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Abstract: Spinach is prone to spoilage in the course of preservation. Spinach leaves stored at 
different temperatures for different durations will have varying degrees of freshness. In order to 
monitor the freshness of spinach leaves during storage, a rapid and non-destructive 
method—hyperspectral imaging technology—was applied in this study. Visible near-infrared 
reflectance (Vis-NIR) (380–1030 nm) and near-infrared reflectance (NIR) (874–1734 nm) 
hyperspectral imaging systems were used. Spinach leaves preserved at different temperatures 
with different durations (0, 3, 6, 9 days at 4 °C and 0, 1, 2 days at 20 °C) were studied. Principal 
component analysis (PCA) was adopted as a qualitative analysis method. The second-order 
derivative spectra were utilized to select effective wavelengths. Partial least squares discriminant 
analysis (PLS-DA), support vector machine (SVM), and extreme learning machine (ELM) were 
used to build models based on full spectra and effective wavelengths. All three models achieved 
good results, with accuracies above 92% for both Vis-NIR spectra and NIR spectra. ELM obtained 
the best results, with all accuracies reaching 100%. The overall results indicate the possibility of the 
freshness identification of spinach preserved at different temperatures for different durations 
using two kinds of hyperspectral imaging systems. 

Keywords: hyperspectral imaging; spinach; freshness detection; visible/near-infrared spectra; 
near-infrared spectra 

 

1. Introduction 

Spinach (Spinacia oleracea L.) is a common vegetable which is abundant in carotenoids, vitamin 
C, vitamin K, minerals (calcium, iron, etc.), coenzyme Q10, and other nutrients [1]. In addition to its 
value as a food, spinach is also of rich medical value [2,3]. As a vegetable, spinach can be placed on 
the shelf after a simple processing following the harvest. However, spinach leaves have a large area 
and soft tissue, which requires high moisture, and the plant’s exuberant metabolism makes it easily 
lose freshness due to water loss in the course of picking, transportation, and sales. Furthermore, 
improper preservation can also cause deterioration of quality and greatly reduce the nutritional 
quality of spinach. 

The freshness detection of spinach is important to ensuring its quality and commercial value. 
Generally, spinach leaves sold in markets are placed in both refrigerators and common shelves. The 
decay rates of spinach leaves under different temperatures are different, so spinach leaves can be 
stored for a longer time under lower temperature. A series of treatments for the freshness detection 
of samples are required in traditional detection methods, such as the measurement of chemical 
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indexes like moisture, chlorophyll, and soluble sugar content [4,5]. However, traditional chemical 
detection methods are too cumbersome and require professional operators with expertise. The high 
cost of chemical tests also makes this approach not universally popular. Therefore, a rapid and 
non-destructive a method for the detection of vegetable freshness would be of great significance. 

At present, machine vision technology and spectroscopy technology are widely used in 
agricultural product detection due to their non-destructive, rapid, and reliable characteristics. 
Machine vision technology can grade samples by analyzing the spatial information of samples and 
extracting relevant characteristics of agricultural product quality [6–9]. Machine vision technology 
can effectively detect the external quality of agricultural products (e.g., shape, color, etc.). However, 
spectroscopy technology is needed when it comes to the internal quality of agricultural products 
(e.g., protein content, sugar degree, acidity, etc.)—especially visible/near-infrared (Vis-NIR) 
spectroscopy [10,11]. The wavebands in visible/near-infrared spectroscopy reveal the spectral 
attributes of pigments, while wavebands in the near-infrared range are connected with the physical 
and chemical information of samples [12,13]. However, visible/near-infrared spectroscopy can only 
detect a small area at a time, which easily introduces data fluctuations and therefore inaccurate 
discriminant analyses. 

