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Abstract: This study was carried out to investigate the properties of pectin extracted from Vietnamese
mango peels that have been discarded as waste. Three different mango cultivars named Hoa Loc,
Ghep and Cat Chu at three different maturities were studied. Pectin extracted from immature,
ripe and overripe stages ranged from 18.4 to 31.7 g/100 g dry weight (DW); the highest yields were
obtained from the ripe fruits. Ghep peels contained the highest pectin amounts which ranged from
24.2 to 31.7 g/100 g DW, followed by Cat Chu (19.2 to 26.5 g/100 g DW) and Hoa Loc peels (18.4 to
24.1 g/100 g DW). Except for degree of esterification and emulsion capacity, other properties of the
extracted pectin including water holding capacity, solubility and emulsion stability were significantly
affected by the fruit maturation. Varieties, solubility, degree of esterification, emulsion activity and
emulsion stability of the pectin isolated from the three cultivars ranged from 77.4% to 86.0%; 50.3% to
55.8%; 11.8% to 34.3% and 28.5% to 94.5%, respectively. Fourier-transform infrared results showed
that almost all collected pectin samples could be classified as the high methoxyl pectin. Rheology data
indicated viscosity of the isolated pectin was strongly dependent on temperatures.

Keywords: mango peel pectin; mango cultivars; maturity stages; Fourier-transform infrared
spectroscopy (FTIR); rheological property

1. Introduction

Pectins are complex colloidal acid polysaccharides [1]. Pectic substances have high molecular
weights and can be classified into four groups: protopectin, pectic acid, pectinic acid and pectins [2].
Pectins are widely used as thickening and stabilizing agents in beverages, dairy products and confections
due to their gelation properties [1,2]. They are also applied in pharmaceutical products to reduce the
absorption of cholesterol [3], control haemorrhage and effect of poisoning of toxic cations [1]. In the
upper intestine, pectin can reduce postprandial satiety, the absorption of nutrients and the motility of
the intestinal tract [4].

High levels of pectins are found in almost all fruit fractions including peels, pulp and kernels [5–7];
however, the pectin yield depends very much on the cultivars and the maturity stages when a fruit is
harvested and analysed [8,9].

The major constituent of pectin molecules is poly (1-4)-α-D-galacturonan, which contains carboxyl
groups presenting in either free acid or methyl ester forms. The result of dividing esterified carboxylic
acid units into total carboxylic acid groups in the pectin chain has been defined as the degree of
esterification (DE). The DE value of pectin is an important functional property that significantly
influences its commercial use as a gelling or thickening agent. The degree of esterification is strongly
influenced by calcium cations, sugar and acid concentrations. Depending on the proportion of the
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esterified groups, pectin is classified into low methoxyl pectin (LMP) (DE < 50%) and high methoxyl
pectin (HMP) (DE > 50%) [1]. Structural differences between pectin molecules affect the gelling
mechanisms of LMP and HMP; hence, their applications in foodstuffs are also different.

Although pectin has been commonly extracted from agricultural byproducts, the number of
sources used for extracting commercial pectin production is limited [10]. The gel forming ability of
pectin strongly depends on the molecular size and degree of esterification of each different byproduct;
therefore, the isolation and characterization of pectin from each new source are important for the
development of a new pectin product.

In Vietnam, mangoes (Mangifera indica L.) are grown in most southern regions (approximately
75,000 hectares in total) producing 0.5 million tons of mangoes/year of which 70% is used for
processing [11]. Mango processing releases large amounts of byproducts consisting of 35–60% of
total fruit weight. This fraction includes peels, stones and sometimes parts of perishable pulp [12].
Dorta et al. [13] reported that the world mango production produces approximately 75,000 tons of
mango wastes/year. As mango peels constitute 15–20% of the fruit weight, the production of mango
waste in Vietnam would be between 50,000 and 70,000 tons/year. Currently, these wastes have been
used for animal feeding or dumped as rubbish; therefore, there is an urgent need to use this waste
resource effectively. Many experiments have been carried out using mango byproducts in order to
reduce the negative effects of disposing this waste product. Interestingly, it has been found that mango
peels are a good source of dietary fiber including pectin, polyphenols, carotenoids and other bioactive
compounds that have positive influences on human health [13,14]. Extractions of pectin from mango
peels have been carried out by Al-Sheraji et al. [5] and Ajila and Prasada Rao [14]; however, effects of
biological factors including maturity stages and cultivars on properties of pectin have been overlooked.
Moreover, it is noticeable that Vietnamese processors have to pay more than United States Dollar 4
million annually to import pectin from other countries [15]. Therefore, analysing physiochemical
properties of pectin extracted from a few common cultivars of mango is an important step to improve
the utilisation of this useful byproduct.

