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Abstract: The potential of visible–near-infrared (Vis–NIR) spectroscopy to predict physico-chemical
quality traits in 368 samples of bovine musculus longissimus thoracis et lumborum (LTL) was evaluated.
A fibre-optic probe was applied on the exposed surface of the bovine carcass for the collection of
spectra, including the neck and rump (1 h and 2 h post-mortem and after quartering, i.e., 24 h and 25 h
post-mortem) and the boned-out LTL muscle (48 h and 49 h post-mortem). In parallel, reference
analysis for physico-chemical parameters of beef quality including ultimate pH, colour (L, a*, b*),
cook loss and drip loss was conducted using standard laboratory methods. Partial least-squares (PLS)
regression models were used to correlate the spectral information with reference quality parameters
of beef muscle. Different mathematical pre-treatments and their combinations were applied to
improve the model accuracy, which was evaluated on the basis of the coefficient of determination of
calibration (R2C) and cross-validation (R2CV) and root-mean-square error of calibration (RMSEC)
and cross-validation (RMSECV). Reliable cross-validation models were achieved for ultimate pH
(R2CV: 0.91 (quartering, 24 h) and R2CV: 0.96 (LTL muscle, 48 h)) and drip loss (R2CV: 0.82 (quartering,
24 h) and R2CV: 0.99 (LTL muscle, 48 h)) with lower RMSECV values. The results show the potential
of Vis–NIR spectroscopy for online prediction of certain quality parameters of beef over different
time periods.
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1. Introduction

A wide range of factors interactively affect the quality of meat, including sex, genotype,
rearing conditions, feeding practices, transport, slaughtering and post-mortem handling of the carcass.
Meat quality is a complex set of parameters including physico-chemical, chemical and sensory quality.
Quality parameters like aroma, flavour, mouth-feel and tenderness can be evaluated by sensory analysis.
In addition to these traits, other quality attributes such as colour, water-holding capacity, texture and pH
can be studied using instrumental techniques. These technological traits are extremely important
as they provide data on the development of ultimate meat quality and also convey information on
appreciation of the product and its value, providing specific and important evidence on overall meat
quality as it varies among individuals of a population [1]. Meat colour is important to the consumer
as a key cue in perception at the point of sale and, therefore, has a major bearing on the decision to
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purchase [2]. Drip loss is exudate lost from meat through cutting, heating and pressing [3], and losses of
~5% are common in beef [2]. Water-holding-capacity traits such as drip loss and cook loss are important,
as they represent variability in economic losses for the processor and furthermore, nutritional losses
for the consumers [4]. Variation in pH fall and ultimate pH during the conversion of muscle to
meat influence water-holding capacity, colour, and, through influencing the ultimate contractile state
and proteolytic enzyme activity post-mortem, tenderness.

In order to improve the overall population for meat quality, through incorporation of meat quality
into breeding programmes, a means of providing information on quality, routinely and for as many
animals as possible, is required. The assessment of technological meat quality traits using conventional
approaches is disadvantageous in terms of time consumption, sample destruction, sample preparation,
requirement of expert analysts, chemical utilization and lack of on-site facilities in processing plants for
detailed quality evaluation, which adds to operational costs. Subsequently, these traditional methods
lack the potential to be applied online for the prediction of meat quality attributes in the industry [5].
It is therefore required to introduce some rapid, non-invasive, non-destructive, chemical-free and more
reliable approaches for accurate and online determination of meat quality, which enables quality
assessment based on a multivariate approach.

Non-destructive methods include spectroscopic techniques, use of biosensors, electronic
noses, ultrasound methods, microscopy, microwave characterization, nuclear magnetic resonance
and dielectric methods [6]. Among these approaches, spectroscopic methods have gained significant
popularity regarding the prediction of numerous quality attributes of meat in the last decade. In the case
of spectroscopy, electromagnetic radiations in the ultraviolet, visible, near-, mid- and far-infrared regions
interact with matter, providing fingerprints of the samples under consideration, which can further be
processed to extract useful qualitative and quantitative information [7]. Globally, spectroscopic methods
have been extensively employed to assess the quality of muscle foods. For instance, Fourier-transform
infrared spectroscopy (FTIR) has been successfully employed for meat quality and fraud detection [8–10].
Similarly, Raman spectroscopy has also shown its potential to provide structural information about
muscle proteins [11,12]. Likewise, visible spectroscopy can be used as a non-invasive method for tissue
characterization [13]. Furthermore, fluorescence spectroscopy can be employed for quality evaluation
of meat and meat-based products [7,14–17]. Recently, near-infrared spectroscopy and hyperspectral
imaging have also been investigated for non-destructive prediction of quality and compositional
analysis of meat [18–22] and for the determination of adulterants in meat [23].

The application of visible–near-infrared (Vis–NIR) spectroscopy directly on the meat carcass
is advantageous because it does not require the preparation of the sample before analysis and it
is applicable to the prediction of quality online using a fibre-optic probe. Vis–NIR spectra would
allow a timely prediction of meat quality traits which could potentially assist the processors to
sort out and classify carcasses accordingly. Consequently, the objective of this study was to model
the physico-chemical parameters of beef quality including ultimate pH, colour, cook loss and drip
loss, using visible–near infrared spectroscopic profiles collected at various time points post-mortem.
Spectra were recorded by directly applying a fibre-optic probe on the exposed surface of the carcass
(neck and rump) in the abattoir (1 h and 2 h post-mortem), on the cut surface of carcass in the abattoir
immediately and one hour after quartering (24 h and 25 h post-mortem), on the cut surface of musculus
longissimus thoracis et lumborum (LTL) in the laboratory (48 h and 49 h post-mortem).