Hyperspectral imaging technology can simultaneously acquire the spectral and spatial 
information of a research object, combining machine vision and spectroscopy technologies. 
Hyperspectral technology can simultaneously analyze the internal and external quality information 
of the sample [14,15]. Therefore, the application of hyperspectral imaging technology in the 
non-destructive detection of internal and external quality of fruits and vegetables has achieved good 
results in recent years. Visible/near-infrared spectra and near-infrared spectra can both be applied in 
the freshness detection. Elmasry et al. used a hyperspectral image system to detect apple bruises on 
different background colors, and partial least squares and stepwise discrimination analysis were 
used for the data analysis. The results indicated the possibility of apple bruise determination using 
the hyperspectral image system combined with chemometric methods [16]. Huang et al. applied 
hyperspectral transmittance images to discriminate insect-damaged soybeans. A 100% calibration 
accuracy was achieved by the support vector data description (SVDD) classifier [17]. Freshness 
monitoring using hyperspectral imaging technology also achieved decent results with both Vis-NIR 
and NIR spectra [18–20]. Although their study monitored spinach shelf-life with hyperspectral 
imaging (visible range, 400–1000 nm) through different packaging films, Lara et al. mainly focused 
on cold temperatures using only visible near-infrared spectra [19]. 

The objective of this study was to explore the feasibility of using hyperspectral imaging to 
detect the freshness of spinach leaves stored at different temperatures. The specific objectives were: 
(1) Explore the differences of spinach freshness detection using visible/near-infrared spectra and 
near-infrared spectra; (2) Verify the possibility of freshness detection under different temperatures (4 
°C and 20 °C) preserved for different durations; (3) Compare the modelling performance of partial 
least squares discriminant analysis (PLS-DA), support vector machine (SVM), and extreme learning 
machine (ELM) models. 

2. Materials and Methods 

2.1. Sample Preparation 

Fresh spinach leaves were directly harvested from a local farmland in Hangzhou, Zhejiang 
province, China. The spinach leaves were taken to the laboratory and cleaned for hyperspectral 
image acquisition. To evaluate the freshness of spinach, two different temperatures were selected for 
storage: 4 and 20 °C. For 4 °C storage, spinach leaves were stored in a refrigerator and covered with 
plastic film. The deterioration rates of spinach leaves under different temperatures are different. It 
is obvious that spinach leaves at 20 °C deteriorate much faster and cannot last as long as spinach 
leaves at 4 °C. Therefore, the storage duration for the two temperatures cannot be the same. 
Furthermore, the objective of this study was to verify whether the change of freshness under 
different temperatures could be detected, and the freshness of spinach leaves at 4 °C showed small 
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differences in 3 days. Given this background, four storage durations were studied for spinach 
stored at 4 °C, including 0 days (which meant that the spinach samples were directly used for 
hyperspectral image acquisition after harvesting), 3 days, 6 days, and 9 days. For the 20 °C storage 
condition, spinach leaves were stored covered with plastic film. The set temperature (20 °C) was 
maintained by the air conditioner. Three time periods of storage were studied for spinach stored at 
20 °C, including 0, 1, and 2 days. Figure 1 shows RGB images of spinach leaves stored at different 
temperatures for different durations. For each storage time duration, 30 spinach leaves were 
studied. In total, there were 120 and 90 spinach leaves prepared for 4 °C and 20 °C conditions, 
respectively. The samples of 0-days storage for the two storage temperatures were the same. The 
spinach leaves were divided randomly into a calibration set and a prediction set at the ratio of 2:1. 

 
(a) 

 
(b) 

Figure 1. RGB images of spinach leaves preserved under different temperature conditions: (a) 4 °C; 
(b) 20 °C. 

2.2. Hyperspectral Imaging System 

Two hyperspectral imaging systems, including a near-infrared (NIR) hyperspectral imaging 
system covering the spectral range of 874–1734 nm and a visible/near-infrared (Vis-NIR) 
hyperspectral imaging system covering the spectral range of 380–1030 nm, were integrated in the 
same platform. 

The NIR hyperspectral imaging system was composed of an imaging spectrograph (ImSpector 
N17E; Spectral Imaging Ltd., Oulu, Finland), a high-performance camera (Xeva 992; Xenics Infrared 
Solutions, Leuven, Belgium), and a camera lens (OLES22; Specim, Spectral Imaging Ltd., Oulu, 
Finland). The data cube of the NIR hyperspectral imaging system was 326 × λ × 256 (image width × 
image length × wavebands). 

