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Abstract: Freeze-dried immobilized Lactobacillus casei ATCC 393 on casein and apple pieces were
assessed as a probiotic adjunct culture for novel probiotic yogurt production. The effect of probiotic
culture on physicochemical characteristics, probiotic cell survival, volatile aroma compounds, and
sensory quality were evaluated during 28 days of storage at 4 ◦C. The use of L. casei resulted in lower
pH values (3.92–4.12), higher acidity (0.88–1.10 g lactic acid/100 g of yogurt), and lower syneresis
(40.8%–42.6%) compared to traditionally produced yogurt (pH 4.29; acidity 0.83 g lactic acid/100 g
of yogurt; syneresis 44.1%). Microbiological and strain-specific multiplex PCR (Polymerase Chain
Reaction) analysis confirmed that immobilized L. casei ATCC 393 cells were detected in yogurts at
levels >7 log cfu g−1 after 28 days. In addition, probiotic supplementation significantly affected the
concentrations of key volatile compounds, like acetic and other organic acids, 2-ethyl-1-hexanol,
acetoin, and 2-butanone, as revealed by GC-MS (Gas Chromatography–Mass Spectrometry) analysis.
Finally, the sensory evaluation demonstrated that the new products exhibited improved characteristics
compared to traditionally produced yogurts.

Keywords: probiotic; Lactobacillus casei; freeze drying; volatiles; multiplex PCR; GC-MS; apple
pieces; casein

1. Introduction

Yogurt is a fermented dairy product that is widely consumed throughout the world and with
thousands of years of history [1]. In this vein, there is nowadays a growing interest in developing novel
dairy products containing probiotic microorganisms, such as bifidobacteria and lactic acid bacteria,
with a great potential for promoting human health [2,3]. Indeed, yogurt has been characterized as an
ideal carrier for the delivery of probiotics and numerous studies, describing the development of novel
probiotic products, are expected within the next years, leading to increased consumer acceptability, as
well as profit-making for manufacturers [4]. However, the most important issue in probiotic yogurt
development is to ensure cell viability until the time of consumption in sufficient numbers, in order to
exert their numerous health benefits, a fact that is not usually fulfilled [5].

Lactobacillus casei ATCC 393 is a strain with many applications in food production [6–8] and
several probiotic properties, such as survival under in vitro gastrointestinal conditions [9] and survival
during the passage through the gastrointestinal tract in a rat model, potential regulation of intestinal
microbiota [10], as well as tumor-inhibitory, anti-proliferative, and pro-apoptotic effects [11,12].
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Immobilization is a method that has been used to increase the viability of added cultures during
food production and storage [9,13]. Among others, milk proteins, such as caseins, have already been
used as probiotic cells carrier in dairy products [14–16]. The addition of fruits, like apples, is a common
practice in yogurt production due to the numerous health benefits associated with their consumption.
Apples were selected in the present study since they are an excellent source of several phenolic
compounds and dietary fibers, and also possess high total antioxidant capacity [17,18]. Dietary fibers
have been characterized as functional ingredients owe to their prebiotic activity, and in combination
with probiotics, may affect positively gastrointestinal functions [19,20]. Such characteristics make apple
pieces a suitable delivery vehicle for probiotics either used as novel probiotic dehydrated fruits [21] or
incorporated in dairy products when bearing immobilized probiotic cells [10,22].

Hence, the aim of the present study was to evaluate the use of freeze-dried immobilized Lactobacillus
casei ATCC 393 on casein and apple pieces as a probiotic adjunct culture for novel probiotic yogurt
production. Freeze-dried immobilized L. casei cells were used in order to comply with industrial
and commercial needs. In addition, in order to evaluate successful yogurt production, the main
physicochemical, microbiological, and aroma characteristics of novel yogurts were evaluated. Finally,
a sensory evaluation was conducted to assess the acceptance of the new yogurt by consumers.

2. Materials and Methods

2.1. Strains

Lactobacillus casei ATCC 393 (DSMZ, Braunschweig, Germany) was used as a probiotic type strain.
The thermophilic starter, CH-1 (Chr. Hansen, Hørsholm, Denmark) was used as commercial yogurt
starter culture. Both were prepared for yogurt production as described in a previous study [9]. In brief,
CH-1 culture was activated by adding a 50 U sachet to 500 mL of sterile 140 g L−1 skim milk, while L.
casei ATCC 393 was grown in de Man, Rogosa and Sharpe (MRS) broth at 37 ◦C.

2.2. Immobilization of L. casei

Cell immobilization on apple pieces and casein was carried out as described in a previous
study [13]. In brief, apples were cut in small pieces, placed in a conical flask containing L. casei cells
in MRS broth and were left undistributed at 37 ◦C for 24 h. When immobilization was completed,
the fermented liquid was decanted, and the immobilized cells were washed twice with sterilized
1/4 Ringer’s solution. For cell immobilization on casein, L. casei culture was added to commercial
pasteurized skim bovine milk that was heated to 37 ◦C and commercial rennet was then added. After
curd formation and cloth filtration at room temperature, which was carried out overnight, the resulting
curd was cut in small cubes.