2. Materials and Methods

2.1. Animals and Meat Samples Preparation

A total of three 368 cross-bred beef animals, reared under the same environmental and feeding
conditions in the Irish Cattle Breeders Federation Tully Progeny Test Centre were used for the study
over a time span of 18 months. The animals were slaughtered in 10 batches from February 2014 until
September 2015 in a commercial EU-licensed abattoir in Ireland. All carcasses were quartered at the 8th
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rib on pistol hind 24 h post-mortem, and the loins muscles were deboned 48 h post-mortem. A total of
12 steaks (2.54 cm thickness) were sliced from the right side of the LTL muscle and vacuum-packed
at 4 ◦C for further analysis. Then, 48 h post-mortem, the loins were transported from the factory to
the Teagasc Food Research Centre, Ashtown for further analysis.

2.2. Spectra Collection

Vis–NIR spectra were collected using a portable Vis–NIR spectrophotometer (ASD Inc.,
Boulder Colorado, CO, USA) with detection waveband range from 350 to 2500 nm, using the Indico
Pro program. A high-intensity contact probe was used to transmit the light reflected from the surface
of the carcass to the internal detector. Prior to spectral acquisition, the instrument was calibrated
using a Spectralon tile as the white reference. Spectra were collected on the day of slaughtering
from neck and rump, specifically, one hour after slaughtering (1 h post-mortem) and two hours after
slaughtering (2 h post-mortem). Spectra were also collected from the quartered surface of the carcass
(5th rib) at the time of quartering (24 h and 25 h post-mortem, after 1 h blooming in the chill room).
Spectra were also collected from the LTL muscle in the laboratory (48 h and 49 h post-mortem, after 1 h
blooming in the chill room). The spectra were collected in triplicate from three representative sites of
the transverse surface of the LTL muscle (the method was described in detail [24]). For each of these
three scans, 20 spectra were automatically collected by the instrument consecutively and averaged
to reduce noise. Spectral data were exported as a JCAMP file to The Unscrambler X version 10.3
(CAMO ASA, Oslo, Norway) for further chemometric analysis.

2.3. Chemical and Physical Analyses

2.3.1. Ultimate pH (pHu)

The ultimate pH was determined in 366 beef carcasses between the 12th and the 13th rib (48 h
post-mortem). A portable pH meter was employed (Hanna Instrument HI 9126, Woonsocket, RI, USA)
to record both the pH and the temperature. Each sampling day, the pH meter was calibrated with
standardized buffers at pH 7.0 and pH 4.0.

2.3.2. Colour

The equipment employed was the UltraScan® PRO with a dual-beam xenon flash
spectrophotometer (λ: 350–1050 nm, ∆λ: 5 nm, D65, 8◦). The steaks (48 h post-mortem) obtained
from LTL muscles were wrapped in oxygen-permeable transparent film and keptfor 1 h of blooming
before being measured with the uppermost side placed to the light. The spectrophotometer was
calibrated with a black and white baseline. L* (brightness) (varies from 100 for perfect white to 0
for black), a* (redness) (a negative value indicates green, while a positive value indicates red) and b*
(yellowness) (a negative value indicates blue, and a positive value indicates yellow) are the coordinates
which describe the colour of meat. EasyMach QC software (Hunter Associates Laboratory, Inc.,
Reston, VA, USA) was used, and the colour coordinates values were obtained as the average of three
measurements performed on different locations of each LTL muscle slice.

2.3.3. Cooking Loss Percentage

The samples (14-day-aged steaks) were cooked in a circulating water bath to an internal temperature
of 70 ◦C. The temperature was monitored continuously during the cooking process until a plateau was
achieved at 70 ◦C, using a temperature probe (Eirelec Ltd, Dublin, Ireland) inserted into the geometric
centre of the steak. Samples were weighted before and after cooking in order to determine the cooking
loss percentage.

Cook-loss (%) = (raw weight − cooked weight)/raw weight × 100 (1)
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2.3.4. Drip Loss

Drip loss was determined on LTL muscles, 48 h post-mortem. A meat slice of approximately 100
g weight (2.5 cm thickness, 7.5 cm length, 5.0 cm width) was cut from the LTL muscle and hung in
the chill room at 4 ◦C. The samples were weighed after 96 hours, and the drip loss percentage was
calculated [25].

Drip-loss (%) = (Initial weight − Final weight)/initial weight × 100 (2)

2.4. Data Analysis

Partial least-squares regression was performed using The UNSCRAMBLER program (version 8.5.0,
Camo, Trondheim, Norway). After visual inspection, the detection of anomalous spectra was
accomplished using the H-statistic, which indicates how different a sample spectrum is from the average
spectrum of the set [26]. A sample with an H statistic of standardized units from the mean spectrum
was defined as a global H outlier and was eliminated from the population. Baseline correction
was applied to the spectra because the NIR spectra are affected by light scatter and path-length
variation, and pre-treatments of the spectral data improve the accuracy of calibration. In these cases,
spectral data pre-treatments such as standard normal variate (SNV) were applied to the spectra to
reduce the noise and light scattering effects. Partial least-squares (PLS) regression was used for
predicting the chemico-physical properties using Vis–NIR spectra as independent variables. Internal
full cross-validation was performed to avoid overfitting the PLS equations; thus, the optimal number
of factors in each equation was determined as the number of factors after which the standard error of
cross-validation no longer decreased substantially. The accuracy of prediction was evaluated in terms
of coefficient of determination (R2C and R2CV) and root-mean-square error of calibration (RMSEC)
and cross-validation (RMSECV).

