80-6 1200 - 57 (41–56)
1-Hexanol 111-27-3 1341 1339–1396

2-(2-Ethoxyethoxy)-ethanol 111-90-0 1628 1615–1619 45 (59–72)
aldehydes Hexanal 66-25-1 1077 1048–1120 44 (41–56)

terpenes (2) D-Limonene 5989-27-5 1186 1176–1238 68 (67–93)
α-Farnesene 502-61-4 1747 1720–1764 93 (41–69)

benzenic derivatives Estragole 140-67-0 1724 1624–1661 148 (117–147)

2.6. Quantification of Ethylene and CO2 Evolution

A small volume of 0.5 mL air was taken from canning glass jar and analyzed with a GC17A gas
chromatograph (Shimadzu) to measure ethylene and CO2 concentrations. The GC was equipped with
both FID and TCD, 80/100 Porapak N (Supelco, Bellefonte, PA, USA) column (1.8 m × 1/8 in × 2.1 mm)
and a 5605PC mole sieve (Alltech GmbH, Unterhaching, Germany). As carrier gas, helium was used
(constant flow rate: 1.4 mL min−1), oven temperature was kept constant at 60 ◦C. Measured peaks
were integrated using Class-VP chromatography data system software v4.2 (Shimadzu Europa GmbH,
Duisburg, Germany). Rates of ethylene release were expressed in µg kg−1 h−1, those of CO2 production
in mg kg−1 h−1.
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2.7. Statistical Analysis

For each treatment, three pails were used as replicates for each sample day. VOCs and ethylene
emissions were each determined on 20 apple slices from each pail (n = 3), while respiration was
analyzed on a total of 60 apple slices, i.e., 20 from each pail. Statistical analyses (ANOVA) were
carried out with WinSTAT (R. Fitch Software, Staufen, Germany) and results were presented as mean
± standard deviation (SD). The significance of differences between the calculated means was analyzed
by Duncan’s multiple range test (p < 0.05). The relationships between VOC evolution and sHWT
were additionally analyzed by principal components analysis (PCA) using Latentix Ver. 2.00 (Latent5,
Copenhagen, Denmark).

3. Results

3.1. Volatile Organic Compounds

In total, 33 different VOCs were identified in fresh-cut apple slices, with esters (21) forming the
major group of compounds (Table 1). The emission of individual VOCs was significantly affected
by cutting, sHWT and/or storage time (Table 2). In fresh, intact ’Braeburn’ apples, 2-methylbutyl
acetate (29.0%) and α-Farnesene (15.9%) were the most abundant VOCs. Cutting immediately and
significantly increased the emissions of 17 VOCs, while that of only three VOCs significantly decreased.
The cumulative VOCs concentration increased sevenfold, particularly concentrations of acetate esters
(es2–es8) increased most.

Table 2. Semi-quantitative concentrations (nL L−1) of VOCs, emitted by intact, freshly cut (cut) and
variously treated (C: control with chemical prevention; 55: 55 ◦C sHWT without chemical prevention;
55_cp: 55 ◦C sHWT with chemical prevention; 65: 65 ◦C sHWT without chemical prevention; 65_cp:
65 ◦C sHWT with chemical prevention) fresh-cut apple slices on days 5, 10 and 13 of storage in sugar
syrup at 4 ◦C. VOCs concentrations given resulted from the emissions of 20 apple slices hermetically
enclosed in a 1 L-glass jar at 4 ◦C for 1 h. Given are means (n = 3). Different letters indicate significant
differences between means (p < 0.05). The different colors help to indicate increasing (green) or
decreasing (red) emissions of VOCs compared to intact apples (yellow).