2.3. Freeze Drying of Free and Immobilized L. casei Cells

Freeze drying of free and immobilized L. casei cells was carried out according to a previous study,
using deproteinized whey as lyoprotectant in the case of free cells, and lactose and monosodium
glutamate in the case of immobilized cells on apple pieces and casein, respectively [13].

2.4. Yogurt Production

A commercial pasteurized bovine milk (“Small Family Farms”, Delta S.A., Greece, 37 g L−1 fat,
47 g L−1 sugars, 33 g L−1 protein) was tempered at 42–45 ◦C and the freeze-dried L. casei was added
either in free (0.3 g in 150 mL milk) or immobilized form (1.9 g in 150 mL milk). Prior to milk addition,
the freeze-dried cultures were rehydrated in 5 mL milk for 15 min. After 30 min, all milk samples
were inoculated with the activated CH-1 culture (0.3% (v/v)). Milk samples were fermented until pH
4.6. Thereafter, the yogurts were stored at 4 ◦C for 28 days. Yogurt with only CH-1 culture was also
produced (control sample) in order to allow comparison of results. Therefore, four different yogurts
were produced: yogurt with CH-1 culture (C); yogurt with freeze-dried free L. casei cells and CH-1
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culture (FLC); yogurt with freeze-dried immobilized L. casei cells on apple pieces and CH-1 culture
(ILCA); yogurt with freeze-dried immobilized L. casei cells on casein and CH-1 culture (ILCC).

2.5. Determination of Cell Viability

2.5.1. Determination of S. thermophilus, L. bulgaricus, and L. casei Viability

The viability of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and L. casei
was measured using yogurt samples of 10 g and following the procedure described in a previous
study [9].

2.5.2. Determination of L. casei ATCC 393 Levels

To determine the levels of L. casei ATCC 393 strain in probiotic yogurt samples, a methodology
recently described by Sidira et al. [10] was followed, based on a multiplex PCR assay [23].

2.6. Physicochemical Analysis

2.6.1. pH and Titratable Acidity of Yogurts

Yogurts pH was measured using a pH meter and titratable acidity was determined by titration
using 0.1 mol L−1 NaOH and phenolphthalein as an indicator, and expressed as g of lactic acid per 100
g yogurt [9].

2.6.2. Susceptibility to Syneresis and Water Holding Capacity

The yogurt “susceptibility to syneresis” (STS) was determined using 50 mL of unstirred yogurt
spread evenly on a Whatman No.1 filter paper (Whatman Ltd., Maidstone, England) in a funnel at 4
◦C. After 5 h of drainage, the volume of whey collected in a beaker was measured, multiplied by 2 and
expressed as STS (%) [3].

The water holding capacity (WHC) was determined by centrifugation of a 10 g yogurt sample at
4500 rpm for 30 min at 10 ◦C, and calculated using the following equation:

WHC (%) = (1 −W1/W2) × 100, (1)

where W1 = weight of whey after centrifugation, W2 = yogurt sample weight [3].

2.7. Solid-Phase Microextraction GC-MS Analysis

Yogurts samples after 14 days of refrigerated storage were used to study the volatile composition
by solid-phase microextraction (SPME) GC-MS analysis. The procedure described in a previous
study [14] was followed, using 7 g of yogurt. Each determination was carried out in triplicate, and the
mean data are presented.

2.8. Sensory Evaluation of Yogurts

The yogurts were tested for their sensory characteristics as described in a previous study [9]. More
specifically, the evaluation was conducted by 20 untrained panelists (10 females and 10 males aged
20–45 years) familiar with the consumption of yogurts. All samples were presented in uniform plastic
cups at 15 ◦C, coded with random three-digit numbers. Water was provided between samples to
cleanse the palate. The yogurts were evaluated for color, sweet odor, sourness, smoothness, sweetness,
viscosity, and overall acceptability using a 9-point hedonic scale ranging from 1 (“dislike extremely”)
to 9 (“like extremely”).
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2.9. Statistical Analysis

All experiments were carried out in triplicate and duplicate samples were collected for each
analysis. Significance was established at p < 0.05. The results were analyzed for statistical significance
with ANOVA, and Tukey’s honest significant difference (HSD) test was used to determine significant
differences among results; coefficients, ANOVA tables, and significance (p < 0.05) were computed
using Statistica version 5.0 (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion

3.1. Production of Novel Probiotic Yogurts with Immobilized L. casei ATCC 393

Yogurt is a traditional dairy product obtained after lactic acid fermentation, usually of two
microorganisms, namely Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, with
growing worldwide production and consumption. However, research on the development of novel
yogurt-based products is increased in recent years in order to fulfill two main demands of consumers.
Firstly, the request for more healthy foods has led to the development of novel functional dairy products
with potential health benefits like probiotic yogurts [24] and, secondly, the increasing popularity of
yogurts with new flavors has resulted in the development of novel yogurts with different sources of
fruit flavorings [25,26]. In this study, both requirements were fulfilled by using immobilized L. casei
ATCC 393 cells on apple pieces or casein. Lactobacillus casei ATCC 393 was mainly selected due to its
satisfying technological and health-promoting characteristics, but also due to its capability to survive
the harsh conditions of the gastrointestinal tract, as was demonstrated both in vitro, in simulated
gastrointestinal conditions [9], and in vivo, in a Wistar rat model [10]. Both apple and casein have been
used as immobilization supports in several foods, and have also proven capable of protecting L. casei
cells during freeze drying [13].