3. Results and Discussion

3.1. Spectral Profiles

Figure 1 illustrates the average Vis–NIR spectra measured for neck and rump (1 h post-mortem),
quartered LTL muscle (24 h post-mortem) and loin muscle (48 h post-mortem). A remarkable difference
was seen in the absorbance between the mean spectra of the sites. The variation in the spectra was
potentially due to differences in the time of spectral collection (1 h to 48 h post-mortem) and type of
muscle. Neck and rump showed lower absorbance as compared to the quartered surface of the LTL
muscle and loin muscle in the 1300–2500 nm range. The spectra that were collected during quartering
(24 h post-mortem) showed resemblance with the spectra that were collected from the LTL muscle
(48 h post-mortem). This is due the fact that, although the spectra were collected in 24 h intervals,
they were from the same muscle. Various spectral absorbance bands were identified from the average
Vis–NIR range of the analysed samples. These bands could be easily identified by visual inspection of
the wavebands at which the highest absorbance values were found. Spectral collection from the neck
and quartered surface showed intense peaks at 415 nm and in the 540–580 nm range. Less intense
peaks at 1445 nm and 1940 nm were observed for the neck and rump. However, spectral data collected
at the time of quartering and in loin muscles showed an inverse pattern of peaks in this region.
These wavelengths correspond to different specific functional bonds. Prominent peaks could be seen
at 415 nm, 540–580 nm, 1449 nm and 1933 nm [27]. The visual spectral features were analogous to
the findings of Andrés et al. [28].

The average spectrum of 10 samples with high ultimate pH values and that of 10 spectrum with
low ultimate pH values, compared to the average spectrum of all samples, determined using Vis–NIR
spectroscopy, are shown in Figure 2a. The graph depicts higher absorbance value for the samples
having low ultimate pH in comparison with those having high ultimate pH. Low-pH-sample spectra
showed peak intensity closer to that of the samples with average values of pH, in agreement with
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the fact that most of the samples in our study had relatively lower ultimate pH and samples with high
ultimate pH were more unusual. The absorbance bands at 415 nm and 546 nm were quite prominent
and correspond to myoglobin [29]. These results show the efficiency of Vis–NIR spectroscopy in
analysing the variation of the ultimate pH of beef.

Figure 1. Average visible–near-infrared (Vis–NIR) spectra measured from neck and rump (1 h
post-mortem), on quartering from the musculus longissimus thoracis et lumborum (LTL) muscle (24 h
post-mortem) and from the loin muscle (48 h post-mortem).

Figure 2b shows the spectral results concerning the percentage of drip loss for 10 high-drip-loss
and 10 low-drip-loss samples. Differences in the absorbance values of the mean samples can be
seen. High-drip-loss samples showed less abundant peaks in the spectral range of 1200–2400 nm that
corresponds to moisture content [18]. Low-drip-loss samples showed peak intensities closer to those of
samples with average drip loss values, especially in the 1200–2400 nm range, showing that most of
the samples in our study had relatively low drip loss.

Figure 2. Cont.
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Figure 2. Average Vis–NIR spectra recorded from the LTL muscle (48 post-mortem). (a), Spectra of
10 high-ultimate-pH and 10 low-ultimate-pH carcass samples, (b) spectra of 10 high-drip-loss and 10
low-drip-loss carcass samples compared to the average spectrum of all samples.

These figures suggest that the absorbance value may be closely proportional to the drip loss,
supporting the premise that Vis–NIR spectroscopy has relevance for online prediction of drip loss
percentage in post-mortem beef samples

3.2. Descriptive Statistics of Beef Samples

Ranges, means, standard deviations and coefficient of variances of physico-chemical traits of all
beef samples are given in Table 1. The results depicted a range of 5.16–6.91 for the ultimate pH of
the beef samples stored for 48 h. An ultimate pH falling between 5.4–5.8 would be considered normal for
beef, with higher values potentially corresponding to a dark, firm and dry phenotype, and lower values
potentially presenting issues about their water-holding capacity [30]. Overall, however, the ultimate
pH data showed a relatively low coefficient of variance (CV) of 3.23%. A relatively low variation in
ultimate pH has been reported in several studies in the past by scientists who investigated the use
of near-infrared spectroscopy in beef [28,31,32], chicken [33] and pork meat [34]. Here, it is possible
that some outliers could contribute to the range measured, and these outliers were identified during
data processing and removed from the data set. The ranges for L*, a* and b* colours were from 35.17
to 50.91, from 8.20 to 19.80 and from 6.34 to16.94, respectively. The descriptive statistical analyses of
drip loss (%) and cooking loss (%) are also summarized in Table 1. The average values of drip loss
and cook loss were 2.94% and 31.22%, respectively. Drip loss showed considerably higher variability
(CV = 51.02%) compared to cook loss (CV = 9.55%). Data obtained from traditional laboratory methods
showed that the dataset exhibited relatively low variability in certain parameters and higher variability
in others. Overall, the values of the studied parameters were in line with previous findings [30].

Table 1. Ranges, mean, standard deviations and coefficient of variance of physico-chemical traits of all
beef samples.