2. Materials and Methods

2.1. Sample Preparation

In brief, 180 kg of three different cultivars of healthy mangoes; Hoa Loc, Cat Chu and Ghep
were harvested from a farm in Tien Giang province, Vietnam in November 2015. The three cultivars
harvested at three different maturity stages: pre-mature, mature and ripe were transported to the
laboratory of the International University, Thu Duc District, Ho Chi Minh City and processed further
on the same day. The fruits were carefully washed under running tap water to remove any dirt, insects
and debris on surface of the fruits. Peels then were separated from fruits using a stainless-steel knife
and dried in an oven (WiseVen, Wisd Laboratory Instruments, Gangwon-do, Korea) at 60 ◦C for 24 h.
The dried samples were ground into a fine powder using an A11 grinder (IKA, Selangor, Malaysia)
and then packed in individual plastic bags and stored in desiccators until analysis commenced.

2.2. Pectin Extraction from Dried Mango Peel Powder

Pectin extractions were carried out following the procedure of Nguyen and Savage [6] with some
modifications. The dried peel powder of each cultivar at different maturity stages was mixed with the
aqueous solution of citric acid (Merck Sharp & Dohme Corp., Kenilworth, NJ, USA) 1.5% in a ratio
1:40 (w/v). The mixture was stirred continuously for 20 min and then filtered through four layers of
cheesecloth in order to separate the supernatant from the insoluble fraction. Pectin was precipitated
by the addition of absolute ethanol (98% purity) with a ratio of 1:2 (w/w) into the supernatant and
kept overnight at room temperature. The precipitated pectin was then washed three times with
75%, 85% and 98% (v/v) ethanol to remove the soluble impurities. The pellet was then freeze-dried
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(FreeZone 2.5 L Benchtop Freeze Dry System, Labconco, Kansas city, MO, USA) until a constant weight
was obtained.

2.3. Pectin Yield

The yield (%) =
weight of dried pectin (g) × 100

weight of dried peel taken for extraction (g)
(1)

2.4. Measurement of the Degree of Esterification

The collected pectin was stored in vacuumed bags at 4 ◦C before measuring their degree of
esterification by Fourier-transform infrared spectroscopy (FTIR) analysis. In detail, FTIR spectra of
pectin samples were obtained using a Tensor 27 Spectrophotometer (Bruker AXS GmbH., Karlsruhe,
Germany) that measured the absorbance of asymmetrical stretching vibrations of the carboxyl groups
(1600–1630 cm−1 wavenumber) and carbonyl groups originating from carboxyl and carbomethoxyl
groups (1730–1760 cm−1 wavenumber) on KBr disks with a 90:10 KBr/pectin ratio. Then, the degree of
esterification was calculated using the equation proposed by Singthong et al. [16].

2.5. Determination of Water Holding Capacity (WHC) and Solubility of Mango Peel Pectin

These properties were determined using centrifugation techniques by modifying the method of
Eastwood et al. [17]. In detail, 0.3–0.5 g of pectin samples were soaked in 20 mL of Nanopure water
and left to stand for 1 hour at room temperature before centrifugation at 6000 rpm for 15 min. Then,
the supernatant fraction was discarded and the pellets were left to drain during 30 min at ambient
temperature. The pellets were dried until obtaining the constant weight.

The changes in weight of pellet were recorded and the WHC and solubility of pectin samples
were conducted

Water holding capacity =
mw −md

md
(g H2O/g dried pectin) (2)

Solubility = mi − md(%), (3)

where: mi: initial weight of dried pectin samples before WHC processing; mw: wet weight of pectin
samples; md: dried weight of pectin samples after WHC processing.