3.2. Physicochemical Characteristics of Novel Probiotic Yogurts

The acidification trend in yogurt fermentation is presented in Figure 1. The use of different cultures
had no significant effect on milk acidification. The small observed differences were not important
from a technological point of view. The maximum rate of pH decline occurred between 2.5 and 4.5 h
after milk inoculation, which is in accordance with previous studies using the same starter culture and
different probiotics [24]. The total acidification time was 5, 4.75, 4.6, and 4.5 h for C, FLC, ILCC, and
ILCA yogurts, respectively, showing a slight reduction with the use of L. casei, as was also reported in
previous studies [24,27].

As expected, a postacidification effect was observed in yogurts resulting in lower pH values
during storage (Table 1). No significant differences were observed in the pH values at the 1st day
and until 7th day of storage (ranging between 4.50 and 4.55 at 1st day and 4.37 and 4.46 at 7th day).
However, after the 14th day, the use of L. casei significantly affected (p < 0.05) the pH values, and as
the storage continued, this effect became more significant (p = 0.028, p = 0.042, and p = 0.003 for 14th,
21st, and 28th day of storage respectively). The use of L. casei, especially in immobilized form, led to
lower pH values compared to the control yogurt, which is in accordance with previous studies [24].
At the end of storage, the pH values were 4.29 for C, 4.12 for FLC, 4.04 for ILCA, and 3.92 for ILCC
samples. The same effect was also observed in fermented milks using microencapsulated L. casei
ATCC 393 cells [9]. Similar pH values (3.9 to 4.3) were also reported in yogurts with several probiotic
cultures [5,7,28].
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Figure 1. Acidification kinetics during yogurt production. (C = Yogurt produced with CH-1 culture;
FLC = yogurt produced with freeze-dried free L. casei ATCC 393 cells and CH-1 culture; ILCA = yogurt
produced with freeze-dried immobilized L. casei ATCC 393 cells on apple pieces and CH-1 culture; ILCC
= yogurt produced with freeze-dried immobilized L. casei ATCC 393 cells on casein and CH-1 culture).

Table 1. Physicochemical characteristics of yogurts during storage at 4 ◦C for up to 28 days.

Analysis Storage
(Days)

Yogurt 1

C FLC ILCA ILCC

pH

1 4.55 ± 0.05 a 4.50 ± 0.03 a 4.52 ± 0.05 a 4.51 ± 0.02 a

7 4.46 ± 0.04 ab 4.37 ± 0.01 b 4.39 ± 0.02 ab 4.42 ± 0.03 a

14 4.32 ± 0.02 b,XY 4.35 ± 0.02 bc,X 4.30 ± 0.03 bc,XY 4.20 ± 0.01 b,Y

21 4.30 ± 0.03 b,X 4.22 ± 0.02 cd,XY 4.20 ± 0.01 cd,XY 4.18 ± 0.01 b,Y

28 4.29 ± 0.02 b,X 4.12 ± 0.04 d,Y 4.04 ± 0.02 d,YZ 3.92 ± 0.02 c,Z

Acidity
(g lactic acid/100 g yogurt)

1 0.75 ± 0.01 0.72 ± 0.02 b 0.75 ± 0.03 b 0.76 ± 0.02 c

7 0.76 ± 0.02 0.79 ± 0.01 ab 0.78 ± 0.02 b 0.84 ± 0.02 bc

14 0.80 ± 0.01 Y 0.81 ± 0.01 ab,Y 0.81 ± 0.02 b,Y 0.89 ± 0.01 b,X

21 0.82 ± 0.02 Y 0.87 ± 0.02 a,Y 1.03 ± 0.01 a,X 1.02 ± 0.02 a,X

28 0.83 ± 0.02 Y 0.88 ± 0.02 a,Y 1.04 ± 0.01 a,X 1.10 ± 0.03 a,X

STS
(%)

1 42.0 ± 0.5 X 37.8 ± 0.2 a,Y 36.7 ± 0.3 a,Y 35.5 ± 0.9 a,Y

7 42.3 ± 0.7 X 39.8 ± 0.1 b,XY 38.2 ± 0.5 ab,Y 37.2 ± 0.5 ab,Y

14 43.6 ± 0.5 X 41.2 ± 0.5 bc,XY 39.3 ± 0.4 bc,Y 38.3 ± 0.7 abc,Y

21 43.5 ± 0.6 X 42.9 ± 0.4 c,X 40.1 ± 0.4 bc,Y 39.6 ± 0.5 bc,Y

28 44.1 ± 0.4 X 42.6 ± 0.4 c,XY 40.8 ± 0.2 c,Y 41.0 ± 0.3 c,Y

a–d Means within a column with different lowercase superscripts in the same analysis differ significantly (p < 0.05).
X–Z Means within a row with different uppercase superscripts differ significantly (p < 0.05). STS = susceptibility to
syneresis; 1 C = yogurt produced with CH-1 culture; FLC = yogurt produced with freeze-dried free L. casei ATCC
393 cells and CH-1 culture; ILCA = yogurt produced with freeze-dried immobilized L. casei ATCC 393 cells on apple
pieces and CH-1 culture; ILCC = yogurt produced with freeze-dried immobilized L. casei ATCC 393 cells on casein
and CH-1 culture.