Parameter n Range Mean SD CV (%)

Ultimate pH 366 5.16–6.91 5.58 0.18 3.23
Drip Loss (%) 224 0.29–9.04 2.94 1.50 51.02
Cook Loss (%) 293 16.81–38.02 31.22 2.98 9.55

Colour L* 368 35.17–50.91 42.99 2.44 5.68
Colour a* 368 8.20–19.80 14.30 1.82 12.73
Colour b* 368 6.34–16.94 11.40 1.76 15.44

n: number of samples; SD: standard deviation; CV: Coefficient of variance; L*: brightness; a*: redness; b*: yellowness.
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3.3. Prediction of the pH Ultimate Values of Beef from Vis–NIR Spectra

Prediction models were developed to predict the ultimate pH (48 h post-mortem) of LTL muscles
from the spectra collected from neck and rump on the day of slaughtering (1 h and 2 h post-mortem),
at quartering time (24 h and 25 h post-mortem) and from LTL muscles (48 h and 49 h post-mortem).
The results of prediction of the ultimate pH of beef samples, including the coefficient of determination
of calibration (R2C), the root-mean-square error of calibration (RMSEC), the coefficient of determination
of cross-validation (R2CV) and the root-mean-square error of cross validation (RMSECV), are presented
in Table 2. Poor predictions were observed from the spectra collected from beef neck (1 h post-mortem:
R2CV = 0.22 and RMSECV = 0.18; 2 h post-mortem: R2CV = 0.16 and RMSECV = 0.21) and rump (1 h
post-mortem: R2CV = 0.04 and RMSECV = 0.17; 2 h post-mortem: R2CV = 0.23 and RMSECV = 0.20),
but good predictions were recorded from the spectra collected at the time of quartering (24 h
post-mortem: R2CV = 0.66 and RMSECV = 0.15). It is interesting to note that when the spectral
data collected at the time of quartering (24 h post-mortem) were subjected to baseline correction
and SNV correction, the prediction results improved significantly (R2CV = 0.91 and RMSECV = 0.17).
However, these spectral corrections did not bring any improvement when applied to the spectral data
collected from neck and rump (1 h and 2 h post-mortem). Vis–NIR spectra collected from LTL muscles
showed good prediction of the ultimate pH (48 h post-mortem: R2CV = 0.67 and RMSECV = 0.11;
49 h post-mortem: R2CV = 0.73 and RMSECV = 0.11). When baseline and SNV corrections were
applied to the spectral data collected from LTL muscle, they improved the PLS model (R2CV = 0.96
and RMSECV = 0.25). A previous study also showed that the prediction of pH is possible using
Vis–NIR spectroscopy, despite the narrow ultimate pH range of the sample. The findings of the current
investigation are in line with the work of De Marchi [27], who found similar results while developing
prediction models of beef quality traits using Vis–NIR spectroscopy. These results demonstrate that
the prediction of the ultimate pH is possible in the meat industry immediately after quartering or for
LTL muscles using Vis–NIR spectra.

Table 2. Prediction of pH ultimate of beef samples using Vis–NIR spectra.

pH Ultimate Math Treatment n F R2C RMSEC R2CV RMSECV

Neck 1 h-PM Log (1/R) 357 1 0.13 0.18 0.22 0.18
Neck2 h-PM Log (1/R) 153 4 0.22 0.20 0.16 0.21

Rump 1 h-PM Log (1/R) 358 6 0.11 0.16 0.04 0.17
Rump 2 h-PM Log (1/R) 153 4 0.30 0.19 0.23 0.20

Quartering 24 h-PM Log (1/R) 361 4 0.74 0.13 0.66 0.15
Quartering 24 h-PM BS + SNV 361 6 0.92 0.34 0.91 0.17
Quartering 25 h-PM Log (1/R) 366 9 0.36 0.14 0.22 0.16
LTL muscle 48 h-PM Log (1/R) 223 6 0.71 0.10 0.67 0.11
LTL muscle 48 h-PM SNV 223 5 0.96 0.33 0.96 0.25
LTL muscle 49 h-PM Log (1/R) 191 8 0.80 0.09 0.73 0.11

PM: Post-mortem; n: number of total samples; F: number of partial least-squares (PLS) latent variables; R2C:
coefficient of determination of calibration; RMSEC: root-mean-square error of calibration; R2CV: coefficient of
determination of cross-validation; RMSECV, root-mean-square error of cross validation; Log (1/R): raw absorbance
data; BS: baseline correction; SNV: standard normal variate.

3.4. Prediction of Drip Loss

Water represents about 75% of the total fresh weight of meat. Vis–NIR spectral data showed
the absorbance of O–H bonds at 1450 and 1940 nm. Drip loss percentage was measured for LTL muscles
48 h post-mortem. The results of the PLS model of drip loss from the spectral data collected from various
regions (neck, rump, quartered surface and LTL muscle) of beef carcass during post-slaughtering storage
are plotted in Table 3. The results revealed lower coefficients of determination of cross-validation for
neck (1 h post-mortem: R2CV = 0.20; 2 h post-mortem: R2CV = 0.10) and rump (1 h post-mortem:
R2CV = 0.17; 2 h post-mortem: R2CV = 0.09), whilst high coefficients of determination of cross-validation
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were recorded for quartered surface (24 h post-mortem: R2CV = 0.51) and LTL muscle (48 h post-mortem:
R2CV = 0.99). After applying baseline corrections and SNV, the PLS model results from the spectral data
collected during quartering were improved (24 h post-mortem: R2CV = 0.82). The values of RMSECV
in all PLS models were between 1.12 and 1.43, which shows that the model is relatively good for
the prediction of drip loss from spectral datasets. These findings have confirmed the potential of Vis–NIR
spectroscopy to predict the drip loss percentage of beef during pre-rigor storage. The corollaries of
the present study are in accordance with the findings of Prieto et al. [35], who investigated the capability
of Vis–NIR reflectance spectroscopy for the prediction of the physical, chemical and sensory quality of
beef. It was found that the best prediction model was achieved when spectral data were collected 24 h
post-mortem at the quartering stage and 48 h post-mortem from the LTL muscle. This might be due to
the fact that the actual drip loss of the samples was also analysed on LTL muscles. Therefore, our results
indicate that the actual drip loss of LTL muscles can be predicted from the spectra obtained during
quartering or from the spectra collected on the surface of LTL muscles.

Table 3. Prediction of drip loss (%) of beef samples using Vis–NIR spectra.