The Vis-NIR hyperspectral system comprised an imaging spectrograph (ImSpector V10E; 
Spectral Imaging Ltd., Oulu, Finland) with the spectral resolution of 2.8 nm, a high-performance 
CCD camera (Hamamatsu, Hamamatsu City, Japan), and a camera lens (OLES23; Specim, Spectral 
Imaging Ltd., Oulu, Finland). The data cube of the Vis-NIR hyperspectral imaging system was 672 × 
λ × 512 (image width × image length × wavebands). 
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For both systems, halogen light sources (Fiber-Lite DC950 Illuminator; Dolan Jenner Industries 
Inc., Boxborough, MA, USA) were used for illumination. A motion platform driven by an IRCP0076 
electric displacement table (Isuzu Optics Corp., Taiwan, China) was used to move the samples for 
line-scanning. The acquisition of hyperspectral images was controlled by the corresponding 
software (Spectral Image-V10E and SpectralImage-Xenics 17E, Isuzu Optics Corp., Taiwan, China). 

2.3. Hyperspectral Image Acquisition and Correction 

In order to isolate samples from background easily, a black plate with low reflectance was used 
in this study. During the image acquisition, three parameters, including moving speed of conveyer 
belt, exposure time, and the height between the lens of the camera and the motion platform, were 
set first to prevent distortion of the hyperspectral images. For the NIR hyperspectral system, the 
three parameters were set as 25 mm/s, 5 ms, and 36 cm, respectively. For the Vis-NIR hyperspectral 
imaging system, the same parameters were set as 4.5 mm/s, 75 ms, and 36 cm, respectively. 

The illumination source and the sensitivity of detector influence the accuracy of reflectance. 
Thus, the raw image (Iraw) was calibrated by two reference standards according to the following 
equation: 𝐼 =  𝐼 − 𝐼𝐼 − 𝐼  (1) 

where Ic is the calibrated image; Idark represents the black reference image obtained by covering the 
lens with a lens cap whose reflectivity was about 0%; Iwhite stands for the white reference image, 
obtained using a pure white Teflon board with a high reflectivity (nearly 100%). 

2.4. Spectral Data Preprocessing and Extraction 

For Vis-NIR hyperspectral images, pixel-wise spectra within spinach leaves contained obvious 
random noise in the head and end of the spectra. Thus, only the wavebands 101–460 (502–961 nm) 
were studied. Firstly, a binary image was obtained using a gray-scale image at 800 nm, in which the 
difference between the background reflectance and the sample reflectance was large. In the binary 
image, the leaf region was “1” and the background region was “0”. Then, the binary image was 
applied to the gray-scale image at each wavelength. The pixel-wise spectra within the leaf region 
were preprocessed by wavelet transform to reduce the random noise (wavelet function Daubechies 5 
with decomposition level 3). An area normalization was applied to the preprocessed pixel-wise 
spectra to reduce the influence of the uneven surface of spinach leaves. The preprocessed pixel-wise 
spectra within one leaf were then averaged to represent the sample. 

For NIR hyperspectral images, pixel-wise spectra in the spectral range of 975–1646 nm (200 
wavebands) were studied. A binary image obtained using a gray-scale image at 1200 nm was 
applied to remove the background information by the same procedure mentioned above. The 
pixel-wise spectra within the leaf region were preprocessed by wavelet transform to reduce the 
random noise (wavelet function Daubechies 6 with decomposition level 3). An area normalization 
was also applied to the preprocessed pixel-wise spectra to reduce the influence of the uneven surface 
of spinach leaves. The average spectra were calculated to represent the samples. 

2.5. Data Analysis Methods 

2.5.1. Principal Component Analysis 

Principal component analysis (PCA) is a commonly used statistical method. A set of variables 
that may be related to each other can be transformed into a set of uncorrelated linear variables by the 
orthogonal transformation of PCA [21,22]. The converted variables are called the principal 
components (PCs). The first few PCs contain the majority of information of the hyperspectral image. 
PCA score scatter plots were formed to conduct the qualitative analysis of spinach leaves in this 
study. 