Another way to study postacidification of yogurts is to determine their acidity. The effect of
storage time on yogurts acidity is presented in Table 1. Initial values varied from 0.72% to 0.76% and
no significant differences were observed between the 1st and the 7th day of storage. However, after the
14th day of storage, the use of L. casei, especially in immobilized form, significantly affected (p < 0.05)
yogurt acidity (p = 0.025, p = 0.003, and p = 0.002 for 14th, 21st, and 28th day of storage, respectively),
leading to higher acidities compared to the control yogurt, as reported in previous studies [9,24].
At the end of the storage period, the acidities were 0.83 for C, 0.88 for FLC, 1.04 for ILCA, and 1.10
for ILCC and similar values were previously reported [6]. Since postacidification depends on the
microorganisms used and their viable counts during storage, these results may be attributed to the
high viability of L. casei due to the protection by immobilization and the acid-resistant nature of the
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strain [9,29], as well as its capability to produce higher amounts of lactic acid if compared to other
probiotics [24].

Whey separation is a common defect in fermented milk products [30], which affects consumer
perceptions. In the present study, STS values were significantly affected (p < 0.05) by the use of L. casei
and especially in immobilized form, leading to lower STS values. This may be attributed to the high
WHC of casein and apple pieces. Milk proteins, like casein, are reported to reduce the STS values [3],
while pectin, contained in apple pieces, acts as a stabilizer of yogurt gel matrix and also reduces STS
values. Storage affected only the yogurts produced with L. casei cells and significantly higher values
of syneresis were observed at the end of storage, which may be attributed to the significantly higher
values in acidity. Increased syneresis with storage time is usually associated with severe casein network
rearrangements [31]. A similar trend was observed in the values of WHC. More specifically, after
28 days of storage, WHC values were 53.6%, 55.5%, 57.9%, and 57.7%, for C, FLC, ILCA, and ILCC
yogurts, respectively.

3.3. Microbiological Analysis of Novel Probiotic Yogurts

The numbers of viable cells of starter and adjunct cultures during 28 days of storage of the
probiotic yogurts are presented in Figure 2. In some cases, the yogurt starter cultures produce
inhibitory substances (such as hydrogen peroxide, bacteriocins, or lactic acid), which could potentially
reduce the viability of probiotic bacteria [32]. Therefore, in the present study, the cultures were
separately inoculated into milk. Firstly, milk was inoculated by L. casei cells, in order to provide the
appropriate time to increase their numbers, and the commercial yogurt starters were then added after
30 min.
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3.4. Aroma-Related Compounds of Novel Probiotic Yogurts  

Figure 2. Viability of microorganisms used in yogurt production during refrigerated storage;
(A) Streptococcus thermophilus, (B) Lactobacillus delbrueckii subsp. bulgaricus, (C) Lactobacillus casei
ATCC 393. (C = Yogurt produced with CH-1 culture; FLC = yogurt produced with freeze-dried free
L. casei ATCC 393 cells and CH-1 culture; ILCA = yogurt produced with freeze-dried immobilized L.
casei ATCC 393 cells on apple pieces and CH-1 culture; ILCC = yogurt produced with freeze-dried
immobilized L. casei ATCC 393 cells on casein and CH-1 culture. Different letters in the columns indicate
significant differences (p < 0.05)).
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In all cases, even after storage for 28 days, the sum of yogurt starter bacteria (Figure 2A,B), S.
thermophilus and L. delbrueckii ssp. bulgaricus, was above the minimum requirement of 107 viable
microorganisms per gram established by FAO/WHO [33]. Streptococcus thermophilus, in general,
survives well (> 108 cfu/mL) in fermented milk products during refrigerated storage, and this was
also observed in all yogurt samples (Figure 2A). The addition of probiotic L. casei and the storage
significantly affected (p < 0.05) the viability of S. thermophilus and L. bulgaricus, leading to reduced
numbers. It is well known that the incorporation of probiotics into yogurts, together with starter
cultures, leads to interactions between the growth patterns of each strain [24]. In all cases, the numbers
of yogurt starters were significantly lower in yogurts with L. casei (FLC, ILCA, and ILCC) compared to
the control sample (C), which may be attributed to their reduced stability due to the competitive action
of probiotic L. casei [24,27]. S. thermophilus numbers were higher than those of L. bulgaricus, indicating
better adaption of S. thermophilus cells to the presence of L. casei. A reduction in the viability of L.
bulgaricus up to 30%–50% in the presence of L. casei has been also reported in previous studies [5,28],
and may be attributed to the secretion of inhibitory metabolites produced by probiotics that may affect
species of the same genus [5]. Indeed, in a previous study, four probiotic strains, namely L. casei, L.
acidophilus, L. plantarum, and L. rhamnosus, led to a reduction of S. thermophilus and L. bulgaricus viability
in yogurt, with L. casei presenting the most significant effect [24]. Apart from the antagonistic activity
of L. casei towards the typical yogurt microflora and the marked acidification of the new products, no
significant alterations were observed compared to the control samples, according to the preliminary
sensory evaluation, as described below in detail.