VOC Time Initial Time C 55 55_cp 65 65_cp

Cumulative VOC
concentration

intact 87 a 5 d 445 b–d 515 c–e 388 b 415 b–c 425 b–c
cut 618 e 10 d 364 b 493 c–e 320 b 379 b 354 b

13 d 385 b 502 d–e 305 b 317 b 369 b

Ethyl acetate intact 0.86 a 5 d 109 c–d 152 e 80.9 b–c 93.3 b–d 83.5 b–c
es1 cut 1.98 a 10 d 104 b–d 180 f 75.8 b 121 d 83.2 b–c

13 d 121 d 196 f 82 b–c 106 b–d 105 b–d

Propyl acetate intact nd 5 d 3.79 g 2.53 d–e 2.45 c–e 1.78 b–c 2.59 d–e
es2 cut 2.91 e–f 10 d 3.35 f–g 2.27 b–e 2.31 b–e 1.71 b 2.39 b–e

13 d 3.74 g 2.21 b–e 2.11 b–d 0.39 a nd

Butyl acetate * intact 2.53 a 5 d 27.6 b 25.3 b 24.4 b 26.3 b 24.7 b
es3 cut 56.0 c 10 d 20.0 b 18.7 b 18.4 b 17.7 b 17.8 b

13 d 19.0 b 17.3 b 16.9 b 14.9 b 17.2 b

Isobutyl acetate intact 1.52 a 5 d 21.9 b 18.1 b 17.9 b 22.2 b 17.9 b
es4 cut 64.1 c 10 d 16.7 a–b 15.1 a–b 13.7 a–b 16.1 a–b 13.7 a–b

13 d 15.9 a–b 15.8 a–b 12.3 a–b 13.9 a–b 14.2 a–b

2-methylbutyl acetate * intact 25.2 a 5 d 139 d 127 c–d 110 b–d 114 b–d 128 c–d
es5 cut 323 e 10 d 94.1 b–d 94.7 b–d 79.5 a–c 74.8 a–c 91.1 b–d

13 d 87.3 b–d 89.9 b–d 66.5 a–b 62 a–b 87.8 b–d

Pentyl acetate * intact 0.78 a 5 d 4.36 b 3.34 a–b 3.36 a–b 4.04 b 3.16 a–b
es6 cut 13.1 c 10 d 2.64 a–b 2.44 a–b 2.02 a–b 2.37 a–b 1.91 a–b

13 d 2.38 a–b 1.83 a–b 1.61 a–b 1.80 a–b 1.43 a–b
Hexyl acetate * intact 3.15 a 5 d 5.98 a 4.64 a 4.45 a 5.19 a 3.73 a

es7 cut 59.8 b 10 d 3.48 a 3.56 a 2.31 a 2.85 a 2.14 a
13 d 3.15 a 2.56 a 1.73 a 2.13 a 1.88 a
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Table 2. Cont.

VOC Time Initial Time C 55 55_cp 65 65_cp

2-Hexen-1-yl acetate intact nd 5 d nd nd nd nd nd
es8 cut 22.9 b 10 d nd nd nd nd nd

13 d nd nd nd nd nd

Ethyl propionate intact 1.46 b–c 5 d 3.17 e 3.16 e 2.03 c–d 1.22 b 1.65 b–d
es9 cut nd 10 d 3.27 e 4.23 f 2.34 d 1.63 b–d 1.79 b–d

13 d 5.01 g 4.49 f–g 2.33 d 1.34 b–c 1.82 b–d

Ethyl 2-methylpropanoate intact nd 5 d 1.06 b–c 2.88 e 1.32 b–c 1.64 c–d 1.24 b–c
es10 cut nd 10 d 0.97 b–c 3.94 f 1.18 b–c 2.20 d–e 1.31 b–c

13 d 1.35 b–c 4.76 g 0.63 a–b 0.82 a–c 0.89 a–c

Methyl butyrate intact 0.63 a 5 d 1.37 a–b 1.06 a–b 1.39 a–b 0.77 a–b 1.79 b
es11 cut 4.20 c 10 d 1.13 a–b 0.93 a–b 1.36 a–b 0.63 a 1.48 a–b

13 d 1.06 a–b 0.93 a–b 1.14 a–b 0.57 a 1.5 a–b

Methyl 2-methylbutyrate * intact nd 5 d 2.27 c–e 1.60 b–c 2.78 d–g 1.09 b 2.90 e–g
es12 cut nd 10 d 1.97 b–d 1.62 b–c 3.48 g 1.09 b 3.27 f–g