2.5.2. Effective Wavelength Selection 
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Raw hyperspectral images usually contain a great deal of uninformative information, which 
increases the volume of spectral data and influences the computation speed of models. To simplify 
the input of models and highlight the useful spectral information, the second-order derivative was 
used to select effective wavelengths in this study. The second-order derivative could weaken the 
background information of the spectra. The large differences in peaks and valleys observed in the 
second-derivative spectra revealed the variation of physical and chemical attributes among samples, 
which could be selected as effective wavelengths [23,24]. 

2.5.3. Discriminant Models 

Three discriminant methods, including partial least squares discriminant analysis (PLS-DA), 
support vector machine (SVM), and extreme learning machine (ELM), were applied to detect the 
freshness of spinach leaves. 

PLS-DA is a multivariate statistical analysis method which can be used for discriminant 
analysis. PLS-DA can reduce the effects of multicollinearity between variables and reveal the linear 
relationship between the independent matrix (X) and the dependent variables (Y). Y stands for the 
specific category in the discrimination. The parameter of PLS-DA, the optimal number of latent 
variables, is selected according to leave-one-out cross-validation [24]. The categories of the spinach 
stored at 4 °C for PLS-DA were assigned as 0001, 0010, 0100, and 1000 (corresponding to spinach 
preserved for 0, 3, 6, and 9 days, respectively). The categories of the spinach stored at 20 °C for 
PLS-DA were numbered as 001, 010, and 100 (corresponding to spinach preserved for 0, 1, and 2 
days, respectively). 

SVM is a supervised method which is widely used for classification. The hyperplane created by 
SVM can isolate different samples with maximal margins. Linear and nonlinear data can all be dealt 
with efficiently with good results based on SVM methods. Compared with other methods, SVM 
always obtains good performance on small training sets. Radial basis function (RBF) is a widely used 
kernel function for SVM. The regularization parameter c and kernel function parameter g should be 
determined for the SVM model. Grid-search was used for parameter optimization in this study, and 
the search range varied from 2−8 to 28 for both c and g [25,26]. 

As a widely used feedforward neural network, ELM can choose the weights connecting inputs 
to hidden nodes randomly with no need for modification, which brings a fast computation speed. 
The number of neurons in the hidden layer is the main parameter and needs to be determined for the 
ELM model. There are various activation functions that can be applied in ELM models (e.g., sigmoid 
function, sine function, radial basis function, etc.). Radial basis function (RBF) was selected as the 
activation function in this study. The optimal number of neurons was chosen according to the 
performance of ELM models using different numbers of neurons [27,28]. The categories of the 
spinach stored at 4 °C for SVM and ELM were assigned as 1, 2, 3, and 4 (corresponding to spinach 
preserved for 0, 3, 6, and 9 days, respectively). The categories of the spinach stored at 20 °C for SVM 
and ELM were numbered as 1, 2, and 3 (corresponding to spinach preserved for 0, 1, and 2 days, 
respectively). 

2.6. Software and Model Evaluation 

Classification accuracy, which was defined as the ratio of the number of correctly classified 
samples to the total number of samples, was used to evaluate the performance of models. PLS-DA, 
SVM, and ELM models were all built based on Matlab R2014b (The Math Works, Natick, MA, 
USA). 
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3. Results 

3.1. Spectral Profile 

Figure 2 shows the average spectra with vertical bars, which represent standard deviation (SD) 
of Vis-NIR and NIR hyperspectra of spinach leaves used for calibration. For the Vis-NIR spectra, the 
change tendency of spinach leaves stored at different temperatures with different durations were 
all similar. The same curve change tendency was also observed in NIR spectra for spinach leaves 
preserved at 4 and 20 °C. The SD of the spectra of spinach leaves stored for different days was 
similar, and could not be distinguished easily. 

There were also some overlaps of spectra among spinach leaves stored for different durations 
for both Vis-NIR spectra and NIR spectra. In order to obtain distinct information used for the 
freshness detection of spinach leaves, further processing should be applied to the spectral data. 