Drip Loss (%) Math Treatment n F R2C RMSEC R2CV RMSECV

Neck 1 h-PM Log (1/R) 213 4 0.24 1.32 0.20 1.36
Neck 2 h-PM Log (1/R) 153 4 0.17 1.10 0.10 1.15
Rump 1 h-PM Log (1/R) 212 3 0.18 1.37 0.17 1.38
Rump 2 h-PM Log (1/R) 153 4 0.17 1.10 0.09 1.16

Quartering 24 h-PM Log (1/R) 214 4 0.54 1.22 0.51 1.34
Quartering 24 h-PM BS + SNV 214 3 0.82 1.44 0.82 1.43
Quartering 25 h-PM Log (1/R) 219 4 0.22 1.32 0.17 1.37
LTL muscle 48 h-PM Log (1/R) 224 2 0.99 0.11 0.99 1.12
LTL muscle 49 h-PM Log (1/R) 192 7 0.43 1.12 0.32 1.24

n: number of total samples; F: number of PLS latent variables; R2C: coefficient of determination of calibration;
RMSEC: root mean square error of calibration; R2CV: coefficient of determination of cross-validation; RMSECV,
root mean square error of cross validation; Log (1/R): raw absorbance data; BS: baseline correction; SNV: standard
normal variate.

3.5. Cooking Loss Measurement

The results presented in Table 4 show that the Vis–NIR spectral data provided moderate prediction
accuracy for the determination of cooking loss from the PLS model. Poor coefficients of determination
of cross-validation were obtained for neck (1 h post-mortem: R2CV = 0.19, RMSECV = 2.70; 2 h
post-mortem: R2CV = 0.09, RMSECV = 3.41), rump (1 h post-mortem: R2CV = 0.14, RMSECV = 2.79;
2 h post-mortem: R2CV = 0.28, RMSECV = 2.99), quartered surface (24 h post-mortem: R2CV = 0.25,
RMSECV = 2.59; 25 h post-mortem: R2CV = 0.22, RMSECV = 2.64) and LTL muscles (48 h post-mortem:
R2CV = 0.43, RMSECV = 2.27; 49 h post-mortem: R2CV = 0.45, RMSECV = 2.23). However, it is
interesting to note that a lower value of RMSECV was obtained for the PLS models, showing
the potential of spectral data to predict cooking loss. Models were also built with baseline and SNV
corrections, but the results did not improve significantly in terms of R2CV. These spectral corrections
had little or no effect on the regression results. According to the literature available, the prediction of
cooking loss using Vis–NIR spectroscopy has not been very successful. Our findings are in accord
with those of Prieto et al. [35], but nevertheless show greater accuracy than the results presented by
De Marchi et al. [36].

3.6. Prediction of Colour Parameters

No significant variations were found in the colour of different analysed samples [37]. The results
of the PLS models for spectral data collected from neck, rump, quartered surface and LTL muscles of
beef using Vis–NIR spectroscopy and colour parameters are shown in Table 5. Higher RMSECV values
for L* colour were obtained for the neck (2.20–2.30) and rump (2.18–2.26) as compared to quartered
surface (1.95–1.99) and LTL muscle sections (1.76–1.80). A relatively good prediction was recorded for
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a* and b* colours, although with lower coefficients of determination of calibration (R2C = 0.02–0.41 for
a*; R2C = 0.00–0.46 for b*), but good values of RMSECV (0.75–1.82 for a*; 1.38–1.83 for b*). The NIR
spectra correspond to the overtones and combinations of fundamental vibrations of C–H, N–H, O–H
and S–H functional groups and provide information about the chemical composition of a sample.
These findings are in harmony with the work done by Williams and Norris [26], who suggested that
spectral measurements along with chemometric models can be used for the prediction of colour in meat.
In our research, we were able to find good prediction models based on lower RMSEC and RMSEV for
colour measurement from Vis–NIR data. However, lower values for R2C and R2CV were obtained,
which might be due to colour variation across different areas of the same slice of meat. Ideally, the sample
point location in the muscle that is used for colour measurement through traditional methods would
be the same as the sample point location that is used for spectral collections; this could be important
in developing a regression model. However, our data were averages of three spectra and three colour
measures, hence, they should be reflective of the average colour and average spectra of the piece.

Table 4. Prediction of cook loss (%) of beef samples using Vis–NIR spectra.

Cook Loss (%) Math n F R2C RMSEC R2CV RMSECV

Neck 1 h-PM Log (1/R) 286 8 0.34 2.44 0.19 2.70
Neck 2 h-PM Log (1/R) 81 2 0.18 3.20 0.09 3.41
Rump 1 h-PM Log (1/R) 285 8 0.26 2.50 0.14 2.79
Rump 2 h-PM Log (1/R) 81 8 0.58 2.28 0.28 2.99

Quartering 24 h-PM Log (1/R) 293 10 0.43 2.25 0.25 2.59
Quartering 25 h-PM Log (1/R) 293 10 0.41 2.28 0.22 2.64
LTL muscle 48 h-PM Log (1/R) 151 6 0.51 2.00 0.43 2.27
LTL muscle 49 h-PM Log (1/R) 150 6 0.53 2.06 0.45 2.23

n: number of total samples; F: number of PLS latent variables; R2C: coefficient of determination of calibration;
RMSEC: root mean square error of calibration; R2CV: coefficient of determination of cross-validation; RMSECV,
root mean square error of cross validation; Log (1/R): raw absorbance data.

Table 5. Prediction of colour parameters of beef samples using Vis–NIR spectra.

