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Abstract: The prevalence of Bacillus cereus in a total of 585 samples of food products (herbs and spices,
breakfast cereals, pasta, rice, infant formulas, pasteurized milk, fresh acid and acid/rennet cheeses,
mold cheeses and ripening rennet cheeses) marketed in Poland was investigated. The potential of
1022 selected isolates of B. cereus to hydrolyze casein, starch and tributyrin, to ferment lactose, to grow
at 7 ◦C/10 days, to produce Nhe and Hbl toxin and to possess the ces gene was verified. B. cereus
was found in 38.8% of the analyzed samples, reaching levels from 0.3 to 3.8 log CFU g−1 or mL−1.
From the 1022 isolates, 48.8%, 36.0%, 98.9%, 80.0% and 25.0% were capable of fermenting lactose,
producing amylase, protease, lipase and growing at 7 ◦C/10 days, respectively, indicating spoilage
potentiality. The occurrence of toxigenic B. cereus strains in all tested market products, both of plant
(55.8% Hbl(+), 70.7% Nhe(+) and 1.7% ces(+) isolates) and animal origin (84.9% Hbl(+), 82.7% Nhe(+)
and 0.9% ces(+) isolates) indicates the possible risk of foodborne infections/intoxications that occur as
a result of the possibility of the development of B. cereus in favorable conditions and consumption of
these products.
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1. Introduction

Natural environmental reservoirs of the spore-forming bacteria of the Bacillus cereus species
include the soil, plant surfaces and contaminated water [1]. Due to their ubiquitous distribution in the
natural environment, these microorganisms constitute part of the permanent microflora in various raw
foods and foodstuffs, including cereal grains and cereal products [2,3], milk and dairy products [2,4–8],
fruits, vegetables and their preserves [9,10] and also spices [11]. B. cereus bacteria were also isolated
from commercial ground roasted coffee [12] and ready-to-eat meals and products [13].

B. cereus bacteria can cause two types of food-poisoning which vary in their pathogenic mechanism
and course. The diarrheal syndrome is a toxicoinfection induced by the three pore-forming enterotoxins
cytolysin K (CytK), non-hemolytic enterotoxin (Nhe), and hemolysin BL (Hbl) produced by vegetative
cells in the small intestine. CytK is a single-protein toxin that was identified during a food poisoning
outbreak in France in 1998 [14]. Nhe and Hbl are both tripartite toxins that require the simultaneous
action of the three proteins NheA, NheB, and NheC, or Hbl-B, Hbl-L1, and Hbl-L2, respectively.
The ability to form Hbl and Nhe toxins was found in 42–73% and 97–99% of the strains isolated from
cases of food poisoning [15]. The diarrheal syndrome of food-poisoning is characterized by abdominal
pains and watery diarrhea appearing 8–16 h after the ingestion of food containing vegetative cells or
spores of pathogenic B. cereus strains. The estimated count potent to induce the diarrheal type of food
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poisoning ranges from ca. 5 to 8 log CFU of B. cereus vegetative cells or spores [16,17]. By contrast,
the first symptoms of the emetic type of food poisoning (nausea, vomiting, headaches) occur already
within 1–5 h after the consumption of food containing cereulide-heat-and gastric acid-resistant peptide.
This type of food poisoning is most often associated with the ingestion of cereal products, especially
rice [16,17].

The aim of this study was to determine the prevalence of B. cereus in different food products,
such as herbs and spices, rice, pasta, cereals, infant formulas, milk and cheeses. B. cereus isolates were
further assayed for their ability to hydrolyze casein, starch and tributyrin, and their ability to ferment
lactose, grow at 7 ◦C, and produce NHE and Hbl toxin. Further, B. cereus isolates were checked for the
presence of the ces gene.

2. Materials and Methods

2.1. Prevalence of Bacillus cereus in Food Products

2.1.1. Sample Collection

The studies were conducted in 2007–2017. The commercial food products were purchased
from retail shops within the territory of Warsaw and subjected to examination before their use by
date. They were transported to the laboratory in a cold box (below 4 ◦C), and analyzed immediately.
Altogether, 585 samples of food products were examined. This number included 60 samples of herbs
and spices (in 2008 and 2012–2017), 43 samples of breakfast cereals (in 2007 and 2016), 54 samples of
pasta (in 2008 and 2016), 48 samples of rice (in 2008 and 2017), 30 samples of infant formulas (in 2009
and 2015), 60 samples of pasteurized milk (in 2007 and 2015), 35 samples of fresh acid cheeses and
acid/rennet cheeses (in 2007 and 2014), 80 samples of mold cheeses (in 2007–2015) and 175 samples of
ripening rennet cheeses (in 2007–2015).