  
(a) (b) 

  
(c) (d) 

Figure 2. The average spectra with standard deviation (SD): visible/near-infrared (Vis-NIR) 
hyperspectral images of spinach leaves stored at (a) 4 °C and (b) 20 °C; NIR hyperspectral images of 
spinach leaves stored at (c) 4 °C and (d) 20 °C. 

3.2. PCA Scores Scatter Plot Analysis 

PCA scores scatter plot analysis was applied to show intuitive differences in spinach leaves 
with different freshness levels. The first three PCs explained more than 98% of the variance in the 
spectral data of spinach leaves, and the first three PCs were thus used to form the scores scatter plot. 
Spinach leaves of the classification set were used to conduct the PCA. For the score scatter plot of 
spinach leaves stored at 4 °C (Figure 3a) and 20 °C (Figure 3b) based on Vis-NIR hyperspectral data, 
spinach leaves stored at different temperatures for different durations clustered together according 
to their own attributes, and some overlaps among different groups could be found. Compared with 
the scores scatter plot based on Vis-NIR spectra, the scores scatter plot of spinach stored at 4 °C 
based on NIR spectra (Figure 3c) showed more distinct attributes of different clusters, with fewer 
overlaps among the four categories. From Figure 3d, there were also some overlaps among the three 
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groups, making it difficult to distinctly discriminate spinach stored at 20 °C with different durations 
based on NIR spectra. 

In order to distinguish the freshness of spinach leaves more specifically, quantitative analyses 
combined with chemometric methods should be introduced. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Score scatter plots of spinach leaves stored at (a) 4 °C and (b) 20 °C based on Vis-NIR 
hyperspectral data. Score scatter plots of spinach leaves stored at (c) 4 °C and (d) 20 °C based on NIR 
hyperspectral data. 

3.3. Effective Wavelength Selection 

Full spectra usually contain a great deal of useless information (e.g., redundancy, collinearity, 
and background information), which increases the computation time and affects the robustness of 
models. To decrease the data volume and improve the model building speed, the second-order 



Foods 2019, 8, 356 8 of 13 

 

derivative spectra of spinach leaves used for calibration were used for effective wavelengths 
selection. As shown in Figure 4, the peaks and valleys with lager differences among different groups 
were marked as effective wavelengths. Table 1 summarizes the selected effective wavelengths 
chosen for model building. A total of 15 and 12 effective wavelengths were selected for spinach 
stored at 4 °C and 20 °C using Vis-NIR hyperspectral imaging, respectively, and 14 and 13 effective 
wavelengths were selected for spinach stored at 4 °C and 20 °C by NIR spectra, respectively. More 
than 90% data volume was decreased by selecting effective wavelengths. Effective wavelengths are 
related to some chemical substances in the spinach. For spinach leaves stored under different 
temperatures, most of the effective wavelengths selected by Vis-NIR or NIR were the same, which 
implies the stability of the selection of effective wavelengths. With the change of freshness, the 
pigment content in the leaves will also change. Therefore, the effective wavelengths selected by 
Vis-NIR are in close relation to the leaf colors. For example, 538 nm and 566 nm wavelengths are 
linked with anthocyanin absorption, and the effective wavelength at 700 nm is related to chlorophyll 
content [29]. NIR spectra reveal more information about the change of chemical substances in the 
spinach. Wavelengths at 988 nm [30], 1032 nm [6], 1136 nm, and 1164 nm closely correspond to water 
content in the spinach leaves, while 995, 1311, 1132, 1321, 1348, 1406, 1473, and 1511 nm are in 
relation to organics [31,32]. For example, 995 nm represents the second vibration of N–H bonds in 
proteins or amino acids [33]. The wavelength of 1311 nm corresponds to the first overtone of the O–
H stretch and O=C=O bending [34]; 1321 nm is related to O–H, C–H, and N–H bonds [35]; 1348 nm is 
attributed to the first overtone of amide B with the fundamental amide II and III vibrations, while 
1473 nm is ascribed to OH, CH, and CH2 deformations [34]. It can be observed that most of the 
selected effective wavelengths are related to water, protein (amino acid), and fat. It is conceivable 
that the content of these substances in the spinach will change with the decrease of freshness, which 
is why these wavelengths were selected as effective wavelengths. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Effective wavelengths selected by second-order derivative spectra of spinach leaves stored 
at (a) 4 °C and (b) 20 °C based on Vis-NIR hyperspectral data. Effective wavelengths selected by 
second-order derivative spectra of spinach leaves stored at (c) 4 °C and (d) 20 °C based on NIR 
hyperspectral data. 
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Table 1. Corresponding effective wavelengths selected by second-order derivative spectra. 