A critical issue in the development of probiotic fermented dairy products is to ensure the viability
of probiotics during fermentation and storage. Figure 2C presents changes in L. casei ATCC 393
counts during refrigerated storage of probiotic yogurts. An increase in L. casei cells was observed
during the fermentation process, resulting in 7.73, 8.65, and 8.80 log cfu/g at the first day of storage in
FLC, ILCA, and ILCC, respectively. This significant growth of L. casei was also observed in previous
studies [24] and is attributed to its capability to grow well in milk environment [34]. Immobilization
significantly affected (p < 0.05) the viability of L. casei cells throughout storage and may be attributed
to the protective effect of apple and casein [13]. More specifically, during storage, the numbers of
immobilized cells were 0.9–1.0 log cfu g−1 higher than those of free cells. The duration of refrigerated
storage significantly affected (p < 0.05) the viability of L. casei, resulting in a significant decline (1.05,
0.87, and 0.68 log cfu g−1 in FLC, ILCA, and ILCC, respectively). Similar results have been reported in
previous studies with yogurts [5,24,27]. The numbers of L. casei cells in all probiotic yogurts during
production and refrigerated storage (even after 28 days) were above the requirement of 6 log cfu
g−1 for microorganisms (other than the starter culture) added to yogurt [35], and for probiotic food,
according to US FDA and the food industry [36]. Of note, the use of immobilized cells led to even
higher viabilities of L. casei cells, up to 7.78 and 8.12 log cfu g−1 for ILCA and ILCC, respectively. These
high numbers also fulfill the demand for a daily intake of 108–109 probiotic microorganisms, in order to
accomplish a probiotic action in the host [37], which may be easily achieved with the consumption of
10–100 g of novel yogurts. Furthermore, the high numbers of L. casei cells after 28 days of storage were
also corroborated by multiplex PCR assay (Figure 3), which provides accurate, reliable, convenient,
and sensitive detection of L. casei ATCC 393 cells compared to traditional methods [2].
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PCR products of 67 and 144 bp are unique for L. casei ATCC 393, whereas the PCR product of 340 bp is
universal for lactobacilli.

3.4. Aroma-Related Compounds of Novel Probiotic Yogurts

Probiotic yogurts, containing either free (FLC) or immobilized L. casei cells (ILCA and ILCC),
and yogurt produced with only the commercial starter (C) were analyzed for their aroma-related
compounds (SPME GC-MS technique). From a qualitative point of view, no significant differences
were observed in the numbers of compounds between yogurt samples, confirming the findings of
previous studies reporting that probiotics, when used in combination with traditional yogurt starters,
do not influence the formation of major aroma compounds, but rather their concentrations [38]. The
compounds identified in the yogurts are listed by chemical group in Table 2.

3.4.1. Esters

Only 4 esters were detected belonging to the group of ethyl esters. Ethyl esters originated from
the enzymatic or chemical esterification of acids with ethanol [39] and are typically characterized by
a fruity aroma [40]. All of them were detected in low concentrations, since the presence of esters in
yogurts is associated with extended storage [39].

3.4.2. Organic Acids

Organic acids presented the second highest concentration after ketones. Acetic acid is an important
compound in yogurts and was found in concentrations similar to other studies [41]. Other acids
that were detected and are frequently found in dairy products were butanoic, hexanoic, octanoic,
nonanoic, and decanoic acids [16,24,26,40]. The use of L. casei resulted in significantly (p < 0.05)
higher concentrations of butanoic, hexanoic, and octanoic acids, while immobilized cells resulted in
significantly higher concentrations of acetic and decanoic acids. Previous studies have correlated
the activity of L. casei with the formation of organic acids in yogurts [24], fermented milks [34], and
cheeses [42].
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Table 2. Major aroma-related compounds (µg/kg) of novel probiotic yogurts after 14 days of
refrigerated storage.