Colour L* Math n F R2C RMSEC R2CV RMSECV

Neck 1 h-PM Log (1/R) 361 6 0.24 2.11 0.18 2.20
Neck 2 h-PM Log (1/R) 155 1 0.03 2.30 0.01 2.30
Rump 1 h-PM Log (1/R) 360 7 0.29 2.05 0.20 2.18
Rump 2 h-PM Log (1/R) 155 9 0.37 1.88 0.11 2.26

Quartering 24 h-PM Log (1/R) 368 9 0.42 1.85 0.33 1.99
Quartering 2 5 h-PM Log (1/R) 368 8 0.42 1.84 0.36 1.95
LTL muscle 48 h-PM Log (1/R) 224 8 0.60 1.55 0.49 1.76
LTL muscle 49h-PM Log (1/R) 191 7 0.53 1.65 0.44 1.80

Colour a*

Neck 1h-PM Log (1/R) 361 8 0.21 1.62 0.08 1.75
Neck 2 h-PM Log (1/R) 155 5 0.18 1.67 0.11 1.75
Rump 1 h-PM Log (1/R) 360 1 0.02 1.81 0.09 1.82
Rump 2 h-PM Log (1/R) 155 1 0.06 1.78 0.06 1.81

Quartering 24 h-PM Log (1/R) 368 7 0.23 1.58 0.15 1.67
Quartering 25 h-PM Log (1/R) 368 3 0.09 1.72 0.07 0.75
LTL muscle 48 h-PM Log (1/R) 224 6 0.41 1.35 0.32 1.46
LTL muscle 49 h-PM Log (1/R) 191 4 0.31 1.37 0.28 1.41

Colour b*

Neck 1 h-PM Log (1/R) 361 1 0.00 1.76 NA 1.79
Neck 2 h-PM Log (1/R) 155 1 0.01 1.80 NA 1.83
Rump 1 h-PM Log (1/R) 360 1 0.00 1.76 NA 1.79
Rump 2 h-PM Log (1/R) 155 1 0.01 1.80 NA 1.82

Quartering 24 h-PM Log (1/R) 368 8 0.30 1.47 0.19 1.57
Quartering 25 h-PM Log (1/R) 368 9 0.34 1.43 0.20 1.57
LTL muscle 48 h-PM Log (1/R) 224 6 0.46 1.30 0.39 1.39
LTL muscle 49 h-PM Log (1/R) 191 5 0.40 1.33 0.32 1.41

n: number of total samples; F: number of PLS latent variables; R2C: coefficient of determination of calibration;
RMSEC: root mean square error of calibration; R2CV: coefficient of determination of cross-validation; RMSECV, root
mean square error of cross validation; Log (1/R): raw absorbance data.
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4. Conclusions

This research work demonstrates the potential of Vis–NIR infrared spectroscopy to predict certain
quality parameters of beef. The results are quite promising, showing the potential of this method
for online prediction of quality traits in the meat industry. In the case of spectral pre-treatments,
baseline correction (BS), SNV and their combinations served as the best pre-treatments, enhancing
model accuracy in many cases. Reliable and accurate PLS models were obtained for the ultimate pH
for spectra recorded immediately after slaughtering, at quartering time (24 h post-mortem) and from
the LTL muscle (48 h post-mortem), whereas for drip loss, the only reliable model was achieved
at quartering time (24 h post-mortem). On the other hand, the PLS models for cook loss gave moderate
results for the spectra collected on the cut face of the LTL muscle 49 h post-mortem. Similarly, the cut
face of the LTL muscle was also observed to be the best regions for colour measurements (48 h
and 49 h post-mortem), since the accuracy of the PLS models in this muscle was significantly higher
as compared to that for other regions of the carcass and time points. Taken together with findings
from our earlier work [24], it can be deduced from the study that Vis–NIR spectroscopy can be a useful
tool for the on-site prediction of certain meat quality parameters using different regions of the carcass
and different time points, and therefore, this technology has some potential for the beef sector, both for
meat management systems of processors and in livestock breeding programs.

Author Contributions: Conceptualization, P.A, T.S, A.C and R.H; Formal analysis, A.S; Funding acquisition, T.S
and R.H; Investigation, A.S and J.C; Methodology, A.S, P.A, G.D and R.H; Supervision, R.H; Writing—original
draft, A.S; Writing—review & editing, P.A, T.S, J.C and R.H.

Funding: This research is funded by the BreedQuality project (11/SF/311) which is supported by The Irish
Department of Food, Agriculture and the Marine (DAFM) under the National Development Plan 2007–2013.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liang, R.; Zhu, H.; Mao, Y.; Zhang, Y.; Zhu, L.; Cornforth, D.; Wang, R.; Meng, X.; Luo, X. Tenderness
and sensory attributes of the longissimus lumborum muscles with different quality grades from Chinese
fattened yellow crossbred steers. Meat Sci. 2016, 112, 52–57. [CrossRef] [PubMed]

2. Troy, D.; Kerry, J. Consumer perception and the role of science in the meat industry. Meat Sci. 2010, 86, 214–226.
[CrossRef] [PubMed]

3. Di Luca, A.; Elia, G.; Hamill, R.; Mullen, A.M. 2D DIGE proteomic analysis of early post mortem muscle
exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork
meat. Proteomics 2013, 13, 1528–1544. [CrossRef] [PubMed]

4. Dransfield, E.; Martin, J.-F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality
and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [CrossRef]

5. Ripoll, G.; Alberti, P.; Panea, B.; Olleta, J.; Sanudo, C. Near-infrared reflectance spectroscopy for predicting
chemical, instrumental and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [CrossRef]

6. Xiaobo, Z.; Xiaowei, H.; Povey, M.J.W. Non-invasive sensing for food reassurance. Analyst 2016, 141, 1587–1610.
[CrossRef]