2.1.2. Enumeration of Bacillus cereus

B. cereus counts (the total number of vegetative cells and spores) were assayed in the examined
products according to the colony count technique ISO 7932 [18]. The product samples were collected
under sterile conditions in the amount of 10.0 g (or 10.0 mL in the case of liquid products) and placed
in sterile plastic bags containing 90 mL of a diluent (peptone saline solution or 2% sodium citrate
solution in the case of cheeses). The mixtures were homogenized for 10 min in a STOMACHER 80
(BA 7020 type, Seward Ltd., Worthing, UK). In this way, 10−1 dilutions were obtained, which were
subjected to further dilution [19,20]. To enumerate Bacillus cereus, the plates were inoculated by
spreading the samples on the surface of the medium developed by Mossel (MYP Agar, MERCK,
Warsaw, Poland). When determining the number of B. cereus in pasteurized milk, additionally two
parallel Petri dishes were inoculated with 1 mL sample for each. Once presumptive B. cereus species
bacteria were detected, their colonies were isolated for identification and confirmation of their affiliation
to this species. Five typical colonies were picked from each plate (large, pink, and surrounded by a
turbidity zone) and subjected to further tests. Where there were less than 5 colonies, all were isolated.
The examination of the isolates was performed using the ISO 7932 procedure taking into account
properties regarded as characteristic of B. cereus. The isolates were examined for their ability to ferment
mannitol and to decompose lecithin on the MYP medium and for their ability to lyse red blood cells on
the medium supplemented with 5% sheep blood (MERCK). The isolates identified and confirmed by
such examination were stored frozen (at temperature −24 ◦C) until further analyses.

2.1.3. Characterization of Bacillus cereus Isolates with Respect to Their Capacity for Casein, Starch and
Tributyrin Hydrolysis, Lactose Fermentation, Growth at 7 ◦C and Enterotoxin Production

Altogether, 1022 isolates were obtained from the products tested, including 167 isolates from herbs
and spices samples, 37 from breakfast cereals samples, 88 from pasta samples, 59 from rice samples,
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39 from infant formulas samples, 86 from pasteurized milk samples, 14 from fresh acid cheeses samples,
191 from mold cheese samples, and 341 from ripening rennet cheeses samples. All these isolates
were confirmed as B. cereus. Apart from identity confirmation carried out according to the ISO 7932
procedure, all the isolates were tested for their abilities to: Hydrolyze casein, starch and tributyrin; to
ferment lactose; to grow at 7 ◦C/10 days; and to produce diarrheal toxin Hbl.

The ability of the examined isolates to hydrolyze casein was tested by streaking cultures onto
water agar plates supplemented with 15% skimmed UHT milk and incubating them at 30 ◦C for 24 h.
The appearance of clear zones around the colonies indicated the degradation of casein [21].

The ability to hydrolyze starch was determined by streaking cultures of the examined isolate
onto nutrient agar pre-dried on Petri plates to which 0.25% soluble starch had been added (MERCK).
The plates with the streaked cultures were incubated at 30 ◦C for 3 days. A drop of Lugol’s iodine
solution was placed on the edge of the colonies which have grown over this time. The amylolytic
properties (hydrolysis of starch) were confirmed by the yellow color of the reagent [21].

Tributyrin hydrolysis was tested on a tributyrin agar medium (MERCK), supplemented with
glycerol tributyrate (tributyrin) (MERCK) according to the manufacturer’s instructions. The examined
B. cereus isolates were streaked on the Tributyrin Agar medium pre-dried on Petri plates. The plates
were incubated at 30 ◦C for 3 days. The clear zones around the bacterial colonies indicated a positive
test for tributyrin hydrolysis.