Compound Identification
Method 1

Yogurt 2

C FLC ILCA ILCC

Esters
Ethyl butanoate RT, KI, MS 1.2 ± 0.2 a 0.4 ± 0.1 b 0.5 ± 0.1 ab ND
Ethyl hexanoate RT, KI, MS 0.8 ± 0.2 a ND ND 0.2 ± 0.2 a

Ethyl octanoate RT, KI, MS ND 3 0.7 ± 0.2 a 0.9 ± 0.3 a ND
Ethyl decanoate RT, KI, MS ND ND 1.0 ± 0.2 a 0.7 ± 0.3 a

Organic acids
Acetic acid MS 25.3 ± 1.2 a 31.4 ± 2.1 a 52.4 ± 3.0 b 51.2 ± 2.9 b

Butanoic acid KI, MS 19.2 ± 2.1 a 41.4 ± 3.9 b 37.7 ± 3.1 b 40.5 ± 1.5 b

Hexanoic acid KI, MS 47.6 ± 3.0 a 71.5 ± 4.5 b 82.1 ± 5.0 b 78.7 ± 3.6 b

Octanoic acid RT, KI, MS 59.2 ± 3.5 a 30.9 ± 2.1 b 41.5 ± 3.0 b 35.4 ± 1.5 b

Nonanoic acid RT, KI, MS 9.3 ± 0.9 ab 7.2 ± 0.5 a 10.2 ± 0.8 ab 13.4 ± 0.9 b

Decanoic acid RT, KI, MS 37.4 ± 2.2 a 56.5 ± 4.2 ab 65.1 ± 3.2 b 70.2 ± 4.3 b

2-Methyl butanoic acid KI, MS ND ND ND 4.2 ± 0.9
Alcohols
Ethanol RT, KI, MS >10,000 >10,000 >10,000 >10,000

1-Hexanol RT, KI, MS 4.2 ± 1.0 a ND ND 3.1 ± 0.4 a

1-Heptanol KI, MS 5.1 ± 0.8 a 2.1 ± 0.5 b ND ND
1-Octanol RT, KI, MS ND ND 1.2 ± 0.6 a 0.7 ± 0.2 a

1-Nonanol RT, KI, MS 2.0 ± 0.5 a ND ND 0.4 ± 0.2 b

3-Methyl-1-butanol RT, KI, MS ND 0.7 ± 0.3 a 0.4 ± 0.2 a ND
2-Heptanol RT, KI, MS ND ND 1.2 ± 0.4 ND
2-Nonanol RT, KI, MS 1.2 ± 0.6 c 2.9 ± 0.5 bc 5.1 ± 0.8 a 4.0 ± 1.0 ab

1-Octen-3-ol RT, KI, MS 2.7 ± 0.4 a ND 1.2 ± 0.2 b ND
2-Ethyl-1-hexanol RT, KI, MS 3.1 ± 0.3 a 12.4 ± 1.0 b 16.1 ± 1.2 b 18.7 ± 1.6 b

Phenyl ethanol RT, KI, MS ND 0.9 ± 0.3 ND ND
Aldehydes

Acetaldehyde KI, MS 17.3 ± 1.0 a 16.7 ± 1.2 a 18.4 ± 0.5 a 17.9 ± 1.0 a

3-Methyl butanal KI, MS 0.8 ± 0.2 a 1.2 ± 0.5 a 1.5 ± 0.2 a 1.9 ± 0.2 a

Hexanal KI, MS ND 2.1 ± 0.4 a ND 2.8 ± 0.3 a

Heptanal KI, MS 2.1 ± 0.4 a 3.5 ± 0.3 ab 4.7 ± 0.9 ab 5.1 ± 0.3 b

Octanal KI, MS 5.1 ± 0.5 a 12.1 ± 1.0 b 12.8 ± 1.0 b 14.1 ± 0.9 b

Nonanal KI, MS 9.5 ± 0.6 a 10.5 ± 0.5 a 14.2 ± 1.1 ab 16.7 ± 1.2 b

(E,E)-2,4-Heptanedial KI, MS ND 5.6 ± 0.4 a 10.2 ± 0.8 b 12.1 ± 0.8 b

(E)-2-Nonenal KI, MS 5.9 ± 0.4 a 4.1 ± 0.1 ab 7.3 ± 0.5 b 6.7 ± 0.4 b

Ketones
Acetone KI, MS 15.1 ± 0.8 a 12.9 ± 1.0 a 13.1 ± 1.2 a 11.5 ± 0.5 a

2-Butanone KI, MS 27.3 ± 1.5 a 69.4 ± 2.3 b 102.1 ± 9.5 b 100.9 ± 10.8b

2-Pentanone MS 19.7 ± 1.0 a 47.3 ± 2.0 b 82.4 ± 5.5 c 80.1 ± 7.0 c

2-Heptanone KI, MS 22.4 ± 2.3 a 51.2 ± 1.8 b 81.7 ± 4.9 c 92.4 ± 6.4 c

2-Octanone MS 12.1 ± 1.1 a 21.3 ± 1.2 b 29.4 ± 2.2 b 27.3 ± 1.2 b

2-Nonanone KI, MS 13.9 ± 1.0 a 15.2 ± 1.5 a 19.4 ± 1.1 a 17.3 ± 0.9 a

2-Undecanone KI, MS 4.9 ± 0.5 a 12.3 ± 0.8 b 11.9 ± 0.8 b 15.4 ± 1.0 b

2-Tridecanone MS ND 17.4 ± 0.7 a 21.5 ± 1.0 a 20.4 ± 1.5 a

3-Hydroxy-2-butanone(acetoin) KI, MS 73.1 ± 5.5 a 98.2 ± 7.8 ab 143.2 ± 11.0 bc 159.2 ± 13.8 c