7. Sahar, A.; Dufour, E. Classification and characterization of beef muscles using front-face fluorescence
spectroscopy. Meat Sci. 2015, 100, 69–72. [CrossRef]

8. Nunes, K.M.; Andrade, M.V.O.; Filho, A.M.S.; Lasmar, M.C.; Sena, M.M. Detection and characterisation of
frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters
and ATR-FTIR spectroscopy. Food Chem. 2016, 205, 14–22. [CrossRef]

9. Rahman, U.U.; Sahar, A.; Pasha, I.; Rahman, S.U.; Ishaq, A. Assessing the capability of Fourier transform
infrared spectroscopy in tandem with chemometric analysis for predicting poultry meat spoilage. PeerJ 2018,
6, e5376. [CrossRef]

10. Lucarini, M.; Durazzo, A.; Del Pulgar, J.S.; Gabrielli, P.; Lombardi-Boccia, G. Determination of fatty acid
content in meat and meat products: The FTIR-ATR approach. Food Chem. 2018, 267, 223–230. [CrossRef]

http://dx.doi.org/10.1016/j.meatsci.2015.10.004
http://www.ncbi.nlm.nih.gov/pubmed/26519609
http://dx.doi.org/10.1016/j.meatsci.2010.05.009
http://www.ncbi.nlm.nih.gov/pubmed/20579814
http://dx.doi.org/10.1002/pmic.201200145
http://www.ncbi.nlm.nih.gov/pubmed/23456991
http://dx.doi.org/10.1017/S1357729800058616
http://dx.doi.org/10.1016/j.meatsci.2008.03.009
http://dx.doi.org/10.1039/C5AN02152A
http://dx.doi.org/10.1016/j.meatsci.2014.09.142
http://dx.doi.org/10.1016/j.foodchem.2016.02.158
http://dx.doi.org/10.7717/peerj.5376
http://dx.doi.org/10.1016/j.foodchem.2017.11.042


Foods 2019, 8, 525 11 of 12

11. Kang, Z.-L.; Li, X.; He, H.-J.; Ma, H.-J.; Song, Z.-J. Structural changes evaluation with Raman spectroscopy in
meat batters prepared by different processes. J. Food Sci. Technol. 2017, 54, 2852–2860. [CrossRef] [PubMed]

12. Fowler, S.M.; Schmidt, H.; Van De Ven, R.; Hopkins, D.L. Preliminary investigation of the use of Raman
spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci. 2018, 138, 53–58. [CrossRef]
[PubMed]

13. Xiong, Z.; Sun, D.W.; Pu, H.; Gao, W.; Dai, Q. Applications of emerging imaging techniques for meat quality
and safety detection and evaluation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 755–768. [CrossRef]
[PubMed]

14. Sahar, A.; Boubellouta, T.; Lepetit, J.; Dufour, E. Front-face fluorescence spectroscopy as a tool to classify
seven bovine muscles according to their chemical and rheological characteristics. Meat Sci. 2009, 83, 672–677.
[CrossRef] [PubMed]

15. Allais, I.; Viaud, C.; Pierre, A.; Dufour, E. A rapid method based on front-face fluorescence spectroscopy for
the monitoring of the texture of meat emulsions and frankfurters. Meat Sci. 2004, 67, 219–229. [CrossRef]

16. Aït-Kaddour, A.; Thomas, A.; Mardon, J.; Jacquot, S.; Ferlay, A.; Gruffat, D. Potential of fluorescence
spectroscopy to predict fatty acid composition of beef. Meat Sci. 2016, 113, 124–131. [CrossRef]

17. Aït-Kaddour, A.; Loudiyi, M.; Ferlay, A.; Gruffat, D. Performance of fluorescence spectroscopy for beef meat
authentication: Effect of excitation mode and discriminant algorithms. Meat Sci. 2018, 137, 58–66. [CrossRef]

18. Pieszczek, L.; Czarnik-Matusewicz, H.; Daszykowski, M. Identification of ground meat species using
near-infrared spectroscopy and class modeling techniques—Aspects of optimization and validation using
a one-class classification model. Meat Sci. 2018, 139, 15–24. [CrossRef]

19. Kamruzzaman, M.; Elmasry, G.; Sun, D.-W.; Allen, P. Non-destructive prediction and visualization of chemical
composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci.
Emerg. Technol. 2012, 16, 218–226. [CrossRef]

20. Lohumi, S.; Lee, S.; Lee, H.; Kim, M.S.; Lee, W.-H.; Cho, B.-K. Application of hyperspectral imaging for
characterization of intramuscular fat distribution in beef. Infrared Phys. Technol. 2016, 74, 1–10. [CrossRef]

21. Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging for real-time monitoring of water holding
capacity in red meat. LWT 2016, 66, 685–691. [CrossRef]

22. Zhao, M.; Esquerre, C.; Downey, G.; O’Donnell, C.P.; Fernandez, C.A.E. Process analytical technologies for
fat and moisture determination in ground beef—A comparison of guided microwave spectroscopy and near
infrared hyperspectral imaging. Food Control. 2017, 73, 1082–1094. [CrossRef]

23. Rady, A.; Adedeji, A. Assessing different processed meats for adulterants using visible-near-infrared
spectroscopy. Meat Sci. 2018, 136, 59–67. [CrossRef] [PubMed]

24. Cafferky, J.; Sweeney, T.; Allen, P.; Sahar, A.; Downey, G.; Cromie, A.; Hamill, R.M. Investigating the use of
visible and near infrared spectroscopy to predict sensory and texture attributes of beef M. longissimus thoracis
et lumborum. Meat Sci. 2019. [CrossRef] [PubMed]

25. Honikel, K.O.; Hamm, R. Measurement of water-holding capacity and juiciness. In Quality Attributes and their
Measurement in Meat, Poultry and Fish Products; Springer Science and Business Media LLC: Boston, MA, USA,
1994; pp. 125–161.