2.6. Determination of the Emulsion Activity and Emulsion Stability

To measure the emulsion activity of the collected pectin, two volumes of prepared pectin gel
(60 mL) (0.5% w/v pectin solution) were thoroughly mixed with the soybean oil (6 mL) [18]. The mixture
was then homogenized (HG-15A, Witeg Labortechnik GmbH, Wertheim, Germany) for 1 min and
then centrifuged (Z326K, Hermle Labortechnik GmbH., Wehingen, Germany) at 800 g for 10 min.
The emulsion activity was calculated as the ratio of the volume of emulsified layer with the volume of
whole layer in centrifuge tube. For the determination of the emulsion stability, emulsions prepared by
the above procedures were heated at 80 ◦C for 30 min and cooled to room temperature [18]. Then,
the content was centrifuged at 800 g for 10 min. The emulsion stability was measured as the ratio
between the remaining emulsified layer in the supernatant and the initial emulsified layer.

2.7. Rheological Analysis

Rheological analysis of the pectin solutions was performed in a HAAKE viscometer and rheometer
RheoStress 6000 (Thermo Scientific, Waltham, MA, USA). Thermo Scientific HAAKE RheoWin software
(Thermo Scientific, USA) was run to record shear stress (τ) and shear rate (γ) values. Pectin (10 g L−1)
were dissolved in 0.1 mol L−1 sodium chlorine solutions (Merck Sharp & Dohme Corp., Kenilworth,
NJ, USA) and left for 12 h at room temperature prior to measuring [19]. The flow curves were obtained
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at different processing temperatures 4 ◦C, 30 ◦C and 50 ◦C. The shear rates from 10.0 to 300 s−1

were chosen.

2.8. Determination of Viscosity-average Molecular Mass

Dried pectin 0.25; 0.5; 1.0; 1.5 and 2.0 g was dissolved in 100 mL of 0.1 M potassium phosphate (pH:
7.0) [20]. The viscosity measurement was performed at 25 ◦C using a Cannon-Fenske viscometer tube,
size 100 (sigma-aldrich, Germany) with constant k = 0.015. Specific, reduced and intrinsic viscosities
were calculated by the following equations:

Specific viscosity : ηsp =
t − t0

t
(4)

Reduced viscosity : ηred =
ηsp

C
(5)

Intrinsic viscosity : ηi = lim
C→0

ηsp

C
, (6)

where: t is time taken by the solution to flow in viscometer (s); t0 is time taken by the solvent to flow in
viscometer; C the concentration of pectin solution (g/ 100 mL)

The relationship between intrinsic viscosity and molecular mass is described by the
Mark–Houwink–Sakurada equation [21]:

ηi = K× Mα
w (7)

where: K and α are constants. At 25 ◦C, K and α are 1.4 × 10−6 and 1.34, respectively [22].

2.9. Statistical Analysis

The results were presented as mean of three determinations ± standard error. Two-way analysis
of variance (ANOVA) was performed using Minitab software version 16.0 for Windows 7 (Minitab Pty
Ltd., Sydney, NSW, Australia) with a level of confidence of 95%.

3. Results and Discussion

3.1. Pectin Yield

The yield of pectin extracted from the peels of each of the three mango cultivars at ripening stage
was significantly higher (p < 0.05) when compared to the mature stage (Table 1). The amounts of pectin
extracted from the mature stage of the Cat Chu and Hoa Loc cultivars gave intermediate values and
significantly lower levels for Ghep. Similar observations were made by Proctor and Peng [23] who
noted that amounts of extracted pectin declined steadily before the fruits reached full maturation but
increased during fruit ripening. During fruit ripening, polygalacturonase and pectin methyl esterase
hydrolyse the pectin backbone and solubilize insoluble protopectin into soluble pectin; consequently,
more soluble pectin is produced [24]. However, the activity of pectin methyl esterase was highest in
over–ripe and in immature fruit. Meanwhile, the polygalacturonase activity was very low in unripe
fruit [24]. Moreover, pectinolytic enzyme activities, especially polygalacturonase, have been reported
to be different between fruit cultivars [9]. Therefore, the differences in amounts of pectin observed
at different maturity stages and cultivars may be due to the different activities of both pectin methyl
esterase and polyglacturonase, which are active during the development of the fruit [8,9,24].
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Table 1. Properties of crude pectin extracted from peels of three Vietnamese mango cultivars at three maturity stages.