The isolates were also tested for the ability to ferment lactose according to the instructions provided
by Claus and Berkeley [21]. In brief, a colony of the examined isolate was collected with a loop to
test tubes with a liquid medium containing 2 g (NH4)2SO4, 0.5 g yeast extract, 1 g tryptone, 3.22 g
Na2HPO4, 0.12 g KH2PO4, 0.17 g phenol red and 5.0 g lactose per liter. The mixtures were incubated at
30 ◦C for 48 h. The color change of the medium from red to yellow indicated lactose fermentation.

To determine the psychrotrophic properties, the examined isolates of B. cereus were suspended
with a loop in a Ringer’s solution with turbidity equivalent to 2 McFarland. Next, the colonies were
streaked on Tryptone Soya Agar pre-dried on Petri plates (OXOID ARGENTA, Poznań, Poland).
The plates were incubated at 7 ◦C for 10 days.

The ability to produce Hbl and Nhe toxins was measured by using BCET-RPLA test kit (OXOID
ARGENTA) and Tecra BDE VIA™ kit (NOACK Poland Sp. z o.o., Warsaw, Poland). The tests were
carried out according to the directions supplied by the manufacturers, however, the colonies were
screened only for the presence of the toxin. The BCET-RPLA kit measures the L2 component of the Hbl
enterotoxin complex and the BDE VIA kit measures the NheA component of the Nhe complex [22].

2.1.4. Detection of Emetic Toxin Gene

DNA Extraction

Total genomic DNA was obtained using the Syngen DNA Mini Kit (Syngen Biotech Sp. z o.o.,
Wrocław, Poland). The amount and quality of DNA was determined using the Thermo Scientific
NanoDropTM 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA).

Polymerase Chain Reaction (PCR)

The B. cereus isolates were analyzed for the presence of the emetic toxin gene using the primers
CesF1 and CesR2 [23]. The reaction mixture contained 10 µM of each primer, 12.5 µL of DreamTaq
PCR Master Mix (2×) (Fermentas, Thermo-Fisher Scientific Inc., Waltham, MA, USA), 100 ng DNA
and water up to 25 µL. The following amplification procedure was used: Initial denaturation at 94 ◦C
for 4 min., 40 cycles of 94 ◦C for 30 s, 54 ◦C for 45 s, 72 ◦C for 1 min and the final extension step at
72 ◦C for 7 min. The PCR product in a total volume of 15 µL was separated in 1.0% agarose gel stained
with Midori Green DNA Stain (Nippon Genetics Europe GmbH, Dueren, Germany). GeneRuler
100 bp Plus DNA Ladder was used for estimating the molecular size weight of the obtained band
(Fermentas, Thermo-Fisher Scientific Inc.). The DNA from the reference strains was used as positive
control—B. cereus NCTC 11143 and negative control—B. cereus ATCC 14579.
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3. Results and Discussion

3.1. Prevalence of Bacillus cereus in Food Products

The prevalence of B. cereus in various food products was illustrated in Table 1. Among the
examined products, B. cereus has been most frequently found in herbs and spices. The percentage of
positive samples reached 63.3% and B. cereus counts in these products ranged from 1.0 to approximately
3.0 log CFU g−1. The presence of B. cereus was found mainly in samples of dried herbs (bay leaves, herbs
de Provence, thyme, oregano, marjoram, parsley leaves, fennel leaves, basil, tarragon, and lovage),
while in any sample of allspice, rosemary and coriander. The highest contamination was found in
samples of thyme and herbs de Provence (>2.0 log CFU g−1). When comparing these results with
data from literature, it can be concluded that the percentage of contaminated B. cereus samples was
comparable, yet the contamination level was significantly lower than that reported in the literature.
According to literature data, the prevalence of B. cereus in dried herbs and spices was at 13.5–85% and
counts ranged from ca. 2.0 to 6.0 log CFU g−1 [11,24–28], which is in agreement with our findings.

The contamination of spices and herbs poses a serious hazard to the microbial quality of foods
containing them. This applies, in particular, to ready-to-eat food products which are not subjected
to further heat treatment. Herbs and spices are the main source of spore-forming bacteria in such
food products as soups, cooked or stewed dishes and sauces, which provide good conditions for the
growth of these microorganisms, and, in the case of B. cereus, for the occurrence of food poisoning in
consumers [29].