2,3-Butanedione(diacetyl) MS 27.4 ± 1.5 a 29.3 ± 2.2 a 32.1 ± 3.0 a 33.1 ± 1.2 a

2,3-Pentanedione MS 5.2 ± 2.0 a 10.1 ± 1.5 b 7.9 ± 1.0 ab 8.7 ± 0.9 b

Lactones
γ-Dodecalactone KI, MS ND 1.2 ± 0.8 ND ND
δ-Dodecalactone KI, MS 0.5 ± 0.2 a 5.1 ± 0.8 b 4.9 ± 0.7 b 6.2 ± 0.4 b

Total compounds

Esters 2.0 ± 0.4 a 1.1 ± 0.3 a 2.4 ± 0.6 a 0.9 ± 0.5 a

Organic Acids 198.0 ± 12.9 a 238.9 ± 17.3 ab 289.0 ± 18.1 ab 293.6 ± 15.6 b

Alcohols 18.3 ± 3.6 19.0 ± 2.6 25.2 ± 3.0 26.9 ± 3.4
Aldehydes 40.7 ± 3.1 a 55.8 ± 4.2 ab 69.1 ± 5.0 b 77.3 ± 5.1 b

Ketones 220.6 ± 14.7 a 385.1 ± 22.3 ab 544.7 ± 39.2 b 566.3 ± 45.2 b

Lactones 0.5 ± 0.2 a 6.3 ± 1.6 b 4.9 ± 0.7 ab 6.2 ± 0.4 b

Total 480.1 ± 34.9 a 706.2 ± 48.3 ab 935.3 ± 66.6 b 971.2 ± 70.2 b

a–c Means within a row with different lowercase superscripts differ significantly (p < 0.05). 1 RT: positive identification
by retention times that agree with authentic compounds generated in the laboratory; KI: tentative identification
by Kováts retention index compared to the literature [14,15,26,43]; MS: tentative identification by mass spectra
obtained from NIST107, NIST21, and SZTERP libraries. 2 C = yogurt produced with CH-1 culture; FLC = yogurt
produced with freeze-dried free L. casei ATCC 393 cells and CH-1 culture; ILCA = yogurt produced with freeze-dried
immobilized L. casei ATCC 393 cells on apple pieces and CH-1 culture; ILCC = yogurt produced with freeze-dried
immobilized L. casei ATCC 393 cells on casein and CH-1 culture. 3 ND: not detected.
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3.4.3. Alcohols

Apart from ethanol, which was detected in all yogurts, 10 other alcohols were detected in total
(Table 2). 3-Methyl-1-butanol, having an alcoholic, floral note, was detected in FLC and ILCA samples,
while 1-hexanol, with fruity notes, was present in C and ILCC. Secondary alcohols like 2-heptanol (only
in ILCA yogurt) and 2-nonanol (present in all samples) were also detected and are usually formed
by the enzymatic reduction of the corresponding methyl ketones, which themselves originate from
fatty acids by β-oxidation or from β-ketoacids [14]. These alcohols are usually identified in several
dairy products, including fermented milk [41], yogurt [24] and cheeses [14]. 1-Octen-3-ol, present only
in C and ILCA samples, is well known for its raw mushroom odor [40]. Finally, 2-ethyl-1-hexanol,
an important flavor compound in dairy products, was detected in all samples and its content was
significantly (p < 0.05) affected by the use of L. casei, resulting in higher concentrations. It is an
important flavor compound produced by L. casei, as was also found in previous studies with yogurts
and cheeses [24,42].

3.4.4. Aldehydes

Acetaldehyde is considered as one of the key volatile compounds for the flavor of yogurts,
responsible for the characteristic green apple or nutty flavor [39], and was among the detected
aldehydes. It is derived from the cleavage of threonine, with the action of a threonine aldolase to
form acetaldehyde and glycine [40]. This enzyme occurs in both S. thermophilus and L. delbrueckii
subsp. bulgaricus, but that derived from L. bulgaricus acts better at 42 ◦C and therefore in yogurts,
acetaldehyde is mainly produced by L. delbrueckii subsp. bulgaricus [44]. No significant differences (p >

0.05) due to the activity of L. casei were observed, supporting the previously mentioned conclusion. In
addition, previous studies showed that yogurt starter CH-1, is capable of producing acetaldehyde in
considerable amounts [45]. Hexanal, detected in yogurts with L. casei (FLC, ILCA, and ILCC), and
heptanal, detected in all samples, provide the green note of immature fruit, while octanal and nonanal,
also detected in all samples, are described as having an aromatic note resembling orange [40]. The use
of L. casei resulted in significantly (p < 0.05) higher concentrations of octanal and (E,E)-2,4-heptanedial,
while the addition of immobilized cells significantly increased (p < 0.05) the concentrations of nonanal
and (E)-2-nonenal.