13 d 2.44 c–f 1.80 b–c 2.92 e–g 1.06 b 2.94 e–g

Ethyl butyrate * intact nd 5 d 12.1 b–c 16.8 c–d 12.4 b–c 13.4 b–c 12.5 b–c
es13 cut 1.64 a 10 d 10.9 b 18.4 d 11.9 b 13.3 b–c 11.6 b

13 d 12.9 b–c 18.2 d 11.0 b 10.2 b 12.3 b–c

Ethyl 2-butenoate intact nd 5 d 0.54 b–d 0.62 b–e 0.51 b–c 0.91 e–f 0.93 e–f
es14 cut nd 10 d 0.70 b–f 0.82 c–f 0.55 b–d 0.98 f 0.78 b–f

13 d 0.84 d–f 0.98 f 0.49 b 0.79 b–f nd

Ethyl 2-methylbutanoate * intact nd 5 d 25.1 b–c 37.9 d–e 30.4 b–d 23.3 b 31.9 b–d
es15 cut 0.98 a 10 d 25.1 b–c 43.3 e–f 29.6 b–d 33.6 c–d 32.8 b–d

13 d 33.7 c–d 51.0 f 27.4 b–c 24.8 b–c 33.4 c–d

Hexyl butyrate * intact 5.24 a 5 d 1.55 b–d 1.92 b–d 2.45 b–c 2.66 b 2.51 b–c
es16 cut 5.39 a 10 d 1.00 d–e 1.16 c–e 1.44 b–e 1.38 b–e 1.65 b–d

13 d 0.63 d–e nd nd nd 1.28 c–e

Hexyl 2-methylbutanoate * intact 5.56 a 5 d 11 b–e 12.9 e 12.6 d–e 11.3 c–e 11.2 c–e
es17 cut 8.20 b 10 d 11.2 c–e 11.1 b–e 10.2 b–e 9.76 b–d 12.3 d–e

13 d 11.4 c–e 9.96 b–d 9.80 b–d 8.67 b–c 12.1 d–e

Ethyl valerate intact nd 5 d 0.37 d–e 0.47 f–g nd 0.39 e–f nd
es18 cut nd 10 d 0.34 c–e 0.54 g 0.26 b–c 0.28 b–d nd

13 d 0.38 e 0.48 g 0.21 b nd 0.3 b–e

Methyl hexanoate intact nd 5 d 0.58 b–d 1.80 e–f 0.54 a–d 1.44 e 1.01 d
es19 cut 2.09 f 10 d 0.41 a–b 1.89 e–f 0.39 a–b 0.98 c–d 0.44 a–b

13 d 0.49 a–c 2.17 f nd nd nd

Ethyl hexanoate intact nd 5 d 13.3 i–j 15.7 j 9.95 g–h 8.04 f–g 7.67 e–g
es20 cut 1.56 a–b 10 d 7.15 d–g 11.6 h–i 4.88 c–e 4.74 b–e 4.28 b–d

13 d 6.34 d–f 7.72 e–g 2.86 a–c 2.74 a–c 3.22 a–c

Hexyl hexanoate * intact 2.11 a–b 5 d 0.98 d–g 1.28 c–g 1.57 b–e 2.48 a 1.75 a–d
es21 cut 1.92 a–c 10 d 0.71 f–g 1.07 d–g 0.82 e–g 1.27 c–g 1.43 b–f

13 d 0.56 g 0.71 f–g 0.73 f–g 0.92 e–g 1.14 c–g

Ethanol intact 9.72 b 5 d 13.1 c 27.7 f 14.9 c 22.0 d–e 20.5 d
al1 cut 2.21 a 10 d 13.1 c 27.8 f 14.0 c 20.9 d–e 15.6 c

13 d 15.0 c 32.4 g 19.7 d 23.8 e 20.1 d

2-(2-Ethoxyethoxy)ethanol intact 0.65 a 5 d 0.35 b–d 0.45 b 0.43 b 0.37 b–d 0.38 b–c
al2 cut 0.62 a 10 d 0.30 c–e 0.25 d–e 0.22 e 0.29 c–e 0.22 e