26. Williams, P.C.; Norris, K. Near Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American
Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987.

27. De Marchi, M. On-line prediction of beef quality traits using near infrared spectroscopy. Meat Sci. 2013,
94, 455–460. [CrossRef] [PubMed]

28. Andrés, S.; Silva, A.; Soares-Pereira, A.; Martins, C.; Bruno-Soares, A.; Murray, I.; Silva, J. The use of visible
and near infrared reflectance spectroscopy to predict beef M. longissimus thoracis et lumborum quality attributes.
Meat Sci. 2008, 78, 217–224. [CrossRef] [PubMed]

29. Cozzolino, D.; Murray, I.; Paterson, R.; Scaife, J.R. Visible and near infrared reflectance spectroscopy for
the determination of moisture, fat and protein in chicken breast and thigh muscle. J. Near Infrared Spec. 1996,
4, 213–223. [CrossRef]

30. Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring
of beef freshness. Food Control 2017, 82, 91–100. [CrossRef]

31. Page, J.K.; Wulf, D.M.; Schwotzer, T.R. A survey of beef muscle color and pH. J. Anim. Sci. 2001, 79, 678–687.
[CrossRef]

http://dx.doi.org/10.1007/s13197-017-2723-4
http://www.ncbi.nlm.nih.gov/pubmed/28928525
http://dx.doi.org/10.1016/j.meatsci.2018.01.002
http://www.ncbi.nlm.nih.gov/pubmed/29331862
http://dx.doi.org/10.1080/10408398.2014.954282
http://www.ncbi.nlm.nih.gov/pubmed/25975703
http://dx.doi.org/10.1016/j.meatsci.2009.08.002
http://www.ncbi.nlm.nih.gov/pubmed/20416640
http://dx.doi.org/10.1016/j.meatsci.2003.10.009
http://dx.doi.org/10.1016/j.meatsci.2015.11.020
http://dx.doi.org/10.1016/j.meatsci.2017.11.002
http://dx.doi.org/10.1016/j.meatsci.2018.01.009
http://dx.doi.org/10.1016/j.ifset.2012.06.003
http://dx.doi.org/10.1016/j.infrared.2015.11.004
http://dx.doi.org/10.1016/j.lwt.2015.11.021
http://dx.doi.org/10.1016/j.foodcont.2016.10.023
http://dx.doi.org/10.1016/j.meatsci.2017.10.014
http://www.ncbi.nlm.nih.gov/pubmed/29096288
http://dx.doi.org/10.1016/j.meatsci.2019.107915
http://www.ncbi.nlm.nih.gov/pubmed/31470197
http://dx.doi.org/10.1016/j.meatsci.2013.03.003
http://www.ncbi.nlm.nih.gov/pubmed/23618741
http://dx.doi.org/10.1016/j.meatsci.2007.06.019
http://www.ncbi.nlm.nih.gov/pubmed/22062273
http://dx.doi.org/10.1255/jnirs.92
http://dx.doi.org/10.1016/j.foodcont.2017.06.028
http://dx.doi.org/10.2527/2001.793678x


Foods 2019, 8, 525 12 of 12

32. Prieto, N.; Andrés, S.; Giráldez, F.; Mantecon, A.R.; Lavin, P. Ability of near infrared reflectance spectroscopy
(NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Sci. 2008,
79, 692–699. [CrossRef]

33. Battagin, M.; Zanetti, E.; Pulici, C.; Cassandro, M.; De Marchi, M.; Penasa, M. Feasibility of the direct
application of near-infrared reflectance spectroscopy on intact chicken breasts to predict meat color
and physical traits. Poult. Sci. 2011, 90, 1594–1599.

34. Liu, Y.; Chen, Y.-R. Analysis of visible reflectance spectra of stored, cooked and diseased chicken meats.
Meat Sci. 2001, 58, 395–401. [CrossRef]

35. Prieto, N.; Ross, D.; Navajas, E.; Nute, G.; Richardson, R.; Hyslop, J.; Simm, G.; Roehe, R. On-line application
of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics
of beef quality. Meat Sci. 2009, 83, 96–103. [CrossRef] [PubMed]

36. De Marchi, M.; Berzaghi, P.; Boukha, A.; Mirisola, M.; Galol, L.; Gallo, L. Use of near infrared spectroscopy
for assessment of beef quality traits. Ital. J. Anim. Sci. 2007, 6, 421–423. [CrossRef]

37. Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Sweeney, T. Effect of Breed and Gender on
Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019,
8, 173. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.meatsci.2007.10.035
http://dx.doi.org/10.1016/S0309-1740(01)00041-9
http://dx.doi.org/10.1016/j.meatsci.2009.04.005
http://www.ncbi.nlm.nih.gov/pubmed/20416617
http://dx.doi.org/10.4081/ijas.2007.1s.421
http://dx.doi.org/10.3390/foods8050173
http://www.ncbi.nlm.nih.gov/pubmed/31117235
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Meat Samples Preparation 
	Spectra Collection 
	Chemical and Physical Analyses 
	Ultimate pH (pHu) 
	Colour 
	Cooking Loss Percentage 
	Drip Loss 

	Data Analysis 

	Results and Discussion 
	Spectral Profiles 
	Descriptive Statistics of Beef Samples 
	Prediction of the pH Ultimate Values of Beef from Vis–NIR Spectra 
	Prediction of Drip Loss 
	Cooking Loss Measurement 
	Prediction of Colour Parameters 

	Conclusions 
	References