The results of the analyses of B. cereus prevalence in commercial cereal grain food products revealed
that B. cereus bacteria were present in 41 out of 145 samples (28.3%). B. cereus was detected in 18.6%
samples of breakfast cereals and its counts ranged from 1.0 to 2.2 log CFU g−1 (Table 1). The bacteria
were more frequently found in pasta rather than in rice, since the percentage of B. cereus-positive
samples was 37.0% and 27.1%, respectively. The contamination level of pasta samples varied from 1.0
to 3.1 log CFU g−1, whereas in the case of rice, it was a little lower—ranging from 1.0 to 2.1 log CFU
per gram.

As B. cereus spores are an integral component of soil microflora, they can easily contaminate grains
and, as a consequence, cereal grain products, including flour, grits, rice, cereal flakes, pasta and bread.
The frequency of B. cereus contamination of rice, cereal flakes and pasta found in this research was low,
and yet comparable with the results reported by others. In similar studies, B. cereus was detected in
26–100% of rice, 20–50% of pasta and 21–89% of breakfast cereals samples. B. cereus counts found in the
products analyzed in this study were similar to literature data, i.e., from 0.5 to 4.0 log CFU g−1 [3,22,30–32].
However, in a recent study conducted in the Netherlands, B. cereus counts found in the 0.5 % of examined
starchy products exceeded 5 log CFU g−1 [2].

Dried milk/cereals products (i.e., products to be ingested by a potentially sensitive group of
consumers, such as infants and young children) are known to be contaminated with B. cereus, especially
with its spores [7,33]. Altogether, 30 samples of dry formulas for infants and young children have been
tested, where of 9 (30.0%) were found to contain B. cereus. In most of the B. cereus-positive samples
(88.9%), the pathogen counts varied from ≥1.0 to 2.0 log CFU g−1. Only 1 sample reached B. cereus
bacterial count of 2.0 log CFU g−1. The isolation frequency and B. cereus contamination level of the
infant formula samples tested in this research were similar to those reported by other authors. For
milk powder and dried milk products with cereals intended for young children, an incidence of 8–52%
has been reported, at the bacterial count ranging from 2.0 to 6.0 log CFU g−1 [7,33,34].
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Table 1. The prevalence of Bacillus cereus in the commercial products tested.

Tested Products
Number of

Samples

Number (Percent)
of Positive
Samples

Bacillus cereus Count in Positive Samples (log
CFU g−1 or mL−1) Contamination Level (log CFU g−1 or mL−1)

Minimum Maximum Average ± SD <1 ≥1–2 ≥2–3 ≥3–4 ≥4

Herbs and
spices 60 38(63.3) 1.0 3.0 1.3 ± 0.54 22 34 2 2 0

Breakfast cereals 43 8(18.6) 1.0 2.2 1.2 ± 0.41 35 7 1 0 0
Pasta 54 20(37.0) 1.0 3.1 1.5 ± 0.77 34 15 2 3 0
Rice 48 13(27.1) 1.0 2.1 1.3 ± 0.36 35 12 1 0 0

Infant formulas 30 9(30.0) 1.0 2.0 1.2 ± 0.31 21 8 1 0 0
Pasteurized

milk 60 18(30.0) 0.3 0.9 0.4 ± 0.24 60 0 0 0 0

Fresh acid
cheeses 35 3(8.6) 1.0 2.2 1.5 ± 0.59 32 2 1 0 0

Mold cheeses 80 42(52.5) 2.0 3.3 2.7 ± 0.40 38 1 33 8 0
Ripening rennet

cheeses 175 76(43.4) 1.0 3.8 1.4 ± 0.76 99 36 33 7 0

Total 585 227(38.8) 0.3 3.8 - 376 115 74 20 0

CFU, colony forming unit; SD, standard deviation.
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B. cereus bacterial species is considered as one of the main microbiological factors limiting the
shelf life of pasteurized milk [35]. At counts above 5.0 log CFU mL−1, B. cereus bacteria may cause
flavor and taste defects of pasteurized milk. At higher B. cereus counts, the product shows defects,
such as sweet curdling and bitty cream (in non-homogenized milk), that result from high proteolytic
activity and lecithinase production [36]. In this research, B. cereus bacteria were detected in 30% of
pasteurized milk samples and their counts were very low, since they did not exceed 0.9 log CFU mL−1

in any sample (average 0.4 log CFU mL−1) (Table 1). The prevalence of B. cereus in pasteurized milk in
our study was comparable with those reported previously, unlike the contamination level which was
lower. From 33% to 71% of the samples analyzed in India and 100% in China were reported to contain
B. cereus, with numbers ranging from 1.0 to 4.0 log CFU mL−1 [8,34].