13 d 0.26 c–e 0.25 d–e 0.28 c–e 0.27 c–e 0.29 c–e

2-Methyl-1-propanol intact 0.86 a 5 d 1.02 a–b 0.96 a 0.94 a 1.21 a–c 1.13 a–b
al3 cut 2.99 e 10 d 0.92 a 1.01 a–b 0.88 a 1.07 a–b 0.93 a

13 d 1.07 a–b 1.68 d 1.50 c–d 1.36 b–d 1.09 a–b

1-Butanol * intact 1.51 a 5 d 1.56 a 2.01 b–c 1.72 a–b 2.13 c 1.99 b–c
al4 cut 2.82 d 10 d 1.59 a 1.82 a–c 1.72 a–b 1.79 a–c 1.66 a–b

13 d 1.46 a 1.67 a–b 1.67 a–b 1.67 a–b 1.64 a–b

2-Methyl-1-butanol intact 3.24 a 5 d 4.25 a–b 5.32 b–d 4.44 a–c 5.14 b–d 5.89 c–d
al5 cut 9.02 e 10 d 4.63 a–c 5.58 b–d 4.67 b–c 4.60 a–c 5.21 b–d

13 d 4.51 a–c 6.3 d 4.77 b–c 4.67 b–c 5.55 b–d
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Table 2. Cont.

VOC Time Initial Time C 55 55_cp 65 65_cp

1-Hexanol * intact 1.44 a 5 d 2.90 b 3.99 b–c 3.07 b 4.54 c 3.60 b–c
al6 cut 3.94 b–c 10 d 3.06 b 4.21 b–c 3.08 b 3.39 b–c 2.84 b

13 d 2.88 b 3.93 b–c 3.27 b–c 3.52 b–c 3.11 b

2-Butanone intact 2.67 a–e 5 d 0.86 a–b 4.71 e–f 3.62 c–e 8.89 g 6.75 f–g
k1 cut 0.33 a 10 d 0.73 a–b 7.32 g 1.96 a–d 4.68 e–f 4.22 d–e

13 d 1.32 a–c 7.12 g 2.44 a–e 3.30 b–e 3.76 c–e

1-Penten-3-one intact nd 5 d 1.35 b 2.29 b–d 1.77 b–c 3.35 e–f 1.98 b–c
k2 cut nd 10 d 3.71 e–f 3.98 f 3.21 d–f 5.16 g 3.72 e–f

13 d 3.52 e–f 2.78 c–e 4.18 f 4.06 f 3.76 e–f

Hexanal * intact 0.50 a 5 d 3.23 b–d 6.47 f–g 4.66 d–f 7.14 g 5.25 d–g
ad1 cut 1.92 a–b 10 d 4.49 d–f 5.08 d–f 3.72 b–d 6.26 e–g 4.43 d–e

13 d 4.19 c–d 2.30 a–c 3.46 b–d 3.77 b–d 3.81 b–d

Estragole intact 0.30 b–e 5 d 0.61 g 0.42 c–f 0.45 d–g 0.35 b–f 0.47 e–g
bd1 cut 0.41 b–f 10 d 0.52 f–g nd nd 0.29 b–d 0.37 b–f

13 d 0.51 f–g nd 0.26 b–c 0.24 b 0.36 b–f

D-Limonene intact 3.27 a 5 d 6.26 a–d 10.4 e 9.77 e 7.54 b–e 8.45 d–e
tp1 cut 4.93 a–c 10 d 4.74 a–b 4.54 a 9.54 e 7.65 c–e 8.67 d–e

13 d 4.70 a–b 4.40 a 9.06 d–e 5.23 a–c 9.28 e

α-Farnesene intact 13.8 a–c 5 d 24.0 d–e 18.8 a–d 21.3 c–e 16.8 a–d 28.0 e
tp2 cut 19.1 a–d 10 d 17.4 a–d 14.4 a–c 14.9 a–c 15.0 a–c 20.5 b–e

13 d 16.5 a–d 10.6 a 12.1 a–b 12.5 a–b 17.7 a–d

* marked VOCs described as generally important “character impact” compounds in apples [29]. nd = not
detected/below detection limit; dark green = ≥500% increase; light green = ≥33% increase; yellow = ≤33%
increase/decrease; light red = ≥80% decrease; dark red = ≥500% decrease.