3.4.5. Ketones

Ketones were the group with the highest concentration in the yogurts of the present study. Acetone,
detected in all samples with no significant (p > 0.05) differences, has a sweet, fruity aroma, and is known
to influence the aroma and flavor of yogurt [39]. It originates usually from milk, but it is also produced
by the action of yogurt bacteria, as reported previously, using the same yogurt starter CH-1 [45]. Several
methyl ketones, with fruity, floral, and musty notes, were detected in all yogurts, such as 2-butanone,
2-pentanone, 2-heptanone, 2-octanone, 2-nonanone, 2-undecanone, and 2-tridecanone [40]. In addition,
the concentrations of all ketones, apart from 2-nonanone, were significantly (p < 0.05) higher in yogurt
samples containing either free or immobilized L. casei. These methyl ketones have been characterized
as significant volatile organic compounds in samples fermented with L. casei and originate mainly
from lipolysis, oxidation, and decarboxylation of fatty acids [24]. 3-Hydroxy-2-butanone (acetoin),
with creamy and butter-like flavor, was present in all yogurt samples. It is known that commercial
starter CH-1 produces acetoin in lower contents compared to other cultures [45], and the same result
was observed in our case. However, L. casei resulted in significantly (p < 0.05) higher concentrations.
Diacetyl (2,3-butanedione) was also detected in all yogurts and is responsible for a buttery flavor that is
considered positive at elevated concentrations [39]. No significant differences were observed between
the samples regarding the content of diacetyl, which in combination with the high levels of acetoin, is
responsible for the mild, pleasant, buttery taste that is critical to the rich perception of yogurt [39].
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3.4.6. Lactones

Lactones are generally characterized by very pronounced fruity attributes; however, they are
also recognized as important compounds for their ability to suppress the unpleasant flavor of other
components, such as fatty acids, thus providing a milder and pleasant character [15]. Significantly (p <

0.05) higher concentrations of δ-dodecalactone were detected in yogurts with L. casei (FLC, ILCA, and
ILCC). The correlation of L. casei with the production of this lactone was also reported in previous
studies using L. casei in Feta-type and whey cheeses [16,42], confirming the positive effect of L. casei on
the aroma of the final product.

3.4.7. Total Volatile Compounds

No significant differences (p > 0.05) were observed in total concentration of esters and alcohols.
However, immobilized L. casei cells (ILCA and ILCC) led to significantly (p < 0.05) higher concentrations
of organic acids, aldehydes, ketones, and total compounds, compared to the C sample. These results
may be attributed to the relatively high viable counts of L. casei, especially in immobilized form during
the storage period, which resulted in high metabolic activities altering the volatile profile of yogurts.
Therefore, it may be concluded that the addition of L. casei ATCC 393 significantly affected the formation
of minor volatile compounds, which may also have an impact on the final organoleptic quality.

3.5. Preliminary Sensory Evaluation of Novel Probiotic Yogurts

The use of L. casei resulted in improved sensory characteristics (Figure 4), and significantly affected
all the sensory attributes apart from color, where all yogurts received similar values. A slight, but not
significant increase, was observed in color with the use of immobilized cells.
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casei ATCC 393 cells on apple pieces (ILCA) and casein (ILCC) in comparison to control samples (C).
Different letters in the columns in the same sensory attribute indicate significant differences (p < 0.05).

A more significant effect was observed in smoothness (p = 0.005), with ILCA and ILCC receiving
the lowest scores due to the presence of solid immobilized cells, and in sweet odor (p = 0.007), with
ILCA and ILCC receiving the highest scores (7.4 and 7.0, respectively) followed by FLC (6.8) and C
(6.3). Sourness was also significantly affected (p = 0.017) by the use of L. casei and ILCA and ILCC
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scored lower values due to the lower pH and higher acidities during storage. Less significant was the
effect on viscosity (p = 0.046), but more significant (p = 0.005) on overall acceptability. According to
the GC–MS analysis, yogurts with immobilized cells contained higher concentrations of volatiles like
acetoin and 2-butanone that mostly contribute to the typical aroma and flavor of yogurt, in combination
with acetaldehyde, diacetyl, and acetone [39]. This may explain the higher scores of the yogurts with
immobilized cells during the sensory evaluation. In addition, more fruity notes were associated to ILCA
sample due to the presence of apple pieces. This result is also explained by the higher concentrations
of compounds like octanol, acetic acid, 2-butanone, and acetoin in ILCA that have been correlated
with fruity flavor in yogurts and other dairy products [46,47]. Similarly, significant improvement of
sensory characteristics was also previously recorded in dairy products containing L. casei as an adjunct
or starter culture [5,9,16,42,48].

4. Conclusions

The present study clearly showed that the addition of free or immobilized L. casei on apple pieces
and casein had a positive effect on yogurt characteristics. Their use led to novel probiotic products
with improved quality, as confirmed by the sensory evaluation and the SPME GC-MS analysis of
aroma-related compounds. Importantly, apple pieces and casein retained the viability of L. casei cells
during refrigerated storage at the essential concentration for providing health benefits. These results are
considered very promising for the design and development of novel dairy products that will combine
the probiotic benefits with new or improved flavor, enhancing their acceptability by consumers.
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