B. cereus bacteria were detected in 3 (8.6%) of the samples of fresh acid cheeses (Table 1). Only in 1
out of 35 examined fresh acid cheeses B. cereus counts reached 2.2 log CFU g−1, and in the following 2
B. cereus-positive samples the counts ranged from ≥ 1.0 to 2.0 log CFU g−1. Slightly higher B. cereus
occurrence frequency was found in Egyptian acid cheeses (30% B.cereus-positive samples) [37].

B. cereus bacteria were found to be present in 42 (52.5%) and 76 (43.4%) of the samples of mold
and ripening rennet cheeses, respectively (Table 1). The prevalence of B. cereus in rennet cheeses found
in our study was greater than in other studies. Namely, for ripening, soft and hard cheeses, B. cereus
prevalence was reported to reach 25–50% [34,38]. In none of the cheese samples did B. cereus count
exceed 4.0 log CFU g−1. The presence of the Bacillus bacteria type, i.e., mostly of B. cereus species, was
reported for all Ricotta cheese samples, and their count ranged from 1.0 to 3.1 log CFU g−1, which is
comparable to the results obtained in this study [39]. In contrast, much higher counts of B. cereus
bacteria group were detected in Indian commercial cheeses (to 6.0 log CFU g−1) [34].

In this research, mold cheeses and ripening rennet cheeses were found to be significantly more
contaminated than the acid cheeses. It may be caused by a much higher acidity of fresh acid cheeses
(pH 4.3–4.6) than the one of ripening rennet cheeses (pH 5.2–5.7) and a lower amount of protein
buffering, such a low pH. B. cereus spores which can germinate and the vegetative cells which can
grow only within less than the first twenty hours of the rennet cheese production process (until the
pressing stage). In the next stages, when the pH of the cheeses drops below 6.0, B. cereus vegetative
cells have no chance to survive and, let alone grow. In the case of fresh acid cheeses or acid/rennet
cheeses production, the lowering of milk/curd pH usually occurs much sooner and to a much lower
degree. The inactivation of vegetative B. cereus cells in the case of all fermented dairy products can
also be attributed to other factors, many of which act synergically, such as substrate competitions with
lactic acid bacteria and their production of antimicrobial agents (hydrogen peroxide, nisine, formate,
acetate or lactate), and the presence of salt and changes to the oxidation-reduction potential in the
production process [36].

It has been shown that the genotypes of B. cereus strains isolated from raw milk differed from
genotypes isolated from the production environment and from dairy products, indicating that additional
product contamination occurs through reinfection [40]. The unique ability of B. cereus to adhere to
various surfaces (stainless steel, synthetic materials) and the formation of biofilms, can lead to problems
which are hygienic in nature and economic losses due to spoilage of dairy products. B. cereus biofilms
can develop especially in parts of the production line, which work partially filled, or in which product
residues remain after the production cycle (eg pasteurizer, storage tanks). They can then be a source of
repeated product reinfection [40,41].

3.2. Characterization of Bacillus cereus Isolates

The phenotypic profiles of isolates are shown in Table 2. From 1022 B. cereus strains, 499 (48.8%)
strains were positive for lactose fermentation, the main carbohydrate of milk. The percentage of
lactose(+) strains was significantly higher in the group of isolates obtained from dairy products (86.0%,
71.4%, 56.5% and 76.8% strains isolated from pasteurized milk, fresh acid, mold and ripening rennet
cheeses, respectively) than in the group isolated from herbs and spices (8.4% strains) and cereals
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products (10.8%, 0.0% and 15.2% strains isolated from breakfast cereals, pasta and rice, respectively).
The considerable variation between strains isolated from different sources in the ability to degrade
lactose was reported by other authors [35,42]. These findings indicate a selection or adaptation of
B. cereus strains during milk processing. Moreover, although some of B. cereus isolates are unable
to ferment lactose, they can grow in milk products upon hydrolysis of milk proteins or by glucose
consumption following the fermentation of lactose by competitive microorganisms, for example lactic
acid bacteria.