During further storage, the emissions of the majority of VOCs were significantly reduced compared
to those observed immediately after cutting. Cumulative VOCs concentrations decreased by 37.7% for
control and by 18.8%–50.7% for sHWT samples, but were nevertheless 3.5–5.8 times higher than for
intact apples (Table 2, 1st position). While cutting immediately and strongly increased the emission of
acetate esters, the concentrations of these compounds decreased or, at least, remained constant during
storage. Only the concentration of ethyl-acetate continued to increase after 3 d of storage as did the
concentrations of all other ethyl esters, methyl 2-methylbutyrate, ethanol, hexanal and both ketones.

Responses of sHWT samples depended on both the treatment temperatures and the post-processing
acid treatment (Table 3). Head space concentration of ethanol was generally higher and that of estragole
and propyl-acetate lower in sHW-treated samples than in controls; propyl acetate concentration was
more reduced at 65 ◦C than at 55 ◦C. Furthermore, sHWT at 65 ◦C significantly reduced emissions of
ethyl-propionate, ethyl hexanoate and methyl hexanoate. These VOCs were also reduced at sHWT of
55 ◦C combined with acid treatment, i.e. chemical prevention. The combination of sHWT and acid
application also resulted in increased D-Limonene and decreased ethyl 2-butenoate emissions, while
the enhancement of the ethanol emission was attenuated. At a sHWT of 55 ◦C, the combination with
organic acid resulted in lower ethyl acetate emission. In contrast, only the sole sHWT at 55 ◦C (i.e.,
without cp) let the emissions of nearly all ethyl esters increase especially that of ethyl-acetate, methyl
hexanoate and 2-butanone, compared to controls.
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Table 3. Treatment-specific qualitative changes in the emissions of relevant VOCs and corresponding
aroma threshold values of fresh-cut apple slices stored in sugar syrup at 4 ◦C for up to 13 d.

Treatment Reaction VOCs Aroma Threshold
Values (nL L−1)

all sHWT
↑ Ethanol 8–900 a/>1 × 105,b

↓
Propyl acetate 2000–11,000 a,b

Estragole n/a
sHWT without cp ↑ Ethanol 8–900 a/>1 × 105,b

sHWT combined with cp ↑ D-limonene 4–229 a

↓ Ethyl 2-butenoate n/a
only 55 ◦C sHWT ↑ 2-methyl-1-propanol 360–3300 a

only 55 ◦C sHWT
without cp

↑

Ethyl acetate 5–13,500 b

Ethyl 2-methylpropanoate 0.01–1 a

Ethyl butyrate * 0.1–18 a

Ethyl 2-methylbutanoate * 0.006–0.1 a,b

Ethyl valerate 1.5–5 a,b

Methyl hexanoate 10–87 a

2-butanone n/a

↓
Estragole n/a

1-penten-3-one 400 a

only 55 ◦C sHWT
combined with cp ↓ Ethyl acetate 5–13,500 a,b

only 65 ◦C sHWT ↓ Propyl acetate 2000–11,000 a,b

only sHWT at 65 ◦C or
combined with cp ↓

Ethyl propionate 9–45 a

Ethyl hexanoate 0.3–5 a

Methyl hexanoate 10–87 a

sHWT: short-term hot water treatment; cp: chemical prevention by applying organic acid dipping of fresh-cut slices;
55 ◦C/65 ◦C: sHWT at the specified temperature; green ↑: increase; red ↓: decrease. Given are aroma threshold
values according to a Burdock [30] and b Dixon and Hewett [29]. * marked VOCs described as generally important
“character impact” compounds in apples [29].

The PCA provides two principal components (PC), which together represent 98.2% of the total
variance in VOCs profiles. The effects of cutting, sHWT temperature and duration of storage can be
visualized by a scatter point plot (Figure 2A). Decreasing values of PC1 (representing 65.3% of total
variance in VOCs profiles) can be associated with the effects of cutting, while increasing values are
associated with storage time. Decreasing values of PC2 (representing 33.0% of total variance in VOCs
profiles) can also be associated with cutting, and, beyond that, with the distinct effects of the various
treatments. Interestingly, sHWT at 55 ◦C induced the highest alteration of the VOCs profile from that
of intact apples (c.f. colored bars in Figure 2A).