Cultivars
Samples

Pectin Yield
(g/100 g DW)

Degree of
Esterification

(%)

Water Holding
Capacity

(g H2O/1 g pectin)
Solubility (%) Emulsion

Activity (%)
Emulsion

Stability (%)

Intrinsic
Viscosity

(mL/g)
Mw (kDa)

Ghep

Pre mature 27.5 ± 1.2 55.8 ± 0.7 11.4 ± 0.2 81.7 ± 1.3 34.2 ± 0.3 65.8 ± 9.3 46.3 ± 0.1 397.0 ± 1.4
Mature 24.2 ± 0.7 55.8 ± 0.2 11.6 ± 0.8 87.4 ± 1.6 31.8 ± 1.7 40.2 ± 3.8 50.3 ± 0.2 444.5 ± 0.8

Ripe 31.7 ± 1.0 55.7 ± 0.5 13.6 ± 0.4 86.0 ± 1.4 29.9 ± 0.4 39.5 ± 3.4 50.1 ± 0.2 434.6 ±1.2

Cat Chu

Pre mature 21.0 ± 0.7 50.9 ± 0.5 10.6 ± 0.3 77.4 ± 0.5 19.4 ± 4.0 35.5 ± 6.0 67.2 ± 0.3 539.8 ± 1.0
Mature 19.2 ± 0.4 49.6 ± 0.2 14.9 ± 1.1 79.1 ± 1.3 11.8 ± 0.9 60.6 ± 2.7 73.7 ± 0.4 578.0 ± 0.7

Ripe 26.5 ± 0.3 50.3 ± 0.5 9.5 ± 0.0 82.5 ± 1.2 24.2 ± 2.0 35.6 ± 0.6 71.3 ± 0.5 564.0 ± 1.5

Hoa Loc

Pre mature 20.5 ± 0.9 52.1 ± 0.2 11.3 ± 0.3 83.4 ± 1.8 30.9 ± 1.1 85.5 ± 3.1 44.5 ± 0.2 408.2 ± 0.8
Mature 18.4 ± 0.8 52.4 ± 0.5 13.4 ± 0.6 85.1 ± 1.2 33.8 ± 0.5 94.5 ± 3.7 52.0 ± 0.3 444.6 ± 1.5

Ripe 24.1 ± 1.2 51.0 ± 0.3 11.8 ± 0.7 84.6 ± 1.3 27.6 ± 3.4 28.5 ± 5.0 50.3 ± 0.2 432.8 ± 1.1

Analysis of
variance Significance

Cultivars ** ** ns ** ** * * *
Maturity stages ** ns * ** ns ** ns ns

Interaction ** ns ** ns ** ** * *
LSD cultivars 3.1 0.8 — 2.8 4.6 21.2 1.7 9.9
LSD maturity 4.5 — 1.6 3.3 — 19.6 — —

Significance: * p < 0.05; ** p < 0.01; Data are expressed as means ± standard error (n = 3). ns: not significant; LSD: Least Significant Difference. “—“: not calculated.
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The yield of pectin recovered in this study was much higher than recovered from other mango
cultivars, including Améliorée (10.1 g/100 g DW), Mango (15.3 g/100 g DW) [2] and Tommy Atkins
(17.6 g/100 g DW) [25].

3.2. Water Holding Capacity (WHC)

Water holding capacity, defined as the amount of water held by the fibrous matrix [17], has been
shown to be a key physical property of pectin [2]. During ripening, the reduction of insoluble materials
of pectic substances is inversely proportional to the increase of water-soluble substances. As a result,
the water holding capacity of a fruit would be changed.

The overall mean of water holding capacity of the pectin extracted from the three cultivars of
mango was 12.0 ± 0.17 g H2O/g DW. The water holding capacity measured at different maturity stages
was variable for each of the cultivars but only Ghep showed an increased level when the fruit was fully
ripe. It was reported that the side chains of the pectin molecule consist of glucose, arabinose, xylose,
galactose, mannose and rhamnose, creating “sugar building blocks” [16]. Furthermore, mangoes are
climacteric fruits which have high respiration rates when they are fully mature. At this stage total
sugar contents rapidly increase following starch degradation [10]. The high sugar levels coincide
with increasing organic acid contents in the mature fruit, causing pectin molecules to no longer repel
each other [4]; as a result, they form stable three dimensional networks, allowing more water and
sugar molecules to be trapped in the structure of pectin samples extracted [26]. The pectin extracted
from this stage is of considerable interest to food processors as it has considerably increased water
holding capacity.