Hyperspectral Imaging System Temperature (°C) No. Effective Wavelengths (nm) 

Vis-NIR 
4 15 

506, 518, 538, 566, 636, 643, 697, 704, 
707, 711, 714, 719, 739, 753, 765 

20 12 506, 518, 538, 636, 643, 698, 
709, 714, 720, 739, 753, 765 

NIR 
4 14 988, 1032, 1132, 1164, 1204, 1321, 1348, 

1375, 1406, 1429, 1460, 1473, 1511, 1632 

20 13 995, 1032, 1136, 1164, 1200, 1311, 1348, 
1375, 1406, 1429, 1460, 1473, 1632 

3.4. Classification Models Using Vis-NIR and NIR Spectra 

Classification models using Vis-NIR and NIR spectra were established with full spectra and 
effective wavelengths, and results of the four circumstances are presented in Tables 2 and 3. 
Generally speaking, although the model establishment using full spectra required more 
computation time, models based on full spectra performed better than those based on effective 
wavelengths, with all accuracies being over 97.5% and most of them reaching 100%. Satisfactory 
results were obtained under most circumstances, with accuracy surpassing 90%, indicating the 
feasibility of applying hyperspectral imaging in spinach freshness detection. 

For models using the Vis-NIR spectra, it can be seen from Table 2 that all three models based on 
the full spectra could reach a completely accurate classification, with the exception of the SVM 
model on the calibration set in the 20 °C sample set. Nevertheless, the SVM model still achieved 
98.33% classification accuracy for this calibration set. Models based on the effective wavelengths also 
obtained decent results, with most accuracies over 92.5%. ELM models again reached a 100% 
accurate classification in both 4 °C and 20 °C sample sets. The PLS-DA models performed second 
best next to the ELM models. Misclassification occurred in the prediction of the 20 °C sample set 
using effective wavelengths, while classification accuracies were all 100% in other cases. SVM 
models performed worst, without any accuracy reaching 100% for both calibration and prediction 
sets. 

Table 2. Results of classification models using Vis-NIR spectra based on full spectra and effective 
wavelengths. 

Temperature 
(°C) Classifier Parameter 1 

Full Spectra  
(%) Parameter 

Effective Wavelengths 
(%) 

Calibration Prediction Calibration Prediction 

4 
PLS-DA 12 100 100 11 100 100 

SVM (108,1) 100 100 (106,102) 95 92.5 
ELM 10 100 100 11 100 100 

20 
PLS-DA 11 100 100 12 100 96.67 

SVM (106,102) 98.33 100 (104,105) 95.00 86.67 
ELM 13 100 100 19 100 100 

1. Parameter means the parameters of partial least squares discriminant analysis (PLS-DA), support 
vector machine (SVM), and extreme learning machine (ELM) models with optimal performances. 
The parameter for PLS-DA is the optimal number of latent variables; the parameters for SVM models 
are the regularization parameter c and kernel function parameter g; the parameter of the ELM model 
is the number of hidden layer neurons. 

For models using the NIR spectra, it can be observed from Table 2 that similar results were 
obtained when full spectra were adopted. All three models based on the full spectra reached a 
completely accurate classification except for the SVM model on the prediction set in the 4 °C sample 
set, but its 97.5% accuracy was fairly acceptable. In contrast to models using the Vis-NIR spectra, all 
the models based on the effective wavelengths accomplished 100% classification accuracy in the 20 
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°C sample set. Regarding the 4 °C sample set, ELM models were still the best, with all accuracies 
reaching 100%. PLS-DA models were still second-best compared to ELM models, followed by the 
SVM models. It was also observed that models based on effective wavelengths achieved accuracies 
of at least 92.5%, while this number was 86.67% for the Vis-NIR spectra, indicating a better 
performance of NIR spectra than that of Vis-NIR in classification with effective wavelengths. 