For both PCs, the impact of each single VOC on the total variance in the VOCs profiles can be
identified as visualized in Figure 2B. Mostly, ethyl acetate (es1) and, to a much smaller extent, ethyl
2-methylbutanoate (es15) and ethanol (al1) are related to effects of the sHWT (PC2), but also to changes
during storage (PC1). Cutting-induced changes in the VOCs profiles (both PC decreased) are mainly
associated with 2-methylbutyl acetate (es5), but also with isobutyl acetate (es4), butyl acetate (es3) and
hexyl acetate (es7).
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3.2. Ethylene Evolution 

Cutting immediately and significantly intensified ethylene release of untreated apple slices by 
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intact apples (Figure 3). Storage in sugar syrup generally reduced ethylene release as measured after 

removing the samples from the solution. Compared to controls, sHWT at 55 °C initially (i.e., at day 5 

Figure 2. (A) Scatterplot of principal components analysis (PCA)-results of the variability of VOCs
profiles during storage of treated and untreated fresh-cut apple slices. Decreasing scores of PC1 and
PC2 can be associated with the effects of cutting; scores values of PC1 are associated with storage time,
marked by colored areas (blue = 3 d and red = 10 d); decreasing scores of PC2 additional associated
with distinct effects of the various treatments, marked by colored bars. (B) Loading plot of PCA-results
of single-VOC impact on the total variance in VOCs profiles. VOCs with negative loadings of both PCs
can be associated with the effects of cutting; VOCs with positive PC1 and negative PC2 loadings are
related during storage and distinct effects of the treatments.

3.2. Ethylene Evolution

Cutting immediately and significantly intensified ethylene release of untreated apple slices by
approx. 30%; however, ethylene emission also rapidly, within 4 h, declined to rates below that of
intact apples (Figure 3). Storage in sugar syrup generally reduced ethylene release as measured after
removing the samples from the solution. Compared to controls, sHWT at 55 ◦C initially (i.e., at day 5
of storage) intensified ethylene emissions of apples slices, while that at 65 ◦C pronouncedly lowered
them. Irrespective of treatments, ethylene emission of all apple slices continuously declined during
further storage (Figure 3; days 10 and 13).
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Figure 3. Ethylene release rates of short-term hot-water treated and untreated fresh-cut apple slices at
days 5, 10 and 13 of storage in sugar syrup at 4 ◦C, compared to intact apples and untreated fresh-cut
apple slices (initial). Given are means ± standard deviation (n = 3). Different letters indicate significant
differences between means (p < 0.05).
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3.3. Respiration

CO2-based respiration rates of untreated ’Braeburn’ apples increased 3.4 times immediately after
cutting and then slightly declined again within 4 h (Figure 4). During storage in sugar syrup, CO2 release
of all samples was higher than that of intact apples. In addition, respiration of sHWT-samples treated
at 55 ◦C without acid treatment was significantly higher than that of the other apple slices at all
sampling days.
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Figure 4. Respiration rates of short-term hot-water treated and untreated fresh-cut apple slices at days
5, 10 and 13 of storage in sugar syrup at 4 ◦C, compared to intact apples and untreated fresh-cut apple
slices (initial). Given are means ± standard deviation (n = 3). Different letters indicate significant
differences between means (p < 0.05).

4. Discussion

In the presented experiment, several overlaying and potentially interactive effects were responsible
for the development of respective VOCs profiles during storage of apple slices, i.e., cutting,
sHW-treatment at two temperatures and storage in sugar syrup with its pronounced effect on
O2 availability. The most pronouncedly emitted VOCs were esters. Similarly, Paillard [31] reported
that esters of acetic, butanoic and hexanoic acids with ethyl, butyl and hexyl alcohols are the most
frequent VOCs detected in the headspace of intact apples. The respective composition of the above
esters determines the typical fruity (i.e., ’apple-like’) cultivar-specific aroma of apples [32]. In the
presented study, 10 of the identified esters were described as generally important “character impact”
VOCs [29]. Although the overall composition of the VOCs may clearly vary among different apple
cultivars [33], 2-methylbutyl acetate and α-Farnesene are most often the major components in ’Braeburn’
apples [34,35]. This was confirmed by the present results.