Table 2. The biochemical and physiological properties of tested Bacillus cereus isolates from various foodstuffs.

Product Number of
Tested Isolates

Number (%) of Isolates Exhibiting the Property Under Test

Lactose
Fermentation

Starch
Hydrolysis

Casein
Degradation

Tributyrin
Degradation

Growth at 7
◦C/10 Days

Herbs and spices 167 14(8.4) 138(82.6) 167(100.0) 105(62.9) 11(6.6)
Breakfast cereals 37 4(10.8) 27(72.9) 37(100.0) 37(100.0) 18(48.6)

Pasta 88 0(0.0) 52(59.1) 88(100.0) 88(100.0) 31(35.2)
Rice 59 9(15.2) 38(64.4) 59(100.0) 59(100.0) 10(16.9)

Infant formulas 39 18(46.1) 9(23.1) 37(94.9) 23(59.0) 4(10.3)
Pasteurized milk 86 74(86.0) 2(2.3) 86(100.0) 65(75.6) 10(11.6)

Fresh acid cheeses 14 10(71.4) 0(0.0) 14(100.0) 14(100.0) 6(42.9)
Mold cheeses 191 108(56.5) 21(11.0) 189(98.9) 179(93.7) 33(17.3)

Ripening rennet
cheeses 341 262(76.8) 81(23.8) 338(99.1) 252(73.9) 133(39.0)

Total 1022 499(48.8) 368(36.0) 1011(98.9) 818(80.0) 256(25.0)

In this study, 36.0% strains were positive for the capability to hydrolyze starch (Table 2). As in
the case of lactose fermentation, the differences were found in this capability between isolates of
B. cereus originating from various products. The percentage of B. cereus strains isolated from herbs
and spices, breakfast cereals, pasta and rice that were confirmed capable of hydrolyzing starch (82.6%,
72.9%, 59.1% and 64.4%, respectively) was within the range reported by other authors for strains
derived from different non-dairy food products [3,43,44]. Starch is one of the main components of
cereal products, thus the presence of amylase-positive strains of B. cereus can lead to potential spoilage
of these products. A significantly lower percentage of amylase-producing strains was determined
among the isolates obtained from dairy products: Infant formulas (23.1%), milk (2.3%), mold cheeses
(11.0%) and ripening rennet cheeses (23.8%). In the case of the strains isolated from fresh acid cheeses,
none of them was capable of starch degradation (Table 2). In previous studies, from 0 to 100% strains
isolated from milk and dairy products were amylase positive [34]. One of the traits that distinguishes
the homogenous groups of emetic-type strains from the remaining B. cereus strains is the inability to
hydrolyze starch [45]. Considering the above, the prevalence of the emetic subtype of B. cereus in food
products analyzed in the present study may be found as high (64%).