The ELM models obtained the most satisfactory results, with all accuracies reaching 100% 
under the four circumstances. PLS-DA models were inferior to the ELM models but better than the 
SVM models. Moreover, it could be deduced from the two tables that NIR spectra and Vis-NIR 
spectra could all be applied to monitor the freshness of spinach leaves, which was consistent with 
the good results achieved in some existing studies [18–20]. Giovenzana et al. monitored the 
freshness decay of fresh-cut Valerianella locusta L. during storage at different temperatures (4, 10, and 
20 °C), and residual predictive deviation (RPD) values <3 were obtained for water content and pH [18]. 
Lara et al. also obtained good results in the course of monitoring spinach shelf-life with 
hyperspectral imaging in the Vis-NIR spectral range through packaging films stored at 4 °C for 21 
days [19]. Apart from Vis-NIR spectra, NIR spectra also could obtain satisfactory results. Sánchez 
evaluated the ability of NIR spectra to discriminate green asparagus stored in refrigerated storage (2 
°C) for different durations (7, 14, 21, and 28 days). Partial least squares 2-discriminant analysis 
(PLS2-DA) models were developed for classification, and the accuracies were between 81% and 
100% [20]. 

In summary, the results in the tables prove the feasibility of the application of hyperspectral 
imaging in spinach freshness detection, and demonstrate that models based on effective 
wavelengths can also obtain good results. 

Table 3. Results of classification models using NIR spectra based on full spectra and effective 
wavelengths. 

Temperature (°C) Classifier Parameter 1 
Full Spectra  

(%) Parameter 
Effective Wavelengths (%) 

Calibration Prediction Calibration Prediction 

4 
PLS-DA 10 100 100 10 98.75 100 

SVM (106, 103) 100 97.50 (106, 104) 98.75 92.50 
ELM 12 100 100 18 100 100 

20 
PLS-DA 4 100 100 4 100 100 

SVM (103, 103) 100 100 (103, 105) 100 100 
ELM 7 100 100 8 100 100 

1. Parameter means the parameters of partial least squares discriminant analysis (PLS-DA), support 
vector machine (SVM), and extreme learning machine (ELM) models with optimal performances. 
The parameter for PLS-DA is the optimal number of latent variables; the parameters for SVM models 
are the regularization parameter c and kernel function parameter g; the parameter of the ELM model 
is the number of hidden layer neurons. 

4. Conclusions 

Spinach leaves deteriorated at different speeds in different preservation situations. Vis-NIR 
and NIR spectra were applied to detect the freshness of spinach preserved at different temperatures 
(4 and 20 °C) for different durations (0, 3, 6, and 9 days for 4 °C and 0, 1, and 2 days for 20 °C). PCA 
was conducted on spectral reflectance and PCA scores scatter plots were also obtained for 
qualitative analyses in this study. From PCA scores scatter plots, differences of different categories 
could be observed but overlaps of scatters still existed, which required further analyses. The 
second-order derivative spectra were used for the selection of effective wavelengths. PLS-DA, SVM, 
and ELM models using full spectra and effective wavelengths were established. Decent results were 
obtained by all three models for spinach leaves stored at different temperatures and durations 
based on two kinds of hyperspectral systems. Among all three models, ELM models performed best, 
with all accuracies reaching 100% for the two spectral systems in the freshness detection of spinach 
leaves preserved at 4 °C and 20 °C.  



Foods 2019, 8, 356 11 of 13 

 

In sum, the overall results demonstrate that both Vis-NIR and NIR spectra could be used for 
the freshness monitoring of spinach at different temperatures for different storage times. Although 
the results indicated the feasibility of detecting the freshness of spinach leaves using both kinds of 
hyperspectral systems, the data processing procedures were laborious, which is an obstacle of 
practical application. Additionally, to further improve the robustness of the model, the sample 
number should be extended and different varieties of samples should also be taken into 
consideration in future studies. 
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