However, in the cell wall, organic acids decrease during fruit ripening [10]. This leads to a shortage
of protons for balancing the anion carboxylate groups in the pectin structure. Therefore, the approach
and interaction among polysaccharide molecules could be suppressed, resulting in an unbalanced
network formation which contains weaker bonds [10]. These weak bonding networks may lower the
water holding capacity of pectin molecules extracted from fully ripe fruits of Cat Chu and Hoa Loc.

The most interesting feature of the present study is that the WHC in the Vietnamese mango
peels was much higher when compared to lemon peels (1.7–1.9 g H2O/g DW) [27], yellow passion
fruit peels (3.7–4.1 g H2O/g DW) [28] and Tommy Atkins mango peels (4.7–6.1 g H2O/g DW) [7].
Significant differences in the WHC of pectin extracted from 12 different cultivars of pomegranates [29]
and cabbage [3] have also been observed. The WHC of pectin has an important effect of reducing free
water in a gel matrix [30] and the pectin samples extracted in this present study show an important
potential function as a food ingredient to prevent syneresis of formulated products [30].

3.3. Solubility

The solubility of the pectin extracted from the three different cultivars in this study were
significantly different (p < 0.05): overall the levels increased as the fruits matured. The increase in
solubility of the pectin extracted as the fruit matures results from the increase in the pectinolytic enzyme
activities, especially polygalacturonase and these have been reported to be different between fruit
cultivars [9]. The main effect appears to be variations in the reductions of the pectin chain width and
removal of the neutral sugars from the side chains [31]. The increase in solubility of the pectin extracted
from the three different mango cultivars as they mature is a very important finding of this study.

At the onset of fruit ripening, the hydrolytic enzymes—polygalacturonase and pectin methyl
esterase—break down the pectin chain, producing smaller units [24]. In the early stage of fruit
ripening, β–galactosidase enzyme was reported to be responsible for an increasing number of free
pectin molecules present in the cell wall [31]. Additionally, β–galactosidase cuts the sugar chains in the
pectin structures into shorter pieces, resulting in an increase in the water solubility of the pectin [31].
As ripening proceeds in fruits, the pectin becomes more soluble; this may not be a positive feature in
the use of extracted pectin for food processing applications.
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3.4. Degree of Esterification

Many studies have been carried out to measure the degree of esterification (DE) of pectin extracted
from different plant sources [32–34], however, investigation of the possible changes in DE in pectin
samples extracted from different maturities and cultivars of mangoes using the FTIR method have not
been studied.

It was found from the current work that the overall mean DE of the three mango cultivars was
52.6 ± 1.6%; there were significant differences between the cultivars; however, insignificant changes
occurred as the cultivars matured (Table 1). These results could be due to differences in the activities of
pectin methyl esterase and β–galactosidase. The same phenomenon was also observed between 16
different cultivars of tomatoes [35] and two apple cultivars [36].

The overall DE values of the three cultivars investigated in this study were higher than those of
pectin, extracted using the same acid hydrolysis extraction method, from apple pomace (22.2%) [32],
dragon fruit peels (31.1–47.0%) [33] and cocoa pod husk (40.3%) [34]. The pectin extracted in this study
could be considered to be high–methoxyl pectin, which is more desirable and useful in commercial
food production where pectin with mean DE values > 50% is of considerable use in the manufacture of
low pH products like fruit jellies or low-methoxyl pectin through de-esterification process [1].

3.5. FTIR Analysis

FTIR spectra analysis, shown in Figure 1, is not only used to determine degree of esterification but
also to identify functional groups of the mango peel pectin collected. The functional groups of the
pectin were identified based on their corresponding frequencies and the intensities of absorption [37].
Analysis of spectra showed that structural properties of the mango peel pectin samples were not
significantly affected by the differences in cultivars and maturity stages (Figure 1). All FTIR spectra
were similar and showing the broad and strong absorption areas between 3500 and 2500 cm−1,
indicating for O−H stretching vibrations due to free and bound hydroxyl groups of carboxylic acid [37].
From 3000 cm−1 to 2800 cm−1, there were sharp bands representing C−H absorptions including CH,
CH2, CH3 stretching. The presence of the ester carbonyl (C=O) groups and carboxylate stretching
bands (COO–) were evidenced by stronger bands between 1760 and 1740 cm−1 and between 1640 and
1620 cm−1, respectively. It is obviously seen that for the stronger stretching peaks between 1760 and
1740 cm−1, higher DE values are obtained (Figure 1, Table 1).