B. cereus produces various extracellular proteolytic and lipolytic enzymes, which can be responsible
for the deterioration of the organoleptic quality and for the shortening of the stability of products,
especially milk products. The presence of protease can lead to bitter flavor and sweet curdling of
milk. In turn, lipases produced by B. cereus cause defects of dairy products like, e.g., bitty cream
(phospholipase activity especially in non-homogenized milk and cream) and also contribute to
unpleasant off-flavors (like rancid, butyric, unclean and soapy) [46]. The proteolytic and lipolytic
activities were found in 92–100% and 50–100% of strains from dairy products [34], while in only in 33%
and 27% of isolates from legume-based fermented foods in India [44]. In the present study (Table 2),
98.9% of the isolates were capable of casein degradation, whereas only 2 isolates originating from
infant formulas, 2 from mold cheeses and 3 from rennet cheeses were incapable of casein degradation.
The activity towards tributyrin degradation was demonstrated for 80.0% of the analyzed isolates.
However, it was the most rarely reported among the strains isolated from infant formulas (59.0% of
strains) as well as from herbs and spices (62.9% of strains).
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A total of 256 isolates out of 1022 isolates (25.0%) from different tested samples (Table 2), showed
visible growth at 7 ◦C within 10 days and thus fitted the commonly accepted definition of psychrotrophs.
The significant differences were, however, observed in this trait between the isolates originating from
various food products. This trait was reported the least frequently among the isolates obtained from
herbs and spices (6.6%), whereas the highest number of psychrotrophic strains was found among the
isolates obtained from breakfast cereals (48.6%). Similar, considerable deviations in the ability to grow
at temperatures of 6–7 ◦C in the case of B. cereus strains isolated from various food products were
indicated in the ample literature data [31,47]. In this respect, Samapundo et al. [31] found that among
380 strains isolated from food products marketed in Belgium, only 2.6% were capable to grow at 7 ◦C,
but at mild temperature abuse conditions (≤10 ◦C), the growth ability was confirmed for the majority
of the strains (87.9%). In turn, Godič Torkar and Seme, [47] found that 56.7% of food isolates exhibited
psychrotrophic capabilities. In their study, the high contribution of psychrotrophic strains among the
isolates were obtained from dairy products, cheeses in particular (31.5% out of 546 isolates originating
from fresh acid, mold and ripening rennet cheeses). The high percentage of psychrotrophs illustrates
that they probably have a more significant impact on keeping the quality of products stored under
refrigerated conditions than mesophilic B. cereus.

From the tested 1022 isolates, 766 (74.9%) and 803 (78.6%) were able to produce the Hbl and Nhe
toxin (Table 3). Among the strains isolated from plant products, this percentage ranged for Hbl toxin
from 45.9 to 57.9% and for Nhe toxin, from 61.1 to 81.4%, depending on the product, whereas in the
group of strains originating from milk products, it was higher and ranged from 80.2% to 89.1% (Hbl)
and from 75.9 to 87.7% (Nhe), respectively. The percentage of toxin-positive B. cereus strains reported
in the literature strongly varies as well. For example, Ankolekar et al. [22] showed that the percentage
of enterotoxic isolates obtained from rice was at 61.4% (Hbl) and 84.3% (Nhe). Similar differences for
Hbl toxin, although at lower levels than in our study, were found for the strains isolated from dairy
products, i.e., from 29.8% [7] to 72.0% [39]. A significant percentage of strains capable of producing
Hbl and Nhe toxin was demonstrated among the isolates obtained from infant formulas (74.3% and
76.9%, respectively). All B. cereus strains isolated by Organji et al. [6] from pasteurized milk and infant
formulas were capable of producing the Hbl toxin. Further, the results of the PCR analysis indicate
that most B. cereus isolates from powdered infant formulas and other milk products are potential toxin
producers [33,48]. Due to the gravity of this problem, FAO/WHO Expert Consultations concluded that
B. cereus was among major pathogens associated with powdered infant formula contamination [49].
Similarly, the strains isolated from plant-origin products and ready-to-eat (RTE) foods carried genes
required for the production of haemolytic BL (hblA, hblC and hblD) and non-haemolytic enterotoxin
(nheA, nheB and nheC) [31,50,51].

Table 3. The toxicity of Bacillus cereus isolates.

Product Number of Tested
Isolates

Number (%) of Positive Bacillus cereus Isolates

Hbl
(BCET RPLA)

Nhe
(BDE VIA) ces Gene

Herbs and spices 167 94(56.3) 102(61.1) 0
Breakfast cereals 37 17(45.9) 27(73.0) 0

Pasta 88 51(57.9) 71(80.7) 2(2.3)
Rice 59 34(57.6) 48(81.4) 4(6.8)

Infant formulas 39 29(74.3) 30(76.9) 0
Pasteurized milk 86 69(80.2) 70(81.4) 1(1.2)

Fresh acid cheeses 14 12(85.7) 11(78.6) 0
Mold cheeses 191 156(81.7) 145(75.9) 1(0.5)

Ripening rennet
cheeses 341 304(89.1) 299(87.7) 4(1.2)

Total 1022 766(74.9) 803(78.6) 12(1.2)
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The prevalence of the emetic gene ces among all B. cereus isolates in our study were 1.2%. The ces
gene was only detected in isolates from pasta (2.3% of isolates), rice (6.8%), pasteurized milk (1.2%),
mold cheeses (0.5%) and ripening rennet cheeses (1.2%) (Table 3), but not in isolates from herbs and
spices, cereals, infant formulas, and fresh cheeses. Taking into account the origin of isolates, in the
group of plant-origin isolates, the percentage of isolates with the ces gene was 1.7%, while in the group
of isolates from dairy products it was 0.9%. In the literature, the detection rates of ces gene were
significantly lower compared to the detection of the Hbl and Nhe complex genes [12,50,51].