4.1. Effect of Cutting on the Release of VOCs, Ethylene and CO2

The cutting-related increase in acetates probably impacted the aroma of fresh-cut apples,
as 2-methylbutyl acetate, butyl-acetate and hexyl acetate are characterized as “character impact
compounds” [29]. These VOCs are predominantly associated with a characteristic sweet, cox-like
apple aroma [36]. The presented results confirmed earlier findings that cutting inevitably
induces physiological wounding-stress responses characterized by temporarily increased ethylene
synthesis [37,38], respiration activity [7] and VOCs release [39], which all return to pre-processing
levels within 24 h [40]. Emissions of acetate-esters may strongly increase, due to increased lipoxygenase
activity [41] resulting in enhanced esterification of membrane lipids [42,43]. Furthermore, a largely
accelerated glycolysis increases the acetyl-CoA availability, and thus also boosts amino-acids production,
which serve as precursors to many VOCs [43,44]. During storage, however, the concentrations of the
aroma-relevant acetates decreased, which may indicate that the cutting induced stress response was
reduced or no longer existed. Therefore, the generation of precursors relevant for VOC synthesis
was reduced resulting in a decline of emissions. However, the emissions were still higher than those
from intact apples. Nevertheless, the typical aroma, appearing immediately after cutting the apples,
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got continuously lost during storage. This, however, is generally monitored during storage of fresh-cut
apples [44].

4.2. Impact of Hot-Water Treatment on the Release of VOCs, Ethylene and CO2

Even the sHWT at 65 ◦C did not alter the emission of most VOCs or pronouncedly impacted
VOCs profiles but only marginally reduced that of few esters. In contrast to cutting, sHWT did
obviously also not affect the synthesis of acetate-esters. This is surprising because a high number of
VOCs emanate from the epidermal layers of apples, while only a lower proportion derived from the
pulp tissue [45]. However, dipping intact apples for 30 s in hot-water at 55 ◦C exclusively heated
the epidermis and few hypodermal cell layers [17]. Furthermore, although treatments at higher
temperatures (i.e., >55 ◦C) resulted in faster increase in tissue temperature of deeper cell layers, only
70 ◦C pronouncedly damaged the epidermis [17]. Thus, sHWT, in the temperature range used, did
not decrease the emission of important “character impact” compounds [29] or increase that of VOCs
associated with off-odor. Therefore, sHWT did not reduce the aroma quality. Similarly, sHWT (of up to
65 ◦C) did not adversely affect color attributes, tissue strength or other important quality parameters of
fresh-cut apple slices [18].

Although the increased ethanol emission may be assumed as critically, the aroma-relevant
threshold for this compound is much higher than for other important VOCs (Table 3). In addition,
the ethanol concentrations in total were very low. The observed increase in ethanol emission, therefore,
did not negatively affect the aroma quality at all. It may, nevertheless, indicate some sHWT-induced
heat stress because ethanol and ethyl-acetate emissions are known to increase in response to and may
be used as indicators of this stressor [46,47]. Heat stress was reported to alter the glycolytic pathway
by disturbing the mitochondrial electron transport, which, similar to reduced O2 availability, results
in increased ethanol formation [48]. This may also be reflected by the marginally higher respiratory
activity observed at the end of storage. Heat treatment-enhanced respiration was also reported earlier
for intact ‘Granny Smith’ and ‘Anna’ apples [49]. In addition, the increased D-limonene emissions of
acid-treated sHWT samples may be attributed to major perturbations of the cellular metabolism that
result in the expression of multiple genes and, finally, in enhanced terpene emissions [50,51].