3.6. Emulsifying Properties

Emulsifying properties include both emulsifying activity (EA) and emulsifying stability (ES).
The emulsion activity of the pectin extracted from the three cultivars ranged from 11.8% to 34.2%.
The emulsion activity did not increase as the cultivars matured but there were overall differences
between the three cultivars (mean 32.0% for Ghep, 18.5% for Cat Chu and 30.8% for Hoa Loc).
Lopez-Franco et al. [38] found that the presence of protein and polysaccharide moities in the pectin
led to interactions between electrostatic and steric repulsion forces, forming an interfacial membrane
around the oil droplets and this prevents their flocculation and coalesence. They are bound to the
neutral sugar side chains of pectin and these act as the anchors that enable the pectin to form an
emulsified system [39]. In this system, proteins are active on the oil-water interface and are responsible
for the emulsifying activity of pectin [39]. As proteins are found in mango peels [40], the differences in
emulsion properties of pectin between the mango cultivars might be due to differences in the protein
content of the peels and the neutral sugar side chain in the pectin structure.
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Figure 1. Fourier-transform infrared spectroscopy (FTIR) spectra of mango peel pectin collected from
the three mango varieties at different maturity stages. Chu-M1: the immature Chu mango; Chu-M2:
the mature Chu mango; Chu-M2: the overripe Chu mango; Ghep-M1: the immature Ghep mango;
Ghep-M2: the mature Ghep mango; Ghep-M2: the overripe Ghep mango.

In the current work, the emulsion stability of the pectin extracted from the peels was very variable.
It is interesting to note that overall the emulsion stability of the pectin extracted from the mature peels
(mean 65.1%) was overall higher than for the other two maturity stages. The mean emulsion stability
of the pectin extracted from the ripe peels was much lower (34.5%). This may be a consequence of the
breakdown of protein [41] and the degradation of the neutral sugar side chain in the pectin molecules
resulting from the activities of polygalacturonase and β-galactosidase [31] at this stage.

3.7. Rheological Properties

The results showed that the viscosity of mango peel pectin was strongly dependent on the
temperature (Figure 2). The highest viscosity was obtained from running at 4 ◦C, followed by 30 ◦C
and 50 ◦C. At all studied temperatures, Chu pectin showed the highest viscosity, which seems to be
affected by the molecular weight (Table 1).
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Figure 2. The effect of cultivars on viscosity of mango peel pectin solutions at different temperature.

3.8. Viscosity-Average Molecular Weight

In all studied varieties, the intrinsic viscosity and Mw fluctuated depending on the maturation
(Table 1). They increased from pre-mature to mature and then reduced as fruit ripened. The highest
values were from Cat Chu pectin at the mature stage. The phenomenon was in agreement with those
obtained in banana and kiwi fruit [42,43]. The changes of the intrinsic viscosity and Mw could be due
to pectinolytic enzymes including polygalacturonases and pectinmethylesterases [42]. As the Mw

ranged from 397.0 to 578.0 kDa, the pectin of the three mango cultivars can be considered as medium
weight molecules. It is interesting to note that pectin extracted from Ghep and Hoa Loc peels had
the higher values of degree of esterification; however, they had lower intrinsic viscosity and average
molecular weight as correspondingly compared to those of Cat Chu. Similar observations for apple
pomace and citrus peel pectin were recorded by Owens et al. [44] and Morris et al. [45].

4. Conclusions

This is the first study to investigate the properties of crude pectin extracted from Vietnamese
mango peels discarded as waste. It can be inferred from this study that the mango peel pectin isolated
at different maturities and cultivars has a significant range of different characteristics and therefore the
potential to have an important role in food processing. In particular, the overall mean high esterification
value of the extracted pectin suggests that it should be classified as high methoxyl pectin, which is of
considerable interest to food processors.
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