The adaptation of B. cereus strains to grow at low temperatures makes them grow rapidly in
cold-stored food products, thereby deteriorating their quality. In the case of the psychrotropic strains
producing toxins, it may also pose a potential threat to the health and safety of consumers. Among
the 256 isolates of B. cereus able to grow at 7 ◦C, only 4 (1.6%) possessed the emetic gene ces which
had been isolated from rice (one isolate), pasteurized milk (one isolate) and ripening rennet cheeses
(two isolates).

4. Conclusions

The prevalence of B. cereus in food products marketed in Poland demonstrated significant
differences depending on the product, i.e., from 8.6% in acid cheeses to 63.3% in herbs and spices,
but the contamination level of all the analyzed products did not exceed 4.0 log CFU g−1 / mL−1.
The results concerning the biochemical abilities of the analyzed isolates indicate significant differences
in the enzymatic activity of B. cereus strains from various food products. The relatively high percentage
(25%) of psychrotrophs among the isolated strains is alarming, and among them, four isolates possessed
the ces gene. These strains may find favorable conditions for growth in food products or in dishes
made of these products in households and cold-stored for too long which may pose a risk to the health
of the consumer. The occurrence of toxigenic B. cereus strains in all tested market products of plant
(55.8% Hbl(+), 70.7% Nhe(+) and 1.7% ces(+) isolates) and animal origin (84.9% Hbl(+), 82.7% Nhe(+)
and 0.9% ces(+) isolates) indicate the possible risk of foodborne infections/intoxications that occur as a
result of the possibility of the development of B. cereus in favorable conditions and consumption of
these products.
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47. Godič Torkar, K.; Seme, K. Antimicrobial susceptibility, β-lactamase and enterotoxin production in Bacillus
cereus isolates from clinical and food samples. Folia Microbiol. 2009, 54, 233–238. [CrossRef]

48. Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Tano-Debrah, K.; Jespersen, L. Prevalence, virulence factor
genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy
products. BMC Microbiol. 2017, 17, 65. [CrossRef]

49. FAO/WHO. Enterobacter sakazakii and Salmonella in powdered infant formula. Microbiological Risk
Assessment series no. 10. Available online: http://www.who.int/foodsafety/publications/micro/mra10/en/index.
html (accessed on 10 July 2016).

http://dx.doi.org/10.1016/j.foodcont.2010.10.014
http://dx.doi.org/10.1016/j.fm.2013.04.014
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.013
http://dx.doi.org/10.1006/fmic.2002.0514
http://dx.doi.org/10.1007/s00217-013-1988-8
http://dx.doi.org/10.1007/s13594-014-0174-5
http://dx.doi.org/10.1016/S0168-1605(96)01204-4
http://dx.doi.org/10.1016/S0956-7135(00)00016-5
http://dx.doi.org/10.1016/j.lwt.2005.01.006
http://dx.doi.org/10.1016/S0168-1605(97)00107-4
http://dx.doi.org/10.1016/j.fm.2009.11.004
http://dx.doi.org/10.1016/j.foodcont.2016.04.012
http://dx.doi.org/10.1016/j.fm.2012.06.003
http://dx.doi.org/10.1016/j.foodcont.2006.12.006
http://dx.doi.org/10.1007/s00203-005-0032-1
http://dx.doi.org/10.1016/j.idairyj.2003.10.006
http://dx.doi.org/10.1007/s12223-009-0037-2
http://dx.doi.org/10.1186/s12866-017-0975-9
http://www.who.int/foodsafety/publications/micro/mra10/en/index.html
http://www.who.int/foodsafety/publications/micro/mra10/en/index.html


Foods 2019, 8, 269 12 of 12
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