Omitting the post-processing acid treatment increased the ethanol emission, which, however,
did not negatively affect the aroma (see above). Hot-water treatments without post-processing acid
application only slightly enhanced the alteration of the VOCs profile typical for intact apples in
comparison to those with additional acid dipping. Interestingly, sHWT at 55 ◦C without additional acid
treatment clearly intensified the storage-induced physiological responses of fresh-cut apple slices, i.e.,
it slightly enhanced their respiration activity and ethylene release. This may indicate a direct response
of the treated apples to moderate but not to excessive heat or to acid pretreatment [52,53]. Additionally,
the emission of ethyl esters is further intensified in sHW-treated (55 ◦C) apple slices. This is especially
obvious for ethyl acetate and ethanol, which, however, both increased in all samples during storage
(see Section 4.3). As ethylene may directly regulate the synthesis of VOCs [44,54,55], the increase in
ethyl 2-methylpropanoate, ethyl butyrate and ethyl 2-methylbutanoate may be directly related to
the enhanced ethylene tissue concentrations. Ethyl acetate correlates with pronounced off-odor [56],
while the “character impact compounds” [29] ethyl-butyrate and ethyl 2-methylbutanoate are generally
associated with fruity and apple-like aroma [57]. The increase in the head space concentrations of the
latter compounds, which own aroma thresholds much lower than ethyl acetate [29,30], may thus even
improve the overall aroma of the apple samples (Table 3).

4.3. Effects of Storage in Sugar Syrup on the Release of VOCs, Ethylene and CO2

Storing fresh-cut apple slices in sugar syrup pronouncedly affected the development of their VOCs
profiles, as indicated by the distinct increase in ethyl ester emissions. Following sHWT, head space
concentration of ethyl acetate of samples increased 0.5–1.6-fold compared to controls; it, however,
increased approx. 100 times due to the sugar syrup.
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The reduction of ethylene and CO2 release observed after immersion in the syrup, corroborate the
findings of Rux et al. [7]. These authors stored apple slices in sugar syrups of different concentrations
and attributed major changes in respiration of samples to the reduced O2 availability due to impaired
gas exchange between tissues and ambient air [7,58]. Therefore, the fast decrease in O2 and increase in
CO2 concentrations within the tissue increasingly inhibits physiological processes [59]. The increased
emissions of ethanol and other alcohols probably indicate semi-anaerobic conditions [60].

Likewise, the increased emissions of ethyl esters may be explained by the increased ethanol
formation under these conditions. Alcohol acetyl-CoA transferase (AAT) catalyzes the esterification of
carboxylic acids and alcohols [46,61], and enhanced ethanol concentrations may enhance the formation
of ethyl esters, especially ethyl acetate [62]. In this context, Cortellino et al. [62] measured a progressive
increase of ethyl acetate in fresh-cut apple tissue within 11 d of storage in modified atmosphere, most
pronounced at an O2 concentration of 1%.

However, in this study, the influence of oxygen availability on VOC synthesis during storage
in sugar syrup submerged apple pieces cannot be sufficiently clarified. Further studies focusing on
oxygen availability are necessary.

5. Conclusions

In a semi-practical approach, this study comprehensively evaluated the potential food
quality-related effects of sHWT (at 55 ◦C and 65 ◦C), cutting and/or post-processing acid treatment and
their interactions on the development of aroma-relevant VOCs as well as on the physiological indicators
ethylene synthesis and respiration activity in fresh-cut apple slices stored in sugar syrup. Cutting
temporarily enhanced ethylene synthesis, respiration activity and VOCs production. In this context,
2-methylbutyl acetate, butyl acetate and hexyl acetate were identified as most relevant cutting-enhanced
VOCs, but their emissions declined again during syrup-storage. Syrup-storage increased ethanol and
ethyl-esters, and in particular ethyl-acetate, which might be attributed to reduced O2 availability under
this condition. Solely applying sHWT at both 55 ◦C and 65 ◦C enhanced the respiration of apples slices,
which potentially indicated marginal heat stress. This, however, only slightly intensified ethylene
release but increased ethanol emission of samples, indicating alterations in respiratory pathways.
Additionally, sHWT at 65 ◦C resulted only in minor declines of few esters. Nevertheless, the general
impact of sHWT on VOCs profiles of apples slices was low, especially in comparison to storage in sugar
syrup and did not negatively affect aroma. The omission of pre-processing acid application did not
negatively affect the aroma to a crucial degree. Consequently, sHWT might replace the post-processing
acid treatments for fresh-cut